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Summary A method of choice for the long-time integration of con-
strained Hamiltonians systems is the Rattle algorithm. It is symmet-
ric, symplectic, and nearly preserves the Hamiltonian, but it is only
of order two and thus not efficient for high accuracy requirements. In
this article we prove that certain symmetric linear multistep meth-
ods have the same qualitative behavior and can achieve an arbitrarily
high order with a computational cost comparable to that of the Rattle
algorithm.
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1 Introduction

The motion of mechanical systems is often constrained in the posi-
tion coordinates (e.g., rigid body motion, frozen bonds in molecular
dynamics). This typically leads to differential-algebraic equations of
the form

Mq̈ = −∇U(q)−G(q)Tλ
0 = g(q),

(1)

where q ∈ Rd is the vector of position coordinates, M is a positive
definite mass matrix, U(q) is a smooth real potential, g(q) ∈ Rm

(with m < d) collects the constraints, and G(q) = g′(q) is the matrix
of partial derivatives. The term containing the Lagrange multiplier
λ ∈ Rm forces the solution to satisfy the algebraic constraint. In
addition to g(q) = 0 every solution of (1) also satisfies the differenti-
ated relation d

dtg(q) = G(q)q̇ = 0. Initial values q(0) = q0, q̇(0) = q̇0
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are said to be consistent if they satisfy both relations g(q0) = 0
and G(q0)q̇0 = 0. A second differentiation of the constraint leads to
∂2

∂q2
g(q)(q̇, q̇) + G(q)q̈ = 0 which, after insertion of (1), permits to

express the Lagrange multiplier λ in terms of q and q̇, provided that
the matrix

G(q)M−1G(q)T is invertible (2)

along the solution. This will be assumed throughout this article. It
implies that the differential-algebraic equation is of index 3.

Introducing the momentum p = Mq̇, the problem is seen to be
Hamiltonian with total energy

H(q, p) = 1

2
pTM−1p+ U(q). (3)

Elimination of the Lagrange multiplier λ from the system yields a
differential equation on the manifold

M = {(q, p) ; g(q) = 0, G(q)M−1p = 0}. (4)

The flow is symplectic on M, and the energy H(q, p) is preserved
along solutions of the system. In the spirit of geometric numerical
integration one is interested in numerical simulations that share these
properties as far as possible.

The most natural discretization of (1) is obtained when the second
derivative is replaced by a central difference. This leads to the so-
called Shake algorithm [12]

qn+1 − 2qn + qn−1 = −h2M−1(∇U(qn) +G(qn)Tλn)
0 = g(qn+1).

(5)

The momentum approximation is given by pn = M(qn+1 − qn−1)/2h
and does not enter the recursion (5). In general G(qn)M−1pn 6= 0, so
that the numerical solution (qn, pn) does not lie on the manifold M.

An important modification, called Rattle [1], consists in writing
the algorithm as a one-step method and to add a projection step, so
that (qn, pn) ∈M. The algorithm is given by

pn+1/2 = pn − h

2

(
∇U(qn) +G(qn)Tθn

)
qn+1 = qn + hM−1pn+1/2

0 = g(qn+1)

pn+1 = pn+1/2 −
h

2

(
∇U(qn+1) +G(qn+1)Tµn+1

)
0 = G(qn+1)M−1pn+1.

(6)
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It is symmetric, symplectic on the manifold M, and convergent of
order 2 (see [7, Section VII.1] for details). Eliminating the momentum
variables shows that the Rattle approximation satisfies the two-
term recursion (5) of Shake with λn = (θn + µn)/2.

The Rattle algorithm is an excellent geometric integrator for low
accuracy requirements (such as in molecular dynamics simulations).
There are a few extensions of this algorithm to higher order. An easy
way is by composition methods with the Rattle scheme as basic
integrator [11]. Another extension is the partitioned Runge–Kutta
method based on the Lobatto IIIA–IIIB pair. It is of order 2s−2 and
reduces to the Rattle algorithm for s = 2 [8]. The present article
proposes a new extension, based on symmetric multistep methods.

The long-time behavior of symmetric linear multistep methods for
unconstrained Hamiltonian systems q̈ = −∇U(q) has been studied in
[6], see also [3] for their applicability to more general Hamiltonian
problems. Section 2 explains how these methods can be extended
to constrained systems of the form (1). The main results on their
long-time behaviour, in particular, the near-preservation of the to-
tal energy and the momentum over long time intervals, are reported
in Section 3. The construction of stable symmetric methods is dis-
cussed in Section 4, and the coefficients of optimal-order methods
are presented for orders 4, 6, and 8. The numerical experiments of
Section 5 illustrate the excellent long-time behaviour of the methods
in agreement with the theoretical results. Rigorous proofs are based
on a backward error analysis. The long-time behaviour of “smooth”
numerical solutions and their preservation of energy and momentum
are discussed in Section 6. Bounds for parasitic solution components
are the topic of Section 7. The results of Sections 6 and 7 are then
combined to yield the main results.

2 Symmetric linear multistep methods

With the notation f(q) = −∇U(q) for the force, linear multistep
methods for differential-algebraic equations (1) are given by

k∑
j=0

αjqn+j = h2
k∑
j=0

βjM
−1
(
f(qn+j)−G(qn+j)Tλn+j

)
0 = g(qn+k).

(7)

For implicit methods (βk 6= 0) this represents a nonlinear system
for (qn+k, λn+k). For explicit methods (βk = 0) we insert qn+k from
the first relation into the second one to obtain a nonlinear equation
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for λn+k−1. As soon as λn+k−1 is computed, the solution approxima-
tion qn+k is given explicitly. The computational cost of an explicit
multistep method is thus precisely the same as that for the Shake
algorithm.

For the study of linear multistep methods it is convenient to in-
troduce the generating polynomials

ρ(ζ) =
k∑
j=0

αjζ
j , σ(ζ) =

k∑
j=0

βjζ
j .

Throughout this article we assume that ρ(ζ) and σ(ζ) do not have
common zeros (irreducibility). The method (7) is stable if all zeros of
ρ(ζ) satisfy |ζ| ≤ 1, and if those of modulus one have a multiplicity
not exceeding two. It is consistent of order r, if

ρ(ζ)
(log ζ)2

− σ(ζ) = O((ζ − 1)r) for ζ → 1. (8)

In the present article we focus our interest on symmetric methods,
which means that the coefficients satisfy

αj = αk−j , βj = βk−j for all j.

If a multistep method (7) is stable and symmetric, all zeros of ρ(ζ)
are on the unit circle, and the order r is even. Furthermore, it follows
from the irreducibility assumption that k is even (because symmetry
implies for odd k that ρ(−1) = σ(−1) = 0), and that −1 cannot be a
simple zero of ρ(ζ). The construction of explicit symmetric methods
of optimal order will be discussed in Section 4 below.

An approximation of the momentum p = Mq̇ can be computed a
posteriori by symmetric finite differences supplemented with a pro-
jection onto the manifold M:

pn = M
1
h

l∑
j=−l

δjqn+j + hG(qn)Tµn. (9)

together with G(qn)M−1pn = 0, which gives a linear system for µn.
One typically chooses l = k/2, so that the approximations pn are of
the same order as qn. This is not essential, because errors in pn do
not propagate.

Comments on the implementation. The formulation (7) is a straight-
forward extension of the Shake algorithm (5). To reduce the effect
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of round-off we consider momentum approximations pn+1/2, as it was
proposed in Rattle. For explicit multistep methods this yields

k−1∑
j=0

α̂j pn+j+1/2 = h
k−1∑
j=1

βj
(
f(qn+j)−G(qn+j)Tλn+j

)
qn+k = qn+k−1 + hM−1pn+k−1/2

0 = g(qn+k),

(10)

where α̂j are the coefficients of ρ(ζ)/(ζ − 1) = (ζ − 1)ρ̃(ζ). The ap-
proximation of the momenta becomes

pn =
l−1∑
j=−l

δ̂j pn+j+1/2 + hG(qn)Tµn

0 = G(qn)M−1pn,

(11)

where the coefficients δ̂j are given by (ζ−1)
∑l−1
j=−l δ̂jζ

j =
∑l
j=−l δjζ

j .

3 Main results

When linear multistep methods are applied to differential-algebraic
equations of index 3, symmetric formulas are typically avoided be-
cause of their notorious weak instability and the standard choice is
BDF schemes. There is some research on a partitioned treatment of
the force term and the Lagrange multiplier (for example [2]) such
that also non-stiff integrators can be applied. However, little atten-
tion has been paid to long-time energy and momentum preservation
with these integrators. This requires the use of symmetric methods.
The present work shows that the suspected weak instability is not
harmful for problems of the form (1) and for a special class of inte-
grators.

For a favourable long-time behaviour we need the following prop-
erties of the generating polynomials:

ρ(ζ) = 0 has only simple roots with the exception of the
double root 1; all roots are on the unit circle. (12)

σ(ζ) = 0 has only simple non-zero roots; all non-zero
roots are on the unit circle. (13)

Symmetry of the method together with condition (12) is essential for
good long-time behaviour in unconstrained problems (see [6]), and
condition (13) is familiar from the convergence analysis of multistep
methods for index-3 differential-algebraic equations.
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For the starting values we assume

qj − q(jh) = O(hr+2) and g(qj) = 0 for j = 0, . . . , k − 1
λj − λ(jh) = O(hr) for j = 1, . . . , k − 2

(the latter for the case of an explicit method with βk−1 6= 0).

3.1 Energy conservation

It follows from differentiation of H(q(t), p(t)) that the total energy (3)
is exactly preserved along solutions of the system (1). Recall that
p = Mq̇.

Theorem 1 Consider a symmetric linear multistep method (7) of
order r with generating polynomials satisfying (12) and (13). Along
the numerical solution of the constrained system (1) the total energy
(3) is conserved up to O(hr) over time O(h−r−1):

H(qn, pn) = H(q0, p0) +O(hr) for nh ≤ h−r−1.

The constant symbolized by O is independent of n and h subject to
nh ≤ h−r−1.

3.2 Momentum conservation

Constrained N -body systems preserve the total angular momentum if
both the potential U(q) and the constraint function g(q) are invariant
under rotations. More generally, the invariance properties

U(eτAq) = U(q) and g(eτAq) = g(q) for all τ, q (14)

with a matrix A such that MA is skew-symmetric, implies that the
Lagrange function

L(q, q̇, λ) = 1

2
q̇TMq̇ − U(q)− g(q)Tλ

is invariant under the symmetry q 7→ eτAq. By Noether’s theorem the
momentum

L(q, p) = pTAq (15)

is conserved along solutions of the constrained Hamiltonian system (1).
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Theorem 2 Consider a symmetric linear multistep method (7) of
order r with generating polynomials satisfying (12) and (13). Along
the numerical solution of the constrained system (1) satisfying (14)
the momentum (15) is conserved up to O(hr) over time O(h−r−1):

L(qn, pn) = L(q0, p0) +O(hr) for nh ≤ h−r−1.

The constant symbolized by O is independent of n and h subject to
nh ≤ h−r−1.

Remark 1 Symplectic one-step methods (like the Rattle algorithm)
conserve the momentum exactly. This is not the case for linear mul-
tistep methods, because their underlying one-step method cannot be
symplectic (see [7, Section XV.4.1]).

4 Examples of higher order methods

Symmetric linear k-step multistep methods (7) with even k can be
constructed as follows. We define the ρ-polynomial by

ρ(ζ) = (ζ − 1)2
k/2−1∏
j=1

(ζ2 + 2ajζ + 1),

where aj are distinct real numbers satisfying −1 < aj < 1. This
implies the assumption (12). The order condition (8) then uniquely
determines the σ-polynomial of degree k− 1 such that the method is
explicit and of order r = k. The resulting method is symmetric.

4.1 Coefficients of methods up to order 8

For methods up to order 8 we investigate for which values of aj the
corresponding σ-polynomial satisfies assumption (13).

Order r = k = 4: The σ-polynomial is given by

σ(ζ) = (7 + a1)(ζ3 + ζ)/6 + (−1 + 5a1)ζ2/3.

We see that condition (13) is satisfied for all choices of −1 < a1 < 1.
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Fig. 1. The dark grey region shows the (a1, a2) values for which the corresponding
σ-polynomial (case k = 6) has all non-zero roots on the unit circle.

Order r = k = 6: The σ-polynomial is given by

σ(ζ) = α(ζ5 + ζ) + β(ζ4 + ζ2) + γζ3

with
α = (79 + 9 (a1 + a2)− a1a2)/60
β = (−14 + 26 (a1 + a2) + 6 a1a2)/15
γ = (97 + 7 (a1 + a2) + 97 a1a2)/30.

It has double zeros on the unit circle if β2 = 4α(γ − 2α). This curve
separates the region where all non-zero roots of σ(ζ) = 0 are of mod-
ulus 1, from that where at least one root is outside the unit disc, see
Figure 1.

Order r = k = 8: The σ-polynomial is given by

σ(ζ) = α(ζ7 + ζ) + β(ζ6 + ζ2) + γ(ζ5 + ζ3) + δζ4

with
α = (10993 + 1039 s1 − 95 s2 + 31 s3)/7560
β = (−2215 + 2279 s1 + 473 s2 − 73 s3)/1260
γ = (16661 + 491 s1 + 8261 s2 + 2171 s3)/2520
δ = (−8723 + 7027 s1 + 1357 s2 + 12067 s3)/1890,

where s1 = a1 + a2 + a3, s2 = a1a2 + a1a3 + a2a3, and s3 = a1a2a3.
We remark that none of the methods presented in Table 7.1 of [7,
Sect. XV.7] (including a method proposed in [10]) satisfies the con-
dition (13). However, if two among the parameters aj are not too far
from −1 and the third one is not far from 1, then condition (13) is
satisfied. In particular, the choice

a1 = −0.8, a2 = −0.4, a3 = 0.7

gives a method that satisfies both conditions (12) and (13).
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Coefficients δ̂j of (11): Symmetric multistep methods of order r = k
are complemented by a difference formula (11) for the computation
of the momenta. We use the coefficients δ̂j , j = −k/2, . . . , k/2 − 1
given by:

k = 2 : 1

2

(
1, 1
)
,

k = 4 : 1

12

(
−1, 7, 7,−1

)
,

k = 6 : 1

60

(
1,−8, 37, 37,−8, 1

)
,

k = 8 : 1

840

(
−3, 29,−139, 533, 533,−139, 29,−3

)
.

4.2 Linear stability - interval of periodicity

When applied to the harmonic oscillator q̈ = −ω2q, the numerical
solution of a symmetric linear multistep method is determined by
the roots of the equation

ρ(ζ) + (hω)2σ(ζ) = 0. (16)

According to [9] we say that the method has interval of periodicity
(0, Ω) if, for all hω ∈ (0, Ω), these roots are bounded by 1. For the
method (5) of order 2 the interval of periodicity is (0, 2), which implies
that the method is stable only for 0 ≤ hω < 2.

The assumption (12) and the symmetry of the method imply that
the roots of (16) stay on the unit circle for small hω > 0. Conse-
quently, the interval of periodicity is always non-empty.

Order r = k = 4: Studying the roots of (16) as a function of hω, one
observes that a root can leave the unit circle only when two roots
collapse at the point −1. This implies that

Ω =

√
−ρ(−1)
σ(−1)

=

√
6(1− a1)

2− a1
.

For orders r = k ≥ 6, the value Ω of the interval of periodicity
can be computed numerically as function of the parameters aj . For
example, for values of (a1, a2) in the dark grey region of Figure 1, we
have 0 < Ω < 1.05, and the largest values of Ω are attained close to
a1 = 0.66 and a2 = −0.26.
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Fig. 2. Triple pendulum: error in the Hamiltonian for the symmetric multistep
method (A) of order r = k = 6, applied with step size h = 0.01.

5 Numerical experiments

We have implemented symmetric linear multistep methods as pro-
posed in Section 2. The following numerical experiments illustrate an
excellent long-time behaviour for constrained Hamiltonian systems
confirming our theoretical results.

Example 1 (Triple pendulum) We consider three connected mathe-
matical pendulums moving in the plane and suspended at the origin.
Denoting by (q1, q2), (q3, q4), (q5, q6) their endpoints, the constraints
gi(q) = 0 are given by

q21 + q22 = 1, (q3 − q1)2 + (q4 − q2)2 = 1, (q5 − q3)2 + (q6 − q4)2 = 1.

The potential due to gravity is U(q) = q2+q4+q6. We consider initial
positions

q(0) =
(

1

2
,−
√

3

2
,

1

2
+
√

2

2
,−
√

3

2
−
√

2

2
,

1

2
+
√

2

2
+ 1,−

√
3

2
−
√

2

2

)
,

which correspond to angles of 30◦, 45◦, and 90◦, and momenta p(0) =
(0, . . . , 0). This choice of initial values produces a chaotic behaviour
of the solution.

To illustrate the necessity of the condition (13) we apply two sym-
metric multistep schemes of order r = k = 6, which are constructed
as explained in Section 4:

(A) a1 = −0.7, a2 = 0.4, the σ-polynomial satisfies (13);
(B) a1 = −0.1, a2 = 0.4, the σ-polynomial does not satisfy (13).

The numerical Hamiltonian is shown in Figure 2 for method (A).
The error remains bounded without any drift, and an application
with reduced step size shows that it is of size O(h6). For the step
size h = 0.01 this behaviour can be observed on much longer inter-
vals than shown in Figure 2 (numerically verified on [0, 200 000]). For
method (B), the error explodes after about 130 steps (independent
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of the step size). This is due to the fact that the σ-polynomial has a
zero of modulus larger than 1.

Let us remark that the above description of the problem is ex-
tremely simple compared to the equations using minimal coordinates
(angles). The long-time behaviour of method (A) in Figure 2 should
be compared with that of partitioned multistep methods applied to
the equation in minimal coordinates (see [3, Section I.3]), where no
energy preservation could be achieved in the chaotic regime.

Example 2 (Two-body problem on the sphere) We consider two par-
ticles moving on the unit sphere which are attracted by each other.
As potential we take

U(q) = − cosϑ
sinϑ

, cosϑ = 〈Q1, Q2〉, (17)

whereQ1 = (q1, q2, q3)T,Q2 = (q4, q5, q6)T are the positions of the two
particles, and ϑ is their distance along a geodesics. The constraints
are

g1(q) = QT
1Q1 − 1, g2(q) = QT

2Q2 − 1.

The equations of motion have the total angular momentum

L(p, q) = Q1 × P1 +Q2 × P2

as conserved quantity. Here, we use the notation P1 = (p1, p2, p3)T,
P2 = (p4, p5, p6)T.

In view of a comparison with the experiments of [5] we consider
initial values given in spherical coordinates by

Qi = (cosφi sin θi, sinφi sin θi, cos θi)
T

with (φ1, θ1) = (0.8, 0.6) and (φ2, θ2) = (0.5, 1.5) for the positions,
and with (φ̇1, θ̇1) = (1.1,−0.2) and (φ̇2, θ̇2) = (−0.8, 0.0) for the
velocities. In our numerical experiment we consider the multistep
method of order r = k = 8 with parameters a1 = −0.8, a2 = −0.4,
and a3 = 0.7 (see Section 4). Figure 3 shows the error in the first com-
ponent of the angular momentum. In perfect agreement with Theo-
rem 2 we have an error of size O(h8), and no drift can be observed
over long time intervals (this is numerically checked on intervals as
long as T = 106). A similar behavior is true for the other two com-
ponents of the angular momentum and for the total energy.

Since the same problem was treated numerically in [5, Section 5.3]
with a composition method of order 8 and Rattle as basic integrator,
this is the moment to say a few words on a comparison between
symmetric linear multistep methods (as considered in the present
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Fig. 3. Two-body problem on the sphere: error in the first component of the
angular momentum for a symmetric multistep method of order r = k = 8 applied
with step size h = 0.02.

work) and high order composition methods. Both are explicit and can
have high order of accuracy. Which one is more efficient? From the
experiment of [5] we see that an error in the energy of size 8 · 10−6

is obtained with step size h = 0.15. For the composition method
of order 8 (with 17 Rattle applications per step) this corresponds
to 226 666 force evaluations for an integration over an interval of
length 2 000. With the multistep method we need a step size h =
0.0125 to achieve the same accuracy. This corresponds to 160 000
force evaluations, which is an improvement of about 30%. Needless
to say that such comparisons are problem dependent. We believe that
it is important to consider both approaches.

Example 3 (Rigid body - heavy top) The configuration space of a rigid
body with one point fixed is the rotation group SO(3). The motion
is described by an orthogonal matrix Q(t) that satisfies

Q̈D = −∇QU(Q)−QΛ

0 = QTQ− I,
(18)

where the diagonal matrix D = diag(d1, d2, d3) is related to the mo-
ments of inertia I1, I2, I3 via

I1 = d2 + d3, I2 = d3 + d1, I3 = d1 + d2,

and Λ is a symmetric matrix consisting of Lagrange multipliers. The
potential, due to gravity, is given by U(Q) = q33. For a more de-
tailed description see [7, Section VII.5]. With P = Q̇D, we are thus
concerned with the Hamiltonian

H(P,Q) = 1

2
trace (PD−1PT) + U(Q).

The equation (18) is of the form (1) and satisfies the regularity con-
dition (2).
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With the abbreviation

α̂k−1P̃n+k−1/2 = −
k−2∑
j=0

α̂jPn+j+1/2 − hβk−1∇QU(Qn+k−1)

−h
k−2∑
j=1

βj
(
∇QU(Qn+j) +Qn+jΛn+j

) (19)

and γk−1 = βk−1/α̂k−1 the multistep formula (10) becomes

Pn+k−1/2 = P̃n+k−1/2 − hγk−1Qn+k−1Λn+k−1

Qn+k = Qn+k−1 + hPn+k−1/2D
−1.

These formulas are similar to those for the Rattle algorithm. We work
with the auxiliary matrix

Ωn+k−1 = QT
n+k−1Pn+k−1/2D

−1,

so that, for given (Qn+j , Pn+j−1/2, Λn+j−1), j ≤ k − 1, the approxi-
mations Qn+k, Pn+k−1/2, Λn+k−1 are obtained as follows:

– compute P̃n+k−1/2 from (19);
– find an orthogonal matrix I + hΩn+k−1 such that

Ωn+k−1D = QT
n+k−1P̃n+k−1/2 − hγk−1Λn+k−1

holds with a symmetric matrix Λn+k−1;
– compute Qn+k = Qn+k−1(I + hΩn+k−1) ;
– compute Pn+k−1/2 = Qn+k−1Ωn+k−1D.

Steps 1, 3, and 4 are straightforward computations. Step 2 requires
the iterative solution of a nonlinear (quadratic) equation for Λn+k−1.

If an approximation Pn is required for output, it can be obtained
from Pn = QnΩn, where Ωn and the symmetric matrix Kn are given
by

Ωn = QT
n

l−1∑
j=−l

δ̂jPn+j+1/2 + hKn

0 = ΩnD
−1 +D−1ΩT

n .

These two equations constitute a linear system for Ωn and Kn. The
computations can be done efficiently by representing orthogonal ma-
trices in terms of quaternions (see [7, Section VII.5.3]).
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6 Backward error analysis for smooth numerical solutions

For the proof of the main theoretical results we adapt the presenta-
tion of [6] to the case of constrained Hamiltonian systems. For the
problem (1) we use the notation f(q) = −∇U(q) and, without loss
of generality, we assume the mass matrix M to be the identity, i.e.,
M = I.

6.1 Modified differential-algebraic system

Proposition 1 (Existence) Let a consistent linear multistep method
(7) be applied to the problem (1). Then, there exist unique h-indepen-
dent functions fj(q, v) such that for every truncation index N , every
solution (y(t), µ(t)) of the modified differential-algebraic system

ÿ = f(y) + hf1(y, ẏ) + · · ·+ hN−1fN−1(y, ẏ)−G(y)Tµ
0 = g(y)

(20)

satisfies the multistep relation
k∑
j=0

αjy(t+ jh) = h2
k∑
j=0

βj
(
f(y(t+ jh))−G(y(t+ jh))Tµ(t+ jh)

)
+O(hN+2). (21)

If the method is of order r, then fj(q, v) = 0 for j < r. If it is
symmetric, then fj(q, v) = 0 for all odd j, and fj(q,−v) = fj(q, v)
for all even j.

Proof We write the Taylor series of a function as z(t+ h) = ehDz(t),
where D denotes differentiation with respect to time. The identity
(21) is then of the form

ρ(ehD)y = h2σ(ehD)(f(y)−G(y)Tµ) +O(hN+2). (22)

With x2σ(ex)/ρ(ex) = 1 + ϑ1x+ ϑ2x
2 + . . . this relation becomes

ÿ = (1 + ϑ1hD + ϑ2h
2D2 + . . .)(f(y)−G(y)Tµ) +O(hN ). (23)

With the exception of the h-independent term we replace µ(t) by
µ(y(t), ẏ(t)), where µ(q, v) is the expression obtained by differenti-
ating twice the algebraic relation in (20). The coefficient functions
fj(q, v) can then be obtained exactly as in the non-constrained case
of [6]. ut

In the modified differential-algebraic system (20) we have achieved
uniqueness of the coefficient functions by imposing the term with the
Lagrange multiplier to be independent of h.
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6.2 Modified energy

We still assume that M = I so that the momenta equal the velocities,
p = q̇. In this situation the total energy is given by

H(q, p) = 1

2
pTp+ U(q).

It is preserved along the flow of the differential-algebraic system (1).

Proposition 2 (Energy preservation) Consider a symmetric mul-
tistep method of order r applied to (1). Then, there exist unique h-
independent functions Hj(q, p) such that for every truncation index
N the modified energy

Hh(q, p) = H(q, p) + hrHr(q, p) + hr+2Hr+2(q, p) + . . . ,

truncated at the O(hN ) term, satisfies

d

dt
Hh(y(t), ẏ(t)) = O(hN )

along solutions of the modified differential-algebraic system (20).

Proof Instead of dividing (22) by ρ(ehD), we divide by σ(ehD). This
yields

(1 + γ1hD + γ2h
2D2 + . . .) ÿ = −∇U(y)−G(y)Tµ+O(hN ) (24)

with coefficients γj given by ρ(ex)/(x2σ(ex)) = 1 + γ1x+ γ2x
2 + . . ..

We take the scalar product with ẏ and note that G(y)ẏ = 0, which
follows from g(y) = 0 by differentiation with respect to time. The
rest of the proof is the same as that of Proposition 1 in [6]. ut

6.3 Modified momentum

We assume that M = I and that A is a skew-symmetric matrix for
which the invariance (14) holds.

Proposition 3 (Momentum preservation) Consider a symmet-
ric multistep method of order r applied to (1). Then, there exist
unique h-independent functions Lj(q, p) such that for every trunca-
tion index N the modified momentum

Lh(q, p) = L(q, p) + hrLr(q, p) + hr+2Lr+2(q, p) + . . . ,

truncated at the O(hN ) term, satisfies

d

dt
Lh(y(t), ẏ(t)) = O(hN )

along solutions of the modified differential-algebraic system (20).
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Proof We take the scalar product of (24) with Ay and note that the
invariance (14) implies

f(y)TAy = 0 and G(y)Ay = 0 for all y.

The rest of the proof is the same as that of Proposition 2 in [6]. ut

7 Long-term analysis of parasitic solution components

We consider irreducible, stable, symmetric linear multistep meth-
ods (7), we denote the double root of ρ(ζ) = 0 by ζ0 = 1, and we
assume that the remaining roots ζi, ζ−i = ζi for 1 ≤ i < k/2 are
simple. As a consequence of stability and symmetry we have |ζi| = 1.
Furthermore, we denote by ζi, ζ−i = ζi for k/2 ≤ i < k complex pairs
of roots of σ(ζ) = 0 (not including 0 for explicit methods).

We consider the index set Iρ = {i ∈ Z ; 1 ≤ |i| < k/2} corre-
sponding to the roots of ρ(ζ) = 0 different from 1, and the index set
Iσ = {i ∈ Z ; k/2 ≤ |i| < k − l} (with l = 0 for implicit methods,
and l > 0 else) corresponding to the non-zero roots of σ(ζ) = 0. We
denote I = Iρ ∪ Iσ.

7.1 Linear problems with constant coefficients

To motivate the analysis of this section we consider the linear problem

q̈ = −Aq −GTλ

0 = Gq,
(25)

where q ∈ Rd, λ ∈ Rm, the matrix A is symmetric, and G is of full
rank. For this problem the multistep formula (7) reads

k∑
j=0

αjqn+j = −h2
k∑
j=0

βj(Aqn+j +GTλn+j), G qn+k = 0. (26)

If the initial values are consistent, i.e., Gqj = 0 for j = 0, . . . , k − 1,
then Gqn = 0 for all n ≥ 0, and a multiplication by G of the multistep
relation yields

k∑
j=0

βj G(Aqn+j +GTλn+j) = 0, (27)
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which permits to eliminate the Lagrange multipliers from the multi-
step formula. We thus obtain

k∑
j=0

αjqn+j = −h2
k∑
j=0

βj
(
I −GT(GGT)−1G

)
Aqn+j .

This formula shows that the numerical solution {qn} depends only on
the starting values q0, . . . , qk−1, and is not affected by λ0, . . . , λk−1.
Since we are concerned with a linear homogeneous difference equation
with characteristic polynomial ρ(ζ) for h = 0, its solution is of the
form

qn = y(nh) +
∑
i∈Iρ

ζni zi(nh), (28)

where y(t) and zi(t) are smooth functions in the sense that all their
derivatives are bounded independently of h. The Lagrange multiplier
is obtained from the difference relation (27) and satisfies

λn = −(GGT)−1GAqn +
∑
i∈Iσ

ζni νi

with constant vectors νi that are determined by the initial approx-
imations λ0, . . . , λk−1 for implicit methods, and by λ1, . . . , λk−2 for
methods satisfying βk = 0 and βk−1 6= 0. Whereas only the zeros
of the ρ-polynomial are important for the approximations {qn}, also
those of the σ-polynomial come into the game for the Lagrange mul-
tipliers {λn}.

7.2 Differential-algebraic system for parasitic solution components

Motivated by the analysis for the linear problem we aim at writing
the numerical solution in the form (28) also for nonlinear problems.
Due to the dependence of G on q we have to take the sum over Iρ and
Iσ. It is easy to guess that y(t) will be a solution of (20). It remains
to study the smooth functions zi(t).

Proposition 4 (Differential-algebraic system) Consider a sym-
metric linear multistep (7) of order r and assume that, with exception
of the double root ζ0 = 1, all roots of ρ(ζ) are simple. For i ∈ Iρ we
let θi = σ(ζi)/(ζiρ′(ζi)). We further assume that all non-zero roots of
σ(ζ) are simple and of modulus 1.

Then, there exist h-independent matrix-valued functions Ai,l(y, v),
Bi,l(y, v), and Ci,l(y, v), such that for every truncation index M and
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for every solution of the combined system (20) and

żi = (hAi,1(y, ẏ) + · · ·+ hM−1Ai,M−1(y, ẏ))zi − θihG(y)Tνi
0 = G(y) zi

(29)

for i ∈ Iρ, and

ν̇i = (Bi,0(y, ẏ) + · · ·+ hM−3Bi,M−3(y, ẏ))νi
zi = (h3Ci,3(y, ẏ) + · · ·+ hMCi,M (y, ẏ))νi

(30)

for i ∈ Iσ, with initial values satisfying z−i(0) = zi(0) and ν−i(0) =
νi(0) the following holds: as long as ‖zi(t)‖ ≤ δ for all i ∈ Iρ and
h2‖G(y(t))Tνi(t)‖ ≤ δ for i ∈ Iσ (with sufficiently small δ), the func-
tions1

ŷ(t) = y(t) +
∑
i∈I

ζ
t/h
i zi(t), µ̂(t) = µ(t) +

∑
i∈I

ζ
t/h
i νi(t) (31)

satisfy g(ŷ(t)) = O(δ2) and

k∑
j=0

αj ŷ(t+ jh) = h2
k∑
j=0

βj
(
f(ŷ(t+ jh))−G(ŷ(t+ jh))Tµ̂(t+ jh)

)
+O(hN+2 + hM+1δ + δ2). (32)

Proof Taylor expansion yields

f(ŷ(t)) = f(y(t)) +
∑
i∈I

ζ
t/h
i f ′(y(t)) zi(t) +O(δ2),

and similarly

G(ŷ(t))T µ̂(t) = G(y(t))T µ(t)

+
∑
i∈I

ζ
t/h
i

(
G(y(t))Tνi(t) + (G′(y(t)) zi(t))

Tµ(t)
)

+O(h−2δ2),

because we have h2νi(t) = O(δ) on the considered interval. These
relations show that (32) is satisfied if the functions y(t) and µ(t) are
solutions of (22) and the functions zi(t) and νi(t) satisfy the relation

ρ(ζiehD)zi = h2σ(ζiehD)
(
f ′(y)zi−G(y)Tνi−(G′(y)zi)Tµ

)
+O(hM+1δ).

1 Note that the analogous expression in [4] and [6] has a sum over an index set
that includes also finite products of ζi. This is not necessary for the investigations
of the present work.
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Similar to the proof of Proposition 1 we divide by ρ(ζiehD) and use
the expansion

σ(ζiex)
ρ(ζiex)

= θi,−1x
−1 + θi,0 + θi,1 x+ θi,2 x

2 + . . . .

For i ∈ Iρ, where θi,−1 6= 0, the above equation for zi becomes

żi = h
(
θi,−1 + θi,0hD + . . .

)(
f ′(y)zi −G(y)Tνi − (G′(y)zi)Tµ

)
+O(hMδ). (33)

As in the proof of Proposition 1, the elimination of higher derivatives
gives a differential equation of the form (29). The Lagrange multipli-
ers νi are determined by the condition G(y)zi = 0, which is needed
for having g(ŷ) = O(δ2).

For i ∈ Iσ, where θi,−1 = θi,0 = 0 and θi,1 6= 0, the equation for zi
becomes

zi = h2
(
θi,1hD + θi,2(hD)2 + . . .

)(
f ′(y)zi −G(y)Tνi − (G′(y)zi)Tµ

)
+O(hM+1δ). (34)

We insert the equations (30) into (34) and express the higher deriva-
tives of zi and νi recursively in terms of νi. Equating powers of h
yields for the h3 term Ci,3 = −θi,1((G′(y)ẏ)T +G(y)TBi,0). The con-
dition G(y)zi = 0 yields GCi,3 = 0, so that multiplication of the
above equation with G(y) determines Bi,0, which in turn gives Ci,3.
The same construction is used to determine the matrices for higher
powers of h. This construction ensures that the relations (33) and
(34) are satisfied, which completes the proof. ut

Having found differential-algebraic equations for the smooth and
parasitic solution components, we still need initial values for the com-
bined system (20), (29), (30). We note that for given y(0) = y0 and
ẏ(0) = ẏ0 satisfying G(y0)ẏ0 = 0, the function µ(t) is determined for
all t ≥ 0. For i ∈ Iρ, if in addition to y0, ẏ0 also zi(0) = zi,0 satisfying
G(y0)zi,0 = 0 is given, the functions zi(t) and νi(t) are determined
for all t ≥ 0 by (29). For i ∈ Iσ we need the initial value νi(0) = νi,0,
which then determines νi(t) and zi(t) for all t by (30).

The next lemma shows how initial values y0, ẏ0, zi,0 (i ∈ Iρ), νi,0 (i ∈
Iσ) can be obtained form starting approximations q0, q1, . . . , qk−1 and
λ1, . . . , λk−2 for explicit methods satisfying βk−1 6= 0. In general,
there are k − 2l starting values λl, . . . , λk−l−1, where l is the multi-
plicity of the root 0 in σ(ζ). In the following, we only consider the
most interesting case l = 1 for simplicity.
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Proposition 5 (Initial values) Under the assumptions of Propo-
sition 4 consider the starting values q0, q1, . . . , qk−1 and λ1, . . . , λk−2.
We assume that g(qj) = 0, qj − q(jh) = O(hs) for j = 0, 1, . . . , k− 1,
λj − λ(jh) = O(hs−2) for j = 1, . . . , k − 2, where (q(t), λ(t)) is a
solution of (1) and 1 ≤ s ≤ r + 2. Then there exist (locally) unique
consistent initial values y0, ẏ0, zi,0 (i ∈ Iρ), νi,0 (i ∈ Iσ) of the com-
bined system (20), (29), (30) such that its solution satisfies

qj = y(jh) +
∑
i∈I

ζji zi(jh) +G(y(jh))Tκj , j = 0, . . . , k − 1 (35)

λj = µ(jh) +
∑
i∈I

ζji νi(jh), j = 1, . . . , k − 2, (36)

where, with δ = hs, we have κj = O(δ2). The initial values satisfy
z−i,0 = zi,0 for i ∈ Iρ and ν−i,0 = νi,0 for i ∈ Iσ, and

y0 − q(0) = O(δ), hẏ0 − hq̇(0) = O(δ),

zi,0 = O(δ), i ∈ Iρ, h2νi,0 = O(δ), i ∈ Iσ.
(37)

Proof The equations (35)-(36) together with g(y0) = 0, G(y0)ẏ0 = 0,
and G(y0)zi,0 = 0 constitute a nonlinear system F (x) = 0 for the vec-
tor x = (y0, hẏ0, (zi,0; i ∈ Iρ), (h2νi,0; i ∈ Iσ), (κj ; j = 0, . . . , k − 1)).
An approximation of its solution is x0 = (q(0), hq̇(0), 0, . . . , 0). Us-
ing assumption (2), the inverse of the Jacobian matrix F ′(x0) can be
shown to be bounded, and we have F (x0) = O(δ). A convergence the-
orem for Newton’s method thus proves the estimates (37). A sharper
estimate for the variables κj follows from the fact that

0 = g(qj)− g(y(jh)) = G(y(jh))(qj − y(jh)) +O(‖qj − y(jh)‖2)

= G(y(jh))G(y(jh))Tκj +O(δ2),

because G(y)G(y)T has a bounded inverse. We have used that qj −
y(jh) = qj − q(jh) + q(jh)− y(jh) is bounded by O(δ + hr+2). ut

For given q0, . . . , qk−1 and λ1, . . . , λk−2 (in the case of explicit
methods) the numerical approximations qk and λk−1 are simultane-
ously obtained from (7).

Proposition 6 (Local error) Under the assumptions of Proposi-
tions 4 and 5 consider the solution of the combined system (20), (29),
(30) that corresponds to the starting approximations q0, . . . , qk−1 and
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λ1, . . . , λk−2. Then the numerical approximation after one step satis-
fies

qk = y(kh) +
∑
i∈I

ζki zi(kh) +O(hN+2 + hM+1δ + δ2),

λk−1 = µ((k − 1)h) +
∑
i∈I

ζki νi((k − 1)h) +O(hN + hM−1δ + h−2δ2).

Proof Using the notation (31) and subtracting (32) from the multi-
step formula (7), it follows from Proposition 5 that

αk(qk − ŷ(kh)) +O(δ2) = h2βk−1G(qk−1)T(λk−1 − µ̂((k − 1)h))

+O(hN+2 + hM+1δ + δ2).

Inserting qk from this formula into g(qk) = 0 and using g(ŷ(kh)) =
O(δ2) yields the estimate for λk−1, and consequently also for qk. ut

7.3 Bounds on parasitic solution components

We next prove that the parasitic solution components zi(t) remain
bounded and small on long time intervals.

Proposition 7 (Near-invariants) Under the assumptions of Propo-
sition 4 there exist h-independent matrix-valued functions Ei,l(y, v)
such that for every truncation index M and for every solution of the
combined system (20), (29), (30) the functions

Ki(y, v, zi) = ‖zi‖2 + zT
i

(
h2Ei,2(y, v) + . . .+ hM−1Ei,M−1(y, v)

)
zi

for i ∈ Iρ and

Ki(y, v, νi) = ‖h2G(y)Tνi‖2

+h4 νT
i

(
hEi,1(y, v) + . . .+ hM−1Ei,M−1(y, v)

)
νi

for i ∈ Iσ are near-invariants of the system; more precisely, we have

Ki(y(t), ẏ(t), zi(t)) = Ki(y(0), ẏ(0), zi(0)) +O(thMδ2), i ∈ Iρ
Ki(y(t), ẏ(t), νi(t)) = Ki(y(0), ẏ(0), νi(0)) +O(thMδ2), i ∈ Iσ

as long as (y(t), ẏ(t)) stays in a compact set and ‖zi(t)‖ ≤ δ for i ∈ Iρ
and h2‖G(y(t))Tνi(t)‖ ≤ δ for i ∈ Iσ.
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Proof We start as in the proof of Proposition 4. However, instead of
dividing by ρ(ζiehD) we divide this time by σ(ζiehD). This yields(ρ
σ

)
(ζiehD) zi = h2

(
f ′(y) zi −G(y)Tνi − (G′(y)zi)

Tµ
)

+O(hM+1δ).

We multiply this relation with the transposed of zi = z−i. The second
term on the right-hand side vanishes, because of G(y)z−i = 0. The
first term on the right-hand side is real, because f(y) = −∇U(y) so
that f ′(y) is a symmetric matrix. This is also the case for the third
term.

For the study of the left-hand side we consider the expansion (see
[6, formula (4.16)])(ρ
σ

)
(ζieix) =

∑
l≥−1

ci,l x
l with real coefficients c−i,l = (−1)lci,l,

where ci,−1 = ci,0 = 0 and ci,1 6= 0 for i ∈ Iρ, and ci,−1 6= 0 for i ∈ Iσ.
We are thus concerned with the expression∑

l≥−1

ci,l(−ih)l zT
i z

(l)
i , (38)

where for l = −1 we define in view of (34)

z
(−1)
i = h3

(
θi,1 + θi,2(hD) + . . .

)(
f ′(y)zi −G(y)Tνi − (G′(y)zi)Tµ

)
+O(hM+1δ) (39)

such that ż(−1)
i = zi.

For i ∈ Iρ, we note that 2Re(zT
i żi) = zT

−iżi + żT
−izi = d

dt‖zi‖
2. For

the higher order expressions we have the telescoping sums

Re
(
ziz

(2m+1)
i

)
=

1
2
d

dt

( 2m∑
j=0

(−1)j(z(j)
i )Tz(2m−j)

i

)

Im
(
ziz

(2m)
i

)
=

1
2i

d

dt

(2m−1∑
j=0

(−1)j(z(j)
i )Tz(2m−j−1)

i

)
so that the imaginary part of (38) is a total derivative of a quadratic
function in zi and its derivatives. Using the system (29), first and
higher order derivatives of zi can be expressed as a linear function of
zi with coefficients depending on y and ẏ. Dividing the first formula
of the present proof by ci,1(−ih)/2, and then taking the real part
gives

d

dt
Ki(y(t), ẏ(t), zi(t)) = O(hMδ2)
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with a quadratic function in zi of the desired form.
For i ∈ Iσ, we note that

2 Re(zT
i z

(−1)
i ) = 2 Re(ż(−1)

i

T

z
(−1)
i ) =

d

dt
‖z(−1)
i ‖2.

The same argument as above yields a near-invariant that is quadratic
in h−1z

(−1)
i . By formula (39) the leading term in h−1z

(−1)
i is given

by −h2θi,1G(y)Tνi and the higher-order terms can be expressed as
linear functions in νi. This proves the statement of the proposition.
ut

Let us collect the assumptions that are required for proving the
boundedness of the parasitic solution components.

(A1) The multistep method (7) is symmetric and of order r. All roots
of ρ(ζ), with the exception of the double root ζ0 = 1, are simple.
All non-zero roots of σ(ζ) are simple and of modulus one.

(A2) The potential U(q) and the constraint function g(q) of (1) are
defined and smooth in an open neighbourhood of a compact set K.

(A3) The starting approximations q0, . . . , qk−1 and λ1, . . . , λk−2 are
such that the initial values for the differential-algebraic system
(20), (29), (30) obtained from Proposition 5 satisfy

y(0) ∈ K, ‖ẏ(0)‖ ≤M,

‖zi(0)‖ ≤ δ/2, i ∈ Iρ and ‖h2G(y(0))Tνi(0)‖ ≤ δ/2, i ∈ Iσ.

(A4) The numerical solution {qn}, for 0 ≤ nh ≤ T , stays in a com-
pact set K0 that has a positive distance to the boundary of K.

Theorem 3 (Long-time bounds for the parasitic components)
Assume (A1)–(A4). For sufficiently small h and δ and for fixed trun-
cation indices N and M that are large enough such that hN = O(δ2)
and hM = O(δ), there exist functions y(t), µ(t) and zi(t), νi(t) for
i ∈ I on an interval of length

T = O(hδ−1)

such that

• qn = y(nh) +
∑
i∈I

ζni zi(nh) for 0 ≤ nh ≤ T ;

• λn = µ(nh) +
∑
i∈I

ζni νi(nh) for 0 ≤ nh ≤ T ;

• on every subinterval [nh, (n + 1)h) the functions y(t), µ(t) and
zi(t), νi(t) for i ∈ I are a solution of the system (20), (29), (30);
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• the functions y(t), h2µ(t) and zi(t), h2νi(t) for i ∈ I have jump
discontinuities of size O(δ2) at the grid points nh;
• for 0 ≤ t ≤ T , the parasitic components are bounded by

‖zi(t)‖ ≤ δ, i ∈ Iρ and ‖h2G(y(t))Tνi(t)‖ ≤ δ, i ∈ Iσ.

Proof To define the functions y(t), µ(t), zi(t), νi(t) on the interval
[nh, (n + 1)h) we consider the consecutive numerical solution values
qn, qn+1, . . ., qn+k−1 and λn+1, . . . , λn+k−2. We compute initial values
for the system (20), (29), (30) according to Proposition 5, and we let
y(t), µ(t), zi(t), νi(t) be its solution on [nh, (n+1)h). By Proposition 6
this construction yields jump discontinuities of size O(δ2) at the grid
points.

It follows from Proposition 7 that Ki(y(t), ẏ(t), zi(t)) for i ∈ Iρ
and Ki(y(t), ẏ(t), νi(t)) for i ∈ Iσ remain constant up to an error of
size O(hM+1δ2) on the interval [nh, (n + 1)h). Taking into account
the jump discontinuities of size O(δ2), we find that

Ki(y(t), ẏ(t), zi(t)) ≤ Ki(y(0), ẏ(0), zi(0)) + C1th
−1δ3 + C2th

Mδ2

Ki(y(t), ẏ(t), νi(t)) ≤ Ki(y(0), ẏ(0), νi(0)) + C1th
−1δ3 + C2th

Mδ2

as long as ‖zi(t)‖ ≤ δ for i ∈ Iρ and ‖h2G(y(t))Tνi(t)‖ ≤ δ for i ∈ Iσ.
By Proposition 7 this then implies with C3 = C1 + hC2, for i ∈ Iρ,

‖zi(t)‖2 ≤ ‖zi(0)‖2 + C3th
−1δ3 + C4h

2δ2.

For i ∈ Iσ we obtain

‖h2G(y(t))Tνi(t)‖2 ≤ ‖h2G(y(0))Tνi(0)‖2 + C3th
−1δ3 + C4hδ

2.

The assumptions ‖zi(t)‖ ≤ δ and ‖h2G(y(t))Tνi(t)‖ ≤ δ are certainly
satisfied as long as C3tδ ≤ h/4 and C4h ≤ 1/4, so that the right-hand
side of the above estimates is bounded by δ2. This proves not only
the estimate for ‖zi(t)‖ and ‖h2G(y(t))Tνi(t)‖, but at the same time
it guarantees recursively that the above construction of the functions
y(t), µ(t), zi(t), νi(t) is feasible. ut

7.4 Proof of the main results

The proof of Theorem 1 combines Theorem 3 and Proposition 2. For
the piecewise smooth function y(t) of Theorem 3 we have

Hh(y(t), ẏ(t)) = Hh(y(0), ẏ(0)) +O(thN ) +O(th−1δ2),
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where the first error term comes from the truncation of the modified
energy and the second error term comes from the discontinuity at the
grid points. By the bounds for the parasitic components zi we have

qn = y(nh) +O(δ) and pn = ẏ(nh) +O(h−1δ + hr)

because the differentiation formula is of order r. We therefore obtain

Hh(qn, pn) = Hh(q0, p0) +O(thN ) +O(th−1δ2) +O(h−1δ + hr).

With δ = hr+2, Theorem 1 now follows by using the estimate be-
tween the modified energy Hh and the original energy H as given by
Proposition 2.

Theorem 2 is obtained in the same way using Proposition 3.
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