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Abstract.

Projection methods are a standard approach for the numerical solution of di�erential

equations on manifolds. It is known that geometric properties (such as symplecticity or

reversibility) are usually destroyed by such a discretization, even when the basic method

is symplectic or symmetric. In this article, we introduce a new kind of projection

methods, which allows us to recover the time-reversibility, an important property for

long-time integrations.
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1 Di�erential equations on manifolds.

We consider the initial value problem

y

0

= f(y); y(0) = y

0

;(1.1)

and we assume the existence of an invariant manifold

M = fy 2 R

n

; g(y) = 0g(1.2)

for its 
ow, i.e., g

0

(y)f(y) = 0 for y 2 M. The functions g : R

n

! R

m

and f : R

n

! R

n

are assumed to be su�ciently di�erentiable. Examples

are di�erential-algebraic equations which, by repeated di�erentiation of the con-

straints, are brought to an index 1 system, from which the algebraic variables are

eliminated [10]. Further problems of this type arise in the simulation of mechan-

ical systems whose con�guration space is a matrix Lie group (see Example 4.1

below).

Numerical methods for the solution of di�erential equations on manifolds,

which avoid the use of local coordinates, can be divided into two groups: (i)

methods for which the numerical solution automatically stays on M without

using explicitly the function g(y), and (ii) methods which, after every successful

step, project the numerical approximation onto the manifold M. To the �rst

�
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class belong symplectic one-step methods, if g(y) = y

T

Cy is a quadratic �rst

integral (i.e., g

0

(y)f(y) = 0 for all y in a neighborhood of the solution). Also

the methods of Crouch & Grossman [2] and Lie group methods, such as those

proposed by Munthe-Kaas [9], yield numerical solutions which automatically lie

on M. They, however, require a special formulation of the vector �eld. Pro-

jection methods form the second class of numerical integrators for our problem.

They need that the vector �eld f(y) is de�ned in a neighborhood of the manifold

M (what is usually ful�lled in practical applications). The idea of projection

methods is to perform in every step the following two operations (Fig. 1.1, left):

� compute by

1

=

b

�

h

(y

0

) by an arbitrary one-step method,

� project the value by

1

onto the manifold M to obtain y

1

2M.

For y

0

2M the distance of by

1

to the manifoldM is of the size of the local error,

i.e., O(h

p+1

). We therefore also have y

1

�y(h) = O(h

p+1

), so that the projection

does not deteriorate the convergence order of the method. Projection methods

are thoroughly investigated in the context of di�erential-algebraic problems (see

e.g., [6, Sect. VII.2] and [3, Sect. 5.3]).

Here, we are mainly interested in problems, where the 
ow on the manifold

M has additional geometric properties such as symplecticity or reversibility. It

is known that even in the case where the basic method is symplectic or symmet-

ric, a discretization with the above projection algorithm destroys the geometric

properties and makes it inappropriate for long-time integrations. The same is

true for Lie group methods. For this reason, Zanna, Eng� & Munthe-Kaas [11]

introduced selfadjoint Lie group methods which have more favorable properties

for long-time integrations.

In the present article, we introduce a new kind of projection methods. It

retains the time-reversibility of the basic one-step method and allows for an

e�cient implementation (Sect. 2). In Sect. 3 we present a backward error analysis

for these methods. Their excellent long-time behavior is illustrated in Sect. 4 on

some typical examples.
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Figure 1.1: Standard projection (left) compared to symmetric projection (right)

2 Symmetric projection methods.

The idea of symmetric projection methods is very simple. We �rst perturb the

initial value y

0

2 M out of the manifold, we then apply one step of a symmetric

method, and, �nally, we project back to the manifoldM (Fig. 1.1, right picture).

Care has to be taken about the choice of the perturbation and the projection
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in order to make the procedure symmetric. Using orthogonal projections this

yields:

by

0

= y

0

+G

T

(y

0

)� where g(y

0

) = 0;(2.1)

by

1

=

b

�

h

(by

0

) (symmetric one-step method applied to (1.1))(2.2)

y

1

= by

1

+G

T

(y

1

)� with � such that g(y

1

) = 0:(2.3)

Here, G(y) = g

0

(y) denotes the Jacobian of g(y). It is important to take the

same vector � in (2.1) and (2.3).

A closely related symmetric projection has recently been proposed by Ascher

& Reich [1]. They consider the implicit midpoint rule and perform a symmetric

projection step in order to enforce conservation of energy.

Existence of numerical solution. The vector � is implicitly de�ned by

F (�) = g

�

b

�

h

�

y

0

+G

T

(y

0

)�

�

+G

T

(y

1

)�

�

= 0;(2.4)

and can be computed by Newton-type iterations. We have

F

0

(�) = 2G(y

1

)G

T

(y

1

) +O(h):

Hence, if G(y) is of maximal rank m, the inverse of F

0

(�) is bounded, and

the Newton-Kantorovich theorem implies existence and local uniqueness of the

solution � of (2.4). Since F (0) = O(h

p+1

), this solution is of size � = O(h

p+1

).

Symmetry. Assuming the basic method

b

�

h

to be symmetric, i.e.,

b

�

h

=

b

�

�1

�h

,

the projection method y

1

= �

h

(y

0

) de�ned by (2.1)-(2.3) is also symmetric. This

follows from the fact that exchanging h$ �h, y

0

$ y

1

, by

0

$ by

1

, and �$ ��,

yields the same formulas.

Modi�cations of the algorithm. In some particular situations, it may be

advantageous to modify the projection steps (2.1) and (2.3). Without deteri-

orating the symmetry of the method, it is possible to replace the arguments

of G

T

(y) in (2.1) and (2.3) with y

1=2

= (y

0

+ y

1

)=2 (which is natural for the

implicit midpoint rule), or with a suitable internal stage approximation of the

method

b

�

h

.

Sometimes, it may also be advantageous to replace the Jacobian G(y) = g

0

(y)

with some suitable approximation. If the same kind of approximation is used in

(2.1) and (2.3), the symmetry of the method is retained. For example, in multi-

body systems (see Example 4.2 below) the computation of the second derivative

of the position constraint can be avoided, if we �rst project onto the position

constraint and then onto the velocity constraint. This is a standard approach in

multibody simulation.

Implementation. The symmetric one-step method used in (2.2) is in general

implicit (e.g., trapezoidal rule, implicit midpoint rule, implicit Runge-Kutta

method) and can be written as by

1

= by

0

+ h	(h; by

0

; by

1

). It is then natural

to solve the nonlinear equation (2.4) in tandem with (2.2). This can be done
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by simpli�ed Newton iterations as follows: suppose that y

1

and � are given

approximations to the solution, then compute by

0

and by

1

from (2.1) and (2.3),

and let d := by

1

� by

0

� h	(h; by

0

; by

1

) be the defect of the one-step method. The

increments for y

1

and � can then be computed from

�

I �2G

T

G 0

��

�y

1

��

�

= �

�

d

g(y

1

)

�

:

Convergence of this iteration is usually as fast as that for the basic method

without projection.

We remark that this implementation can conveniently be combined with the

reversible stepsize strategy of Sto�er (see [5]).

3 Backward error analysis.

If f(y) and g(y) are de�ned in a neighborhood ofM, we can extend our projec-

tion algorithm to initial values y

0

62 M by replacing the condition \g(y

1

) = 0"

with \g(y

1

) = g(y

0

)". This yields a symmetric one-step method y

1

= �

h

(y

0

)

which is de�ned on an open set of R

n

, and where �

h

(y

0

) is as smooth as the

functions f(y), g(y), and

b

�

h

(y). We are thus in the position where standard

backward error analysis can be applied (see e.g., [4, Chap.V]). This extended

one-step method is consistent with the di�erential equation

y

0

= P (y)f(y); P = I �G

T

(GG

T

)

�1

G;(3.1)

which, on the manifold M, reduces to (1.1) (if g(y) is a �rst integral of (1.1),

then P (y)f(y) = f(y) for all y 2 R

n

). Hence, its numerical solution is (formally)

equal to y

n

= e'

nh

(y

0

), where e'

t

(y

0

) is the 
ow of the modi�ed equation

y

0

= f

0

(y) + h

2

f

2

(y) + h

4

f

4

(y) + : : :(3.2)

(with f

0

(y) = P (y)f(y)), which due to the symmetry of the method is a series

in even powers of h. If the basic method (2.2) is of order p, i.e.,

b

�

h

(y)�'

h

(y) =

h

p+1

d

p

(y) +O(h

p+2

), where '

t

(y) denotes the 
ow of (1.1), then, restricted to

the manifoldM, the modi�ed equation (3.2) becomes

y

0

= f(y) + h

p

f

p

(y) + h

p+2

f

p+2

(y) + : : :(3.3)

with f

p

(y) = P (y)d

p

(y) for y 2 M. Hence, f

p

(y) is just the projected local

error.

Theorem 3.1. The coe�cient functions of the modi�ed equation (3.2) satisfy

g

0

(y)f

j

(y) = 0 for all y 2 R

n

:(3.4)

Hence, g(y) is a �rst integral of the modi�ed equation (when truncated at an

arbitrary power of h) and therefore has M as invariant manifold.

Proof. The proof is by induction and follows standard arguments. The

statement (3.4) is obviously true for j = 0. Assume now that (3.4) holds for
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j � r, and denote by '

r;t

(y) the 
ow of (3.2) where the series is truncated

after the O(h

r

) term. By de�nition of f

r+2

(y) in the modi�ed equation, we

have �

h

(y) = '

r;h

(y) + h

r+2

f

r+2

(y) + O(h

r+3

). Since g

�

�

h

(y)

�

= g(y) and

g

�

'

r;h

(y)

�

= g(y) for all h and all y 2 R

n

, this implies that

0 = g

�

�

h

(y)

�

� g

�

'

r;h

(y)

�

= g

0

�

'

r;h

(y)

�

h

r+2

f

r+2

(y) +O(h

r+3

)

= h

r+2

g

0

(y)f

r+2

(y) +O(h

r+3

):

For h! 0, we thus get (3.4) with j = r + 2.

Theorem 3.2. If (1.1) is �-reversible with an orthogonal matrix �, i.e.,

f(�y) = ��f(y) for y 2 R

n

, and if g(�y) = �g(y) with some invertible ma-

trix � and for y 2 R

n

, then it holds

f

j

(�y) = ��f

j

(y) for y 2 R

n

and for all j,

and therefore the modi�ed di�erential equation (3.2) is also �-reversible.

Proof. For numerical methods satisfying �

�h

(�y) = ��

h

(y), their symme-

try is necessary and su�cient for the modi�ed equation being �-reversible (see

[4, Theorem V.2.1]). Without having formulated it explicitly, we assume that

b

�

h

satis�es this relation (this is trivially true for all Runge-Kutta methods).

Di�erentiating g(�y) = �g(y), we get �

T

G

T

(�y) = G

T

(y)�

T

and, due to the

orthogonality of �, we see that (2.1) is equivalent to

�by

0

= �y

0

+G

T

(�y

0

)�

�T

�; g(�y

0

) = 0:

This, together with a similar relation for (2.3), implies �

�h

(�y) = ��

h

(y) for

the symmetric projection method.

All results on the long-time behavior of symmetric methods, applied to �-

reversible systems in an Euclidean space, remain therefore valid for symmetric

projection methods and �-reversible di�erential equations on manifolds.

4 Numerical illustrations.

Let us illustrate the qualitative performance of symmetric projection methods

at two representative examples.

Example 4.1 (Rigid body). A commonly used test problem for Lie group

methods are the equations of motion of a rigid body

y

0

1

= a

1

y

2

y

3

; a

1

= (I

2

� I

3

)=(I

2

I

3

)

y

0

2

= a

2

y

3

y

1

; a

2

= (I

3

� I

1

)=(I

3

I

1

)(4.1)

y

0

3

= a

3

y

1

y

2

; a

3

= (I

1

� I

2

)=(I

1

I

2

)

where the vector y = (y

1

; y

2

; y

3

)

T

represents the angular momentum in the body

frame, and I

1

; I

2

; I

3

are the principal moments of inertia (see [8, Chap. 15] for a

detailed description). This is a di�erential equation on the manifold de�ned by

g(y

1

; y

2

; y

3

) := y

2

1

+ y

2

2

+ y

2

3

�R

2

= 0;(4.2)
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Figure 4.1: Numerical solution of the rigid body equations (4.1) obtained by the

trapezoidal rule with h = 1 (5000 steps) without projection (upper picture), with

standard projection (lower left), and with symmetric projection (lower right).

where R is the Euclidean norm of the initial vector. It is interesting to note

that the system (4.1) is actually a Hamiltonian system on the sphere (4.2) with

Hamiltonian

H(y

1

; y

2

; y

3

) =

1

2

�

y

2

1

I

1

+

y

2

2

I

2

+

y

2

3

I

3

�

:(4.3)

We do not explicitly use this additional invariant in our algorithm, but it is

interesting to study how well it is conserved by the numerical solution. The

exact solution of the problem lies on the intersection of the sphere (4.2) with the

ellipsoid H(y

1

; y

2

; y

3

) = const (see Fig. 4.1).

Since (4.2) and (4.3) are both quadratic �rst integrals of the system (4.1),

it does not make sense to study the performance of symplectic methods (they

exactly conserve both invariants, and a projection onto the manifold is super-


uous). We therefore consider the trapezoidal rule as the basic method for our

projection algorithm. We take I

1

= 2, I

2

= 1 and I

3

= 2=3, a large stepsize

h = 1, and y

0

= (R cos(1:1); 0; R sin(1:1))

T

as initial value (R = 2:3).

The upper picture of Fig. 4.1 shows the numerical solution obtained without

any projections. We see that it is qualitatively correct, but it does not lie on

the sphere. The lower left picture shows the numerical solution obtained with

standard projection (Fig. 1.1, left). Now, the solution is forced to lie on the cor-

rect manifold, but the qualitative behavior becomes completely wrong (because
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standard projection destroys the symmetry of the method). The lower right pic-

ture of Fig. 4.1 shows the numerical solution of method (2.1)-(2.3). This time,

the numerical solution lies on the manifold, and it shows the correct qualitative

behavior, as expected from the backward error analysis.

100 200 300

6.85

6.86

6.87

symmetric projection

standard projection
numerical Hamiltonian
(rigid body)

Figure 4.2: Numerical Hamiltonian for the rigid body simulation with h = 0:5.

In Fig. 4.2 we plot the value of the Hamiltonian (4.3) along the numerical

solution. This should be constant equal to the value H(y

0

) � 6:8466 (horizontal

axis in Fig. 4.2). Standard projection shows a linear drift from the exact value,

whereas symmetric projection gives a numerical Hamiltonian that stays close to

the correct value for all times. The same correct behavior can be observed for

symmetric methods without any projection.

Let us remark that projection as postprocessing is also possible. This means

that after every step the solution is projected onto the manifold, but the inte-

gration is continued with the unprojected value. In the previous example this

gives also excellent results, but it is less satisfactory, because using the vector

�eld f(y) outside the manifold may be dangerous. This is in particular the case,

when g(y) is not a �rst integral.

An important class of problems are conservative multibody systems with holo-

nomic constraints.

q

0

= H

p

(p; q)(4.4)

p

0

= �H

q

(p; q)�G

T

(q)�(4.5)

0 = g(q):(4.6)

Here, H : R

n

�R

n

! R is the Hamiltonian function, H

p

and H

q

denote partial

derivatives, g : R

n

! R

m

are the constraints, and G(q) = g

q

(q). Typically,

H(p; q) =

1

2

p

T

M(q)

�1

p+ U(q) is the sum of the kinetic and potential energies.

Di�erentiating the constraint (4.6) twice, we get

0 = G(q)H

p

(p; q);(4.7)

0 =

d

dq

�

G(q)H

p

(p; q)

�

H

p

(p; q)�G(q)H

pp

(p; q)

�

H

q

(p; q) +G

T

(q)�

�

;(4.8)

and we see that � can be expressed in terms of p and q, if G(q)H

pp

(p; q)G

T

(q) is

invertible. Inserting the so-obtained � = �(p; q) into (4.5), we get a di�erential
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equation for (q; p), whose solution stays on the manifold

M = f(q; p) ; g(q) = 0; G(q)H

p

(p; q) = 0g:(4.9)

There exist numerical methods that produce qualitatively correct solutions, e.g.,

the RATTLE algorithm which is much used in molecular dynamics, and the

Lobatto IIIA-IIIB pair [7]. However, it is known that the numerical treatment of

the index 3 problem (4.4)-(4.6) is much more di�cult than that of the underlying

ordinary di�erential equation for q and p. We show, at the example of the

simple pendulum, that the symmetric projection method (2.1)-(2.3) also gives

qualitatively correct numerical approximations when integrating over long times.

200 300

−.02

−.01

.00

.01
symmetric projection

standard projection

numerical Hamiltonian
(pendulum)

Figure 4.3: Numerical Hamiltonian for the pendulum problem with stepsize

h = 0:1 (midpoint rule).

Example 4.2 (Pendulum). We consider the problem (4.4)-(4.6) with Hamil-

tonian H(p; q) = (p

2

1

+ p

2

2

)=2 + q

2

and constraint g(q

1

; q

2

) = q

2

1

+ q

2

2

� 1. This

yields the equations for the simple pendulum, expressed in Cartesian coordi-

nates. This time we apply the implicit midpoint rule (as representative of the

Gauss methods) with stepsize h = 0:1 and initial values q

1

(0) = 1, q

2

(0) = 0,

p

1

(0) = 0, and p

2

(0) = 0. Applying this method to the underlying di�eren-

tial equation for (q; p), we observe that the quadratic constraint g(q

1

; q

2

) = 0 is

not exactly conserved. This is not a contradiction to the symplecticity of the

method, because g(q

1

; q

2

) is not a �rst integral. Hence, the use of projection

methods makes sense.

The numerical results are similar to those of the preceding example. Figure 4.3

shows the numerical Hamiltonian for both types of projection algorithms (see [6,

Sect. VII.2] for a discussion of projections in multibody simulations). Again, we

observe that symmetric projection yields a correct qualitative behavior, whereas

standard projection cannot keep the energy close to the correct value when

integrated over long times.
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