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ON ENERGY CONSERVATION OF THE SIMPLIFIED

TAKAHASHI–IMADA METHOD ∗, ∗∗

Ernst Hairer1, Robert I. McLachlan2 and Robert D. Skeel3

Abstract. In long-time numerical integration of Hamiltonian systems, and especially in molecular
dynamics simulation, it is important that the energy is well conserved. For symplectic integrators
applied with sufficiently small step size, this is guaranteed by the existence of a modified Hamiltonian
that is exactly conserved up to exponentially small terms. This article is concerned with the simplified
Takahashi–Imada method, which is a modification of the Störmer–Verlet method that is as easy to
implement but has improved accuracy. This integrator is symmetric and volume-preserving, but no
longer symplectic. We study its long-time energy conservation and give theoretical arguments, sup-
ported by numerical experiments, which show the possibility of a drift in the energy (linear or like
a random walk). With respect to energy conservation, this article provides empirical and theoretical
data concerning the importance of using a symplectic integrator.
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Introduction

For accurate simulations in molecular dynamics it is generally accepted that it is essential to have an in-
tegrator that nearly conserves energy on long time intervals and nearly preserves phase space volume (“what
makes molecular dynamics work”, see [9]). Being symplectic implies volume-preservation and ensures energy
conservation for sufficiently small time steps, but is it necessary to use a symplectic integrator? Another inter-
esting question concerns the existence of a modified conserved energy for integrators that are merely volume
preserving. The aim of this article is to present an example of a potentially important time integrator suggesting
that the answer is yes for the first question. It also gives evidence that volume-preserving dynamics does not
always possess a modified energy that is conserved for exponentially long time.

Since the beginning of simulations in molecular dynamics, the Störmer–Verlet integrator has been a method
of choice and much in use. It is explicit for systems with separable Hamiltonian (and thus easy to implement);
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it is symmetric, time-reversible, symplectic, and volume-preserving. All essential geometric properties of the
exact flow are reflected in the numerical discretization. Its only disadvantage is its low order two, which results
in lack of accuracy.

In Section 1 we introduce the Takahashi–Imada integrator and its simplified version. This simplified Takahashi–
Imada method is symmetric and volume-preserving, but not symplectic. We therefore review in Section 2 what
is known about the near energy conservation of symmetric time-reversible integration methods. To study the
long-time behavior we make use of backward error analysis and compute in Section 3 the modified differential
equation of the simplified Takahashi–Imada method. Since the method is not symplectic, the modified differen-
tial equation is not Hamiltonian, and we show that it does not have a modified conserved energy. In Section 4
we discuss different behaviors that may arise: (i) the error of the energy can remain bounded and small, (ii)
there is the possibility of a linear drift and, (iii) most important for molecular dynamics simulations, for chaotic
systems it typically behaves like a random walk, so that the error increases like square root of time. Such a
random walk behavior has also been observed by [6] for a non-holonomic mechanical system which is reversible
and energy-preserving but not Hamiltonian, and by [2] for a Hamiltonian system with non-smooth potential.
Section 5 illustrates the results of this article for an unsymmetric pendulum equation, for a modification of the
Hénon–Heiles problem, and for an N -body problem with bodies interacting via the Lennard–Jones potential.

1. Simplified Takahashi–Imada method

Consider a Hamiltonian system of the form q̈ = −∇U(q) with smooth potential U(q). The total energy
(kinetic plus potential)

H(p, q) =
1

2
pTp + U(q) (1)

is exactly conserved along its flow. Written as a first order differential equation, it becomes

ṗ = f(q)

q̇ = p
with f(q) = −∇U(q). (2)

All statements of this article can be extended straightforwardly to problems Mq̈ = −∇U(q) where M is a
constant mass matrix. For notational convenience we assume M = I, I being the identity matrix.

1.1. Störmer–Verlet method

For a differential equation q̈ = f(q), the replacement of the second derivative by a finite difference yields the
most natural discretization qn+1 − 2qn + qn−1 = h2f(qn). With pn = (qn+1 − qn−1)/2h as approximation to the
derivative p = q̇, this integrator can be written in the form of a one-step method as

pn+1/2 = pn +
h

2
f(qn)

qn+1 = qn + h pn+1/2 (3)

pn+1 = pn+1/2 +
h

2
f(qn+1).

It is usually called the Störmer–Verlet or leapfrog method. It has all nice properties of a geometric integrator.
It is symplectic and volume-preserving, it is symmetric and reversible, but it has only order two. This means
that the local discretization error (contribution of one step) is of size O(h3), so that the global error in the
solution as well as in the energy is O(h2).

Another way to formulate the Störmer–Verlet method as a one-step method is to introduce qn+1/2 =
(qn + qn+1)/2 and to consider the mapping (pn−1/2, qn−1/2) 7→ (pn+1/2, qn+1/2). This integrator has the same
properties and all statements of the present article carry over in a straightforward way to this situation.
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1.2. Takahashi–Imada integrator

The accuracy of the Störmer–Verlet discretization is greatly improved by adding the expression αh2f ′(q)f(q)
with α = 1

12
to every force evaluation in (3). This yields the method (cf. [8, 12])

pn+1/2 = pn +
h

2

(
I + αh2f ′(qn)

)
f(qn)

qn+1 = qn + h pn+1/2 (4)

pn+1 = pn+1/2 +
h

2

(
I + αh2f ′(qn+1)

)
f(qn+1).

It is symmetric and reversible, and it is symplectic and volume-preserving, because for f(q) = −∇U(q) it can
be interpreted as applying the Störmer–Verlet method to the Hamiltonian system with potential

V (q) = U(q) − α

2
h2 ‖∇U(q)‖2.

Although it is still of classical order two, it is an effectively fourth order integrator for α = 1
12

. Denoting the
method (4) by Φh : (pn, qn) 7→ (pn+1, qn+1), this means that there exists a change of coordinates χh such that
χh ◦ Φh ◦ χ−1

h approximates the exact flow to order four. In other words, the integrator (4) is conjugate to a
method of order four. Indeed, with the mapping χh : (p, q) 7→ (p̂, q̂) defined by

p = p̂ + c h2f ′(q) p̂, q̂ = q + c h2f(q), (5)

a straightforward computation by Taylor expansion shows that χh ◦ Φh ◦ χ−1
h is a method of order three if and

only if c = α = 1
12

. Since this composed method is symmetric (which follows from χ−h = χh), it is automatically
of order four. For f(q) = −∇U(q) the transformation (5) is symplectic.

Notice that in a constant step size implementation (χh ◦ Φh ◦ χ−1
h )n = χh ◦ Φn

h ◦ χ−1
h holds, so that it is

sufficient to apply the change of coordinates in the beginning and the end of the integration.

1.3. Simplified Takahashi–Imada integrator

To avoid the derivative evaluation of the vector field f(q), which corresponds to a Hessian evaluation in the
case of f(q) = −∇U(q), we replace

(
I + αh2f ′(q)

)
f(q) with f

(
q + αh2f(q)

)
and thus consider (cf. [13])

pn+1/2 = pn +
h

2
f
(
qn + αh2f(qn)

)

qn+1 = qn + h pn+1/2 (6)

pn+1 = pn+1/2 +
h

2
f
(
qn+1 + αh2f(qn+1)

)

which is a O(h5) perturbation of the method (4). It is still symmetric, reversible, and of effective order four,
and it is volume preserving and thus symplectic for problems with one degree of freedom [13]. To see this, note
that (6) is a composition of shears (mappings of the form (p, q) 7→ (p + a(q), q) and (p, q) 7→ (p, q + hp)), and
shears always preserve the volume.

On the other hand, a shear (p, q) 7→ (p + a(q), q) is symplectic only if a′(q) is symmetric. Thus the first
step of (6) is symplectic only if f ′

(
qn + αh2f(qn)

)
f ′(qn) is symmetric. This is the product of two (in general,

different) symmetric matrices and is not symmetric for all f(q) = −∇U(q). Consequently, the method is not
symplectic for more than one degree of freedom. It is even not conjugate to a symplectic integrator. Otherwise,
as a method that can be expanded into a P-series, it would have a conserved quantity that can be written as a
series in terms of (globally defined) elementary Hamiltonians (see [5, Sect. IX.10]). That this is not the case is
evident from the numerical experiments of Section 5.
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Despite the lack of symplecticity, the simplified Takahashi–Imada method is an interesting integrator because
it is markedly cheaper than the known symplectic integrators of (effective) order 4, requiring only 2 force
evaluations and no evaluations of the derivative of the force per time step. The aim of this article is to study
the long-time energy conservation of this integrator.

1.4. Linear stability analysis

To get some insight into the maximal time step of practical value, we consider the harmonic oscillator with
frequency ω, which is Hamiltonian with quadratic potential U(q) = 1

2
ω2q2. For the Störmer–Verlet method we

get the recursion qn+1 −
(
2 − (ωh)2

)
qn + qn−1 = 0, which is stable only for ωh ≤ 2. It has a discrete energy

p2
n +

(
1 − (ωh)2

4

)
ω2q2

n = Const

that is exactly preserved. The maximal relative error in the Hamiltonian equals (ωh)2/
(
4 − (ωh)2

)
and it is

attained when pn = 0. This error behaves like O(h2) for small step size, but tends to infinity when ωh → 2.
Applied to the harmonic oscillator, both Takahashi–Imada integrators are identical and yield the recursion

qn+1 −
(
2 − (ωh)2 + α(ωh)4

)
qn + qn−1 = 0.

For α = 1
12

this recursion is stable if and only if ωh < 2
√

3. It also has a discrete energy which is

p2
n +

(
1 − β

(ωh)2

4

)
β ω2 q2

n = Const with β = 1 − (ωh)2

12
.

As for the Störmer–Verlet method the maximal relative error in the Hamiltonian is of size O(h2) for ωh → 0,

and tends to infinity when ωh → 2
√

3. However, when we consider the transformed variables of (5), p̂n = β−1pn

and q̂n = βqn, this discrete energy becomes

p̂ 2
n +

(
1 − β

(ωh)2

4

)
β−3ω2 q̂ 2

n = Const .

The maximal relative error in the original Hamiltonian is
(
4−β(ωh)2−4β3

)/(
4−β(ωh)2

)
. Due to an unexpected

cancellation of the fourth order terms, it behaves like O(h6) for small step sizes and remains bounded (converges

to one) when ωh → 2
√

3.
When comparing the Takahashi–Imada integrator with the Störmer–Verlet method, one has to take into

account that the simplified Takahashi–Imada method is twice as expensive. Therefore, the effective step size of
the Störmer–Verlet method is twice as large. The right picture of Figure 1 shows the maximal relative error in
the Hamiltonian as a function of ωheff , where the effective step size heff is h for the Takahashi-Imada integrator

10−1 100

10−6

10−3

100
10−1 100

10−6

10−3

100

effective step size

error in solution

effective step size effective step size

error in energy

effective step size

Figure 1. Harmonic oscillator: error in the solution (left picture) and error in the Hamiltonian
(right picture) as a function of the effective step size for the Störmer–Verlet method (dashed
line) as well as for the solution (p̂n, q̂n) of the Takahashi–Imada integrator (solid line).
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and 2h for the Störmer–Verlet method. For all step sizes that give rise to bounded numerical solutions, the
Takahashi–Imada integrator is more accurate for the same amount of work. A similar picture is obtained when
the global error is plotted as function of the effective step size. If εp and εq denote the errors in the p and q

component, respectively, we consider the scaled norm (|εp|2 +ω2|εq|2)1/2, so that the error only depends on the
product ωh. The global error, which mainly consists of a phase error, increases linearly with time. In the left
picture of Figure 1 we show the maximal global error on the interval 50/ω. Notice that for the Takahashi–Imada
method this error behaves like O(h4). The higher order O(h6) is observed only in the Hamiltonian.

2. Review on energy conservation with symmetric methods

One of the main motivations of using symplectic time integrators is their good energy conservation over long
times. The simplified Takahashi–Imada integrator is no longer symplectic. What can be said about its long-time
energy conservation? This section reviews energy conservation by symmetric (non-symplectic) methods.

2.1. Completely integrable differential equations

For completely integrable Hamiltonian systems there exists a perturbation theory which permits one to prove
that, for symplectic methods applied with small step size, the numerical solution nearly conserves all action
variables over long times and in particular also the Hamiltonian. There is an analogue for reversible systems
solved with symmetric integrators.

Consider a differential equation (not necessarily Hamiltonian) with variables split into (u, v) such that

u̇ = f(u, v)

v̇ = g(u, v)
where

f(u,−v) = −f(u, v)

g(u,−v) = g(u, v).
(7)

The problem (2) is of this form with u = q and v = p, but often there are other splittings that yield this
form, too. The exact flow of this differential equation is reversible, which means that with the transformation
ρ : (u, v) 7→ (u,−v) it satisfies ρ ◦ϕt ◦ ρ = ϕ−1

t . Many symmetric methods, and in particular also the simplified
Takahashi–Imada method, are reversible and thus satisfy ρ ◦ Φh ◦ ρ = Φ−1

h .
The system (7) is called an integrable reversible system, if there exist a change of coordinates a = µ(u, v),

θ = ν(u, v) preserving reversibility (i.e., µ(u,−v) = µ(u, v) and ν(u,−v) = −ν(u, v)) and a frequency vector
ω(a) such that in the new variables the system is of the form

ȧ = 0, θ̇ = ω(a).

The action variables a are constants of motion, and the angle variables θ increase linearly with time. Based on
a reversible KAM theory it is proved in [5, Chap. XI] that, under a non-resonance condition on the frequencies
ωj(a) and for sufficiently small step sizes, reversible numerical methods applied to integrable reversible systems
have the same long-time behavior as symplectic methods applied to integrable Hamiltonian systems. In particu-
lar, they nearly preserve all action variables (including the total energy in the case of a Hamiltonian system) on
exponentially long time intervals and the global error increases only linearly with time. More precisely, as long
as the solution remains in a compact set, the error in the action variables is bounded by O(hr) + O(te−γ/h),
where r is the order of the method.

2.2. General (chaotic) Hamiltonian systems

Problems in molecular dynamics are in general chaotic, which means that they are very sensitive to pertur-
bations in initial data. Assuming that the numerical solution remains in a compact set and that the step size is
sufficiently small, the local error contributions to the Hamiltonian just sum up. A worst case analysis therefore
shows that the energy error at t = nh is bounded by O(thr) when r is the order of the method.



6 TITLE WILL BE SET BY THE PUBLISHER

2.2.1. Conjugate-symplectic methods

Since the symplecticity requirement is rather strong, Stoffer [11] suggests considering methods that are
conjugate to a symplectic method. Denoting the discrete flow of the method by Φh, this means that there exists
a change of coordinates χh (close to the identity) such that Ψh := χh ◦Φh ◦χ−1

h is a symplectic transformation.
The numerical solution obtained with Φh then has the same long-time behavior as that obtained with the
symplectic integrator Ψh, and the energy error will be of size O(hr) +O(te−γ/h), so that the lifetime of energy
conservation is exponential. A well-known example is the symmetric (non-symplectic) trapezoidal rule which is
conjugate to the symplectic midpoint rule.

The underlying one-step method of symmetric linear multistep methods is another example that is conjugate
to a symplectic method (see [1,4] and [5, Sect. XV.4]). The lifetime of energy conservation would be exponential
if there were not disturbing parasitic solutions of the difference equation. Only for symmetric methods for second
order differential equations q̈ = −∇U(q), where the ρ-polynomial does not have double roots other than 1, these
parasitic solutions are under control. It is proved in [4] (see also [5, Sect. XV.6]) that for an rth order method
the energy error is O(hr) on time intervals of length t = nh = O(h−r−2) or even longer.

A special case of such a method for second order equations q̈ = f(q) = −∇U(q) is the implicit 4th order
method (known as Cowell’s method or Numerov method)

qn+1 − 2qn + qn−1 =
h2

12

(
f(qn+1) + 10 f(qn) + f(qn−1)

)
.

With suitable velocity approximations pn it is conjugate to a symplectic integrator and thus has an excellent
long-time behavior (see [10]).

2.2.2. Methods that are conjugate to a symplectic method up a certain order

Relaxing the property of conjugate-symplecticity, we can ask for methods that are conjugate to a symplectic
method up to order s, i.e., there exists a change of coordinates and a symplectic integrator Ψh such that
χh ◦ Φh ◦ χ−1

h − Ψh = O(hs+1). If the method is of order r, the numerical Hamiltonian will behave like

H(pn, qn) = Const + O(hr) + O(ths), (8)

so that the energy error is bounded by O(hr) on intervals of length t = nh = O(hr−s), and an energy drift
can appear only beyond such an interval (we always have s ≥ r). For integrable systems not only the energy
behaves like (8), but all first integrals that can be expressed in terms of action variables. For general systems,
quadratic first integrals like the angular momentum in N -body dynamics are also well conserved and behave
like (8).

The question of conjugate-symplecticity up to a certain order is addressed in the thesis of Pierre Leone,
and the most important results are collected in [5, Sect. VI.8]). Among B-series methods (which include
Runge-Kutta methods) all symmetric second order methods are conjugate-symplectic up to order 4. The fourth
order Lobatto IIIB method is not conjugate-symplectic up to an order higher than four, but the fourth oder
Lobatto IIIA method is conjugate-symplectic up to order six.

2.2.3. Methods that preserve a modified energy up a certain order

We can still further relax the requirement and consider methods that conserve a modified energy up to
order s. For B-series methods this property is discussed in [3]. In this situation we have (8) for the numerical
Hamiltonian, and the energy is well conserved on intervals of length O(hr−s). However, one has to be aware
of the fact that further properties of symplectic integrators are lost for computations on intervals longer than
O(1). For example, there is no guarantee that the angular momentum is well conserved.
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3. Modified differential equation

To get insight into the long-time behavior of numerical integrators (including their energy conservation),
backward error analysis is the most powerful tool. For a detailed and complete presentation of this theory
we refer to [5, Chap. IX]. The idea is to “interpolate” the numerical solution by the exact flow of a modified
differential equation which is given by a formal series in powers of the step size

(
ṗ
q̇

)
=

(
f(q)

p

)
+ h

(
f2(p, q)
g2(p, q)

)
+ h2

(
f3(p, q)
g3(p, q)

)
+ . . . (9)

Denoting by p̃(t), q̃(t) the solution of this system, we formally1 have for the numerical solution that pn = p̃(tn),
qn = q̃(tn) with tn = t0 + nh. This permits to get information for the numerical solution by studying the exact
flow of the modified differential equation (9). The reason why backward error analysis is so successful is that
geometric properties of the numerical integrator are reflected in the modified differential equation. For example,

• for symmetric methods, the modified differential equation is in even powers of h;
• for reversible methods applied to a reversible differential equation, the modified equation is reversible;
• for volume-preserving methods applied to a divergence-free system, the modified differential equation

is divergence-free;
• for symplectic methods applied to a Hamiltonian system, the modified equation is (locally) Hamiltonian.

In particular, for a symplectic method applied to (2) there exists a modified Hamiltonian (which for all methods
of this article is globally defined)

H̃(p, q) =
1

2
pTp + U(q) + h H2(p, q) + h2 H3(p, q) + h3 H4(p, q) + . . .

such that the modified differential equation is given by

ṗ = −∇qH̃(p, q), q̇ = ∇pH̃(p, q).

Notice that the functions fj(p, q) and gj(p, q) of the modified differential equation depend on p and q although
the original problem (2) is a second order differential equation. Similarly, the modified Hamiltonian is in general
not separable independent of whether the Hamiltonian of the original problem is separable or not.

3.1. Störmer–Verlet method

The Störmer–Verlet method is symplectic, so that its modified differential equation is Hamiltonian. Using
the notation T (p) = 1

2
pTp for the kinetic energy, and {A, B} = ∇qA

T∇pB−∇pA
T∇qB for the Poisson bracket

of two functions depending on p and q, this modified Hamiltonian is

H̃ = T + U + h2
(

1

12

{
T, {T, U}

}
− 1

24

{
U, {U, T }

})
+ h4

(
− 1

720

{
T,

{
T,

{
T, {T, U}

}}}

+
1

360

{
U,

{
T,

{
T, {T, U}

}}}
− 1

480

{
U,

{
U,

{
T, {T, U}

}}}
+

1

120

{
T,

{
T,

{
U, {U, T }

}}})
+ O(h6).

(10)

This formula is obtained from the symmetric Baker–Campbell–Hausdorff formula (cf. [5, Sect. III.4.2]).

1In general, the series (9) does not converge. To make backward error analysis rigorous, one has to truncate the series and one
has to estimate the resulting errors. To emphasize the main ideas, we suppress these technicalities in the present work.
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3.2. Takahashi–Imada method

Substituting U in (10) with U − α
2
h2‖∇U‖2 = U − α

2
h2

{
U, {U, T }

}
(cf. Sect. 1.2) yields the modified

Hamiltonian of the symplectic Takahashi–Imada integrator (4):

Ĥ = T + U + h2
(

1

12

{
T, {T, U}

}
−

(
1

24
+

α

2

){
U, {U, T }

})

+ h4
(
− 1

720

{
T,

{
T,

{
T, {T, U}

}}}
+

1

360

{
U,

{
T,

{
T, {T, U}

}}}
− 1

480

{
U,

{
U,

{
T, {T, U}

}}}

+
(

1

120
− α

24

){
T,

{
T,

{
U, {U, T }

}}}
− α

24

{
U,

{
T,

{
U, {U, T }

}}})
+ O(h6).

(11)

This formula suggests putting α = − 1
12

so that the term
{
U, {U, T }

}
is annihilated. With the value p̂n =

pn− 1
12

h2∇2U(qn)pn also the
{
T, {T, U}

}
term is eliminated so that H(p̂n, qn) = Const+O(h4). Approximating

∇2U(qn)pn by a difference of force evaluations yields the advanced SV algorithm of [7]. Notice that p̂n and qn

are only (effective) order 2 approximations of the solution.

3.3. Simplified Takahashi–Imada method

To find the modified differential equation of (6) we notice that it is a O(h5) perturbation of the Takahashi–
Imada method. If we denote by p̂n+1/2, q̂n+1, p̂n+1 the values obtained from (4) subject to initial values qn, pn,
then the numerical approximation obtained from (6) satisfies with qn+1/2 = (qn + qn+1)/2

pn+1 = p̂n+1 +
1

2
h5α2

(
f ′′(f, f)

)
(qn+1/2) + O(h7)

qn+1 = q̂n+1 +
1

4
h6α2

(
f ′′(f, f)

)
(qn+1/2) + O(h8)

The modified differential equation of (6) is therefore given by

ṗ = −∇qĤ(p, q) +
1

2
h4α2

(
f ′′(f, f)

)
(q) + O(h6)

q̇ = ∇pĤ(p, q) + O(h6)
(12)

where Ĥ(p, q) is the modified Hamiltonian (11) of the Takahashi–Imada method. Due to the symmetry of the
modified Takahashi–Imada method (6) the expansion (12) is in even powers of h.

4. Energy conservation of the simplified Takahashi–Imada integrator

To study energy conservation of the simplified Takahashi–Imada integrator (6) we notice that along the
(formal) exact solution of its modified differential equation (12) we have

d

dt
Ĥ(p, q) =

1

2
h4α2 pTf ′′(f, f) + O(h6) = −1

2
h4α2 Uqqq(p, Uq, Uq) + O(h6), (13)

where we have used f(q) = −∇U(q) = −Uq(q). In general, the expression on the right-hand side of (13) cannot
be written as a total differential. However, there are several possibilities to extract parts that can be written
as a total differential which then gives further information on the long-time energy conservation of the method.

To better explain the numerical results in Section 5.2.1, we suggest to use the identity

d

dt

(
2 Uqq(Uq, Uq) − 4 Uqqq(p, p, Uq) − Uqqqq(p, p, p, p) + 2 (Uqqp)T(Uqqp)

)

= 10 Uqqq(p, Uq, Uq) − Uqqqqq(p, p, p, p, p)
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which holds along solutions of the Hamiltonian system (2). A O(h2) error term has to be added, if the formula is
used along the solution of the modified differential equation (12). Relations of this type can be derived with the
use of elementary Hamiltonians (cf. [5, Sect. IX.10.2]). Extracting the term Uqqq(p, Uq, Uq) from this formula,
we obtain

Uqqq(p, Uq, Uq) =
d

dt
K(p, q) +

1

10
Uqqqqq(p, p, p, p, p) + O(h2), (14)

where

K(p, q) =
1

5
Uqq(Uq, Uq) − 2

5
Uqqq(p, p, Uq) − 1

10
Uqqqq(p, p, p, p) +

1

5
(Uqqp)T(Uqqp).

It therefore follows from (13) that

d

dt

(
Ĥ(p, q) +

1

2
h4α2K(p, q)

)
= − 1

20
h4α2 Uqqqqq(p, p, p, p, p) + O(h6) (15)

along solutions of the modified differential equation (12). Since the numerical solution of the simplified
Takahashi–Imada method is (formally) identical to the exact solution (at tn = nh) of (12), this formula yields
much insight into the long-time energy conservation of (6) and can explain the different behavior depending on
the structure of the problem.

• Bounded error in the energy without any drift. If the potential U(q) is a polynomial of degree at
most 4 (e.g., the Hénon–Heiles potential), the h4-term of the right-hand side of (15) vanishes, so that
the Hamiltonian H(p, q) = 1

2
pTp + U(q) satisfies H(pn, qn) = O(h2) + O(th6) with t = nh along the

numerical solution of (6). A worst case analysis shows that the energy error is of size O(h2) with lifetime
tn = nh ≤ O(h−4). As in [3] we expect that also higher order terms can be treated as above, so that
no energy drift at all can be observed in this situation.

• Linear energy drift. In general, without any particular assumption on the potential, the numerical
energy will have a drift of size O(th4), so that the lifetime of energy conservation (with error of size
O(h2)) of the simplified Takahashi–Imada integrator is at least tn = nh ≤ O(h−2).

• Random walk behavior – drift like square root of time. Under the assumption that the solution of the
modified differential equation is ergodic on an invariant set A with respect to an invariant measure µ,
we have

lim
t→∞

1

t

∫ t

0

F
(
p(s), q(s)

)
ds =

∫

A

F (x)µ(dx), (16)

where x = (p, q) and the function F (x) is the right-hand side of (15). Again there will be a linear
drift of size O(th4) in general. However, in the presence of symmetries, the integral of the right-hand
side in (16) is likely to vanish and the numerical Hamiltonian will look like a random walk (a behavior
observed by [6] and [2] in different situations). We therefore can expect that in addition to the bounded

error terms in Ĥ(p, q) and K(p, q), there will be a drift of size O(
√

t h4). This implies that the lifetime
with an O(h2) error of the simplified Takahashi–Imada integrator is at least tn = nh ≤ O(h−4). Notice
that it is very difficult (or impossible) to verify the ergodicity assumption of the modified differential
equation, but numerical experiments show that this behavior is a typical situation.

5. Numerical illustration

The aim of this section is to illustrate that the different behaviors concerning energy conservation, predicted by
the backward error analysis of the previous sections, actually arise in practical computations. In all experiments
the step size is sufficiently small so that the truncated modified equation is a reliable model for the numerical
solution. For the case where the product of step size and the highest frequency in the system is not small (say,
of size one or even closer to the linear stability bound of Sect. 1.4) a different analysis is required. We do not
consider this situation in the present article.
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5.1. Unsymmetric pendulum

Let us start with a generic example that does not have any symmetries in the solution. We consider the
second order differential equation (2) with one degree of freedom and potential

U(q) = − cos q + 0.2 sin(2q). (17)

To the potential for the pendulum a perturbation is added so that the symmetry in q ↔ −q is destroyed. As
initial values we take q(0) = 0 and p(0) = 2.5. The velocity is sufficiently large so that the pendulum turns
round and p(t) remains positive for all time. Consequently, the symmetry p ↔ −p cannot have any influence
onto a numerical solution. It turns out that the integral of the expression (15) over one period of the solution is
non-zero. For the simplified Takahashi–Imada method we therefore expect that in addition to a bounded error
term of size O(h2) there is a linear drift of the form O(th4). Figure 2 shows the truncated modified energy
1

2
pTp + U(q) + h2 H3(p, q) (shifted in the sense that its value at (p(0), q(0)) is subtracted) obtained with step

size h = 0.2. This experiment confirms the theoretical investigations and shows that without any symmetry in
the solution one cannot expect a better long-time behavior.

0 1 2

−.010

−.005

.000

×103

Figure 2. Unsymmetric pendulum: error in the shifted modified energy H(pn, qn)+h2 H3(p, q)
along the numerical solution of the simplified Takahashi–Imada method (6).

There seems to be a contradiction to the fact that the simplified Takahashi–Imada method is symplectic for
problems with one degree of freedom. To explain this apparent contradiction we recall that symplecticity alone
is not sufficient for a good energy conservation. The numerical solution has to remain in a compact set and the
modified Hamiltonian (in the sense of backward error analysis) has to be globally defined.

In this particular situation the phase space is either a cylinder, because the angle q is defined modulo 2π, or the
Euclidean plane, if we do not take care of the periodicity of the vector field. On a cylinder, the coefficient function
of h4 in the modified Hamiltonian is not globally defined, because the integral of the function

(
(f ′′(f, f)

)
(q)

(see (12)) over an interval of length 2π is not zero. If we consider the Euclidean plane as the phase space of this
problem, then the angle q grows linearly with time and the solution does not remain is a compact set.

5.2. Hénon–Heiles-type problems

Our next example is a Hamiltonian system (2) with two degrees of freedom and potential function

U(q1, q2) =
1

2

(
q2
1 + q2

2

)
+ q2

1q2 − 1

k
qk
2

which, for k = 3, reduces to the well-known Hénon–Heiles potential. If the value of the Hamiltonian is large
enough, the solution is chaotic.
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0 1 2
−4

−2

0

2

4 ×10−8

×106

Figure 3. Hénon–Heiles problem with cubic potential: error in the modified energy

Ĥ(pn, qn) + 1
2

h4α2K(pn, qn) along the numerical solution of the simplified Takahashi–Imada
method (6).

5.2.1. Cubic potential

We consider the case k = 3 and recall that in this case the dominant error term in formula (15) vanishes. We
apply the simplified Takahashi–Imada method (6) with step size h = 0.2 and initial values q1(0) = 0, q2(0) = 0.2,
p2(0) = 0.3, and a positive p1(0) is chosen such that the Hamiltonian is H0 = 0.125. Figure 3 shows the error in

the modified energy Ĥ(pn, qn)+ 1
2

h4α2K(pn, qn) (with α = 1/12, c.f., equation (15)). It behaves like O(h6) and
no drift is visible, even not in a higher power of h. For this problem the simplified Takahashi–Imada method
behaves exactly like a symplectic integrator. Since the problem is not integrable, a theoretical justification of
this behavior would require a thorough investigation of higher order terms in the modified differential equation.

0 1 2
−1

0

1

2

0 1 2

−1

0

1

×10−5

×106

×10−6

×106

Figure 4. Hénon–Heiles problem with quintic potential: error in the modified energy

Ĥ(pn, qn) + 1
2

h4α2K(pn, qn) along the numerical solution of the simplified Takahashi–Imada
method (6). The upper picture corresponds to 2 trajectories for which the maximal error is
larger than 2 × 10−6. The remaining 98 error curves are drawn in the lower picture (with
average and standard deviation included).
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.2

.4

Figure 5. Poincaré cut for the numerical solution of the simplified Takahashi–Imada method
corresponding to the interval [1.0 × 106, 1.1 × 106] with 12 827 cut points (left picture) and to
the interval [1 225 782, 1 415 265] with 25 220 cut points.

5.2.2. Quintic potential

To ensure that the dominating term in (15) does not vanish identically, we now put k = 5. The modified
energy is no longer as well conserved as for k = 3 and the long-time error looks rather erratic. We therefore
consider 100 different initial values randomly chosen close to the values q1(0) = 0, q2(0) = 0.2, p2(0) = 0.3, and
p1(0) such that the value of the Hamiltonian is H0 = 1/8 (implying a chaotic solution). Figure 4 shows the

modified energy Ĥ(pn, qn)+ 1
2

h4α2K(pn, qn) subtracted by its value at t = 0 along the numerical solution of the
simplified Takahashi–Imada method applied with step size h = 0.2. Most of the trajectories have an error that
behaves like a random walk throughout the considered interval. The lower picture of Figure 4 shows in addition
to the errors also the average (µ = −0.11× 10−6 at t = 2.5× 106) and the standard deviation (σ = 0.54× 10−6

at t = 2.5 × 106) as a function of time. One nicely observes that the mean error increases like the square root
of time.

However, for a few initial values (those plotted in the upper picture of Figure 4), the error in the modified
energy increases linearly with time on relatively large subintervals. We can see that for a particular initial value
this happens on the interval [1 225 782, 1 415 265] which corresponds to 947 415 integration steps. To better
understand this behavior, we study the Poincaré section of this particular solution. Whenever the solution
(considered as a path in the phase space) crosses the surface q1 = 0 in the positive direction p1 > 0, we consider
the point (q2, p2). These points are plotted in Figure 5. On the subinterval where the linear growth of the
modified Hamiltonian is observed, these Poincaré cuts happen to lie in the region p2 < 0 (right picture), and
one cannot expect that the integral over the expression in (15) vanishes. In general (left picture of Figure 5)
these cut points are symmetrically distributed in the phase space leading to a cancellation in the integral.

This example illustrates that it is very difficult (even impossible) to verify rigorously any ergodicity as-
sumption for the modified differential equation. Nevertheless, such an assumption permits one to explain the
numerically observed long-tme behavior very well.

5.3. A model problem for molecular dynamics

The N -body problem is a Hamiltonian system (2) with potential function

U(q1, . . . , qN ) =
∑

1≤j<i≤N

V (rij), rij = ‖qi − qj‖.
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In our experiment we assume that the positions qi of the particles are in R2, and that the interaction between
them is via the Lennard–Jones potential V (r) = 0.4(r−12 − 2r−6). The initial position of the N = n2 particles
(we use n = 3 for our experiment) is on the rectangular grid (i, j) for i, j ∈ {1, . . . , n}, and we assume zero
initial momenta.

To study the energy conservation for this N -body problem, we apply the simplified Takahashi–Imada method
(6) with step size h = 0.2 and many different initial values. The positions of the particles are chosen close
to the rectangular grid with a random perturbation of maximal value 0.01 in each component. The initial
momenta are always exactly zero. The result is shown in Figure 6. We have plotted the shifted modified energy

Ĥ(pn, qn) + 1
2

h4α2K(pn, qn) along the numerical solution for 50 trajectories. As bold curves we have included
the average of the energy error over 400 trajectories together with its standard deviation.

In contrast to the previous experiment (modified Hénon–Heiles problem) we do not observe the existence of
time intervals with linear growth in the energy error (there is much more mixing for problems with a larger
number of degrees of freedom). These errors perfectly behave like a random walk, so that the error in the
modified energy typically grows like O(α2h4t1/2).

We emphasize that in Figure 6 we have plotted the errors in the modified energy Ĥ(pn, qn)+ 1
2

h4α2K(pn, qn).

Looking at the error in the Hamiltonian H(pn, qn), which for this experiment is of size 10−3, no drift and no
random walk behavior can be observed. However, the Takahashi–Imada method has been designed as to
eliminate the O(h2) term in the modified Hamiltonian (10) using a pre-processing procedure. For this pre-
processed method, the random walk behavior will be present also in the original energy H(pn, qn).

0 1 2

−6

−3

0

3

6 ×10−6

×104

Figure 6. Error in the modified energy Ĥ(pn, qn) + 1
2

h4α2K(pn, qn) of the N -body problem
along the numerical solution of the simplified Takahashi–Imada method (50 trajectories). In-
cluded is the average over 400 trajectories as a function of time (µ = 0.091×10−6 at t = 2×104)
and the standard deviation (σ = 3.08 × 10−6 at t = 2 × 104).
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