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Long-term analysis of the Störmer–Verlet method for
Hamiltonian systems with a solution-dependent high
frequency

Ernst Hairer · Christian Lubich

Abstract The long-time behaviour of the Störmer–Verlet–leapfrog method is
studied when this method is applied to highly oscillatory Hamiltonian systems
with a slowly varying, solution-dependent high frequency. Using the technique
of modulated Fourier expansions with state-dependent frequencies, which is
newly developed here, the following results are proved: The considered Hamil-
tonian systems have the action as an adiabatic invariant over long times that
cover arbitrary negative powers of the small parameter. The Störmer–Verlet
method approximately conserves a modified action and a modified total en-
ergy over a long time interval that covers a negative integer power of the small
parameter. This power depends on the size of the product of the stepsize with
the high frequency.
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1 Introduction

In the last decade much insight into the properties of numerical integrators for
highly oscillatory Hamiltonian systems has been gained, starting by thoroughly
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Switzerland.
E-mail: Ernst.Hairer@unige.ch

Christian Lubich
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studying the numerical methods on a nonlinear model problem with a single
constant high frequency; see [14, Chap. XIII] and the original papers [10,9].
As an important tool, the technique of modulated Fourier expansions was
first developed in this single-frequency context and later extended to several
and infinitely many frequencies, which made it possible to explain remarkable
analytical and numerical long-time properties in multi-frequency Hamiltonian
systems [3,4] and classes of Hamiltonian partial differential equations; see,
e.g., [5,7,8] for long-time analyses of numerical methods for such equations.
We further refer to the review articles [11,12] and numerous references therein.

A key aspect for the numerical integration of oscillatory problems is that
the product of the stepsize with the highest frequency in the system (the
CFL number in the case of partial differential equations) is not required to be
exceedingly small. Numerical long-time results for oscillatory problems under
realistic stepsize conditions can be proved with modulated Fourier expansions,
but are not accessible by standard backward error analysis; cf. [14, Chapters
IX and XIII].

In this paper we consider a model problem with a single solution-dependent
high frequency that was first studied analytically by Rubin & Ungar [19].
It describes motion under a strong constraining force and is given by the
Hamiltonian

H(q0, q1, p0, p1) =
1

2

(
|p0|2 + |p1|2

)
+
ω(q0)2

2 ε2
|q1|2 + U(q0, q1) (1.1)

with a small parameter 0 < ε� 1. The variables q = (q0, q1) ∈ Rd0 ×Rd1 and
p = (p0, p1) ∈ Rd0 × Rd1 represent the positions and momenta, respectively,
and |·| denotes the Euclidean norm. The frequency function ω and the potential
U may depend on ε, but are assumed to be smooth in the sense that all their
derivatives are bounded independently of ε. We assume that ω(q0) has a fixed
positive lower bound independently of q0, say ω(q0) ≥ 1.

The rescaled variant H = 1
2

(
p20 + p21

)
+ 1

2ω(εq0)2q21 is a standard exam-
ple in the theory of adiabatic invariants as described in [1, Chap. 5.4]. The
fundamental role of such an Hamiltonian for magnetic traps and mirrors is
discussed there and in [2, Chap. III.1]. In [6] the Hamiltonian (1.1) was con-
sidered as a model problem for adiabatic invariance in molecular dynamics
and numerical weather prediction. For the constant-frequency case ω(q0) ≡ 1
the Hamiltonian (1.1) reduces to that of the model problem of [10] and [14,
Chap. XIII].

The equations of motion are given by p0 = q̇0, p1 = q̇1 and the system of
second-order differential equations

q̈0 = −ω(q0)|q1|2

ε2
∇q0ω(q0)−∇q0U(q0, q1)

q̈1 = −ω(q0)2

ε2
q1 −∇q1U(q0, q1).

(1.2)

Initial values are assumed such that

q1(0) = O(ε), q0(0) = O(1), p0(0) = O(1), p1(0) = O(1). (1.3)
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This implies that the total energy is bounded by a constant independent of ε.
In this system, the components q1(t) oscillate fast with small amplitude O(ε)
and with the slowly changing frequency ω(q0(t))/ε.

We consider the action (oscillatory energy divided by the frequency, rescaled
with the factor ε−1)

I(q0, q1, p0, p1) =
1

2

|p1|2

ω(q0)
+
ω(q0)

2 ε2
|q1|2, (1.4)

which is O(1) at the initial values. The action is nearly conserved, up to
deviations of size O(ε), over very long times; in the case of a single fast degree
of freedom (d1 = 1) see [18] for the Hamiltonian (1.1) and [1, Chap. 5.4] for the
(rescaled) Hamiltonian without the potential U ; for general d1 ≥ 1 we refer
to Theorem 3.2 below. The action I is therefore called an adiabatic invariant;
see also [15] for this notion.

In Section 2 we show that the exact solution admits an asymptotic expan-
sion into products of slowly varying functions with integral powers of eiφ(t)/ε

for a suitable smooth phase function φ(t), whose time derivative is close to
ω(q0(t)). This expansion is called a varying-frequency modulated Fourier ex-
pansion, a notion that extends the constant-frequency modulated Fourier ex-
pansion of [14, Chap. XIII]. Even if the truncated expansion is a valid solution
approximation only over short time t = O(1), it is the key tool to proving the
near-conservation of the action along the solution over long times t = O(ε−N )
for arbitrary integer N , which is done in Section 3. This long-time adiabatic
invariance result for (1.1) has previously been proved in the case of a single
fast degree of freedom (d1 = 1). For this case it was obtained using canon-
ical coordinate transformations of Hamiltonian perturbation theory; see [18]
and compare also [1, Chap. 5.4] for a closely related class of Hamiltonians. The
proof via modulated Fourier expansions, which allows for arbitrarily many fast
degrees of freedom without further ado (but still for a single high frequency),
does not use any such nonlinear coordinate transforms. Not least because of
this property, this proof can be extended to numerical methods, as we will
show in this paper.

In Sections 4 to 6 we study the widely used Störmer–Verlet–leapfrog in-
tegrator applied to (1.2), for stepsizes h = O(ε) below the linear stability
threshold. It has been shown in [17] that the adiabatic invariant is nearly pre-
served over long times by the Störmer–Verlet method with very small stepsizes
h = O(ε2), using standard backward error analysis. Here we show that both
the adiabatic invariant and the total energy are well preserved over long times
for larger stepsizes h = O(ε). We show in Section 4 that the numerical solu-
tion admits a modulated Fourier expansion with a modified phase function.
This is used in Section 5 to show that the method nearly conserves a modified
action over times t = O(ε−N ) with a positive integer N that depends on an
upper bound of the product of the stepsize with the frequencies. In Section 6
we show similarly that the method nearly conserves a modified energy over
such long times. The expressions for the modified action and energy are the
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same as in the constant-frequency case, since derivatives of the frequency do
not enter these expressions in leading order.

With the techniques developed and used in this paper, it is also feasible to
extend known long-time results for trigonometric integrators [14, Chap. XIII]
and the implicit-explicit symplectic method considered in [16,22,21,3] from
the case of a constant high frequency to a solution-dependent high frequency.
To present this paper as a concise proof of concept, we do not work out these
interesting extensions here, but limit ourselves to the exemplary case of the
Störmer–Verlet method.

With hindsight, it is remarkable to which extent results and techniques
originally developed for constant-frequency systems generalise to a varying
frequency — pitfalls and new technical difficulties notwithstanding.

2 Modulated Fourier expansion of the exact solution

We show that the solution q(t) =
(
q0(t), q1(t)

)
of (1.2) admits a modulated

Fourier expansion

q(t) ≈
∑
k∈Z

zk(t) eikφ(t)/ε =
∑
k∈Z

yk(t), (2.1)

where yk(t) = zk(t) eikφ(t)/ε. The modulation functions zk(t) =
(
zk0 (t), zk1 (t)

)
and the phase function φ(t) are ε-dependent functions that are required to be
smooth in the sense that all derivatives are bounded independently of ε. The
following result extends Theorem XIII.5.1 of [14] to state-dependent frequen-
cies.

Theorem 2.1 Consider a solution q(t) of (1.2) that satisfies the bounded en-
ergy condition (1.3) and stays in a compact set K for 0 ≤ t ≤ T . Then the
solution admits an expansion

q(t) =
∑

|k|≤N+1

zk(t) eikφ(t)/ε +RN (t) (2.2)

for arbitrary N ≥ 1, where the phase function satisfies

φ(t) =

∫ t

0

ω
(
z00(s)

)
ds, so that φ̇(t) = ω

(
z00(t)

)
. (2.3)

The functions zk(t) =
(
zk0 (t), zk1 (t)

)
together with their derivatives (up to ar-

bitrary order M) are bounded by

zk0 =

{
O(εk) for k even

O(εk+2) for k odd
zk1 =

{
O(εk+2) for k even

O(εk) for k odd
(2.4)

for k = 0, . . . , N + 1. Moreover, z−k = zk for all k. The remainder term and
its derivative are bounded by

RN (t) = O(t2εN ) and ṘN (t) = O(tεN ) for 0 ≤ t ≤ T. (2.5)
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With this bound, the functions zkj are unique up to terms of size O(εN+2).
The constants symbolised by the O-notation are independent of ε and t with
0 ≤ t ≤ T , but they depend on N , T , the constants in (1.3), on bounds of
derivatives of ω(q0) and U(q0, q1) on K, and on the maximum order M of
considered derivatives of zk(t).

Proof The proof follows closely that of Theorem XIII.5.1 of [14]. We briefly
sketch the main steps and highlight the main differences to the constant-
frequency case. Inserting the finite sum of (2.2) and

q̈(t) ≈
∑

|k|≤N+1

(
z̈k(t) + 2ikżk(t)

φ̇(t)

ε
+ zk(t)

(
ik
φ̈(t)

ε
− k2 φ̇(t)2

ε2

))
eikφ(t)/ε

into the differential equation, expanding the nonlinearities around the non
oscillating part z0(t), and comparing the coefficients of eikφ(t)/ε yields, for
W (q0, q1) = 1

2ε
−2ω(q0)2|q1|2 + U(q0, q1),

z̈k(t) + 2ikżk(t)
φ̇(t)

ε
+ zk(t)

(
ik
φ̈(t)

ε
− k2 φ̇(t)2

ε2

)
= −

N+1∑
m=1

∑
s(α)=k

1

m!
(∇W )(m)(z0) zα,

(2.6)

where the sum is over multi-indices α = (α1, . . . , αm), 0 < |αj | ≤ N + 1, such
that s(α) = α1 + . . . + αm = k, and zα = (zα1 , . . . , zαm). For k = 0 there is
an additional term −∇W (z0) on the right-hand side. The construction will be
such that the bounds (2.4) hold. Therefore we have truncated the Taylor series
expansion after the (N + 1)th term in order to get a defect of size O(εN ).

Assuming that the bounds (2.4) hold, the only ε−1-terms in equations (2.6)
appear for |k| = 1, for z±11 . They are −z±11 φ̇(t)2/ε2 on the left-hand side and
−z±11 ω(z00)2/ε2 on the right-hand side. Taking these terms equal yields the
relation (2.3). We then get a coupled system of differential equations for z00
and z±11 of the form

z̈00 = −ω(z00)
2(z11)Tz−11

ε2
∇q0ω(z00)−∇q0U(z00 , 0) +O(ε)

ż±11

ε
= −∇q0ω(z00)Tż00

2ω(z00)

z±11

ε
+O(ε),

where the O(ε)-terms contain higher derivatives that have to be eliminated re-
cursively. The first equation is obtained by equating the non oscillating terms,
and the second equation is obtained by equating the coefficients of eikφ(t)/ε

with |k| = 1 and using the relation (2.3) for substituting φ̇(t) and φ̈(t). For all
other coefficient functions zkj we get algebraic relations. Since φ(0) = 0, initial
values for the differential equations are obtained from∑

|k|≤N+1

zk(0) = q(0),
∑

|k|≤N+1

(
żk(0) + ikzk(0)

φ̇(0)

ε

)
= q̇(0). (2.7)
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From our assumption (1.3) on the initial values we get z00(0) = O(1), ż00(0) =
O(1), and z±11 (0) = O(ε). This implies the bounds (2.4) for z00 and z±11 .

Compared with the case of a constant high frequency, we now have addi-
tional terms with a factor ε−2 appearing on the right-hand side of (2.6). These
terms change the bounds that we get for the functions zkj . With the arguments

used for the constant frequency case we get z01 = O(ε2) and z10 = O(ε3), but
for |k| ≥ 2 we only obtain zk = O(εk) instead of O(εk+2). The fact that z20
does not have a better bound than O(ε2) is seen from the equation

−4
ω(z00)2

ε2
z20 = −ω(z00)∇q0ω(z00)

(z11)Tz11
ε2

+O(ε).

It remains to explain the improved bounds of (2.4). For z21 we obtain

−3
ω(z00)2

ε2
z21 = −2ω(z00)(∇q0ω(z00)Tz10) z11

ε2
+O(ε3).

which yields z21 = O(ε4). For z30 the right-hand side has two dominant terms
which are products with factors (z11 , z

1
1 , z

1
0) and (z01 , z

1
1 , z

2
0). They are both of

size O(ε5).
The proof of (2.4) now continues by induction on k. For zk0 the right-hand

side consists of a sum of products with factors (zα1
1 , zα2

1 , zα3
0 , . . . , zαm

0 ) with
m ≥ 2 and α1 + . . . + αm = k. If k is odd, then either one among α1 and α2

is even or one of the remaining αi is odd. In each case we get the improved
estimate zk0 = O(εk+2).

For zk1 the right-hand side consists of a sum of products with factors
(zα1

1 , zα2
0 , . . . , zαm

0 ) with m ≥ 2 and α1 + . . . + αm = k. If k is even, then
either α1 is even or one of the remaining αi is odd. In each case we get the
improved estimate zk1 = O(εk+2).

This construction yields a small defect of size O(εN ) when the expansion is
inserted into the differential equation (1.2). On a finite time interval 0 ≤ t ≤ T
this implies the stated error bounds (2.5) by the same arguments as in the
constant-frequency case. ut

The construction of the previous proof implies that the functions yk(t) =
zk(t) eikφ(t)/ε satisfy the second order differential equation

ÿk = − 1

ε2
∇−kV(y)−∇−kU(y) +O(εN ), (2.8)

where y = (yk)|k|≤N+1 is the vector of coefficient functions and

U(y) = U(y0) +

N+1∑
m=2

∑
s(α)=0

1

m!
U (m)(y0) yα, (2.9)

where the sum is over multi-indices α = (α1, . . . , αm), 0 < |αj | ≤ N + 1,
such that s(α) = α1 + . . . + αm = 0, and yα = (yα1 , . . . , yαm). The notation
∇−kU(y) indicates the partial derivative of U(y) with respect to y−k. The
function V(y) is defined like U(y) with U(q) replaced by V (q) = 1

2ω(q0)2|q1|2.
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3 Adiabatic invariant of the Hamiltonian system

The key to the existence of an adiabatic invariant is an invariance property of
the extended potentials U and V: with S(λ)y = (eikλyk)|k|≤N+1 we have

U
(
S(λ)y

)
= U(y) for all λ ∈ R.

This implies

0 =
d

dλ

∣∣∣
λ=0
U
(
S(λ)y

)
= −

∑
|k|≤N+1

ik(y−k)T∇−kU(y), (3.1)

and we have the same property for V(y). We multiply (2.8) with −(ik/ε)y−k,
which is O(1) by (2.4), and sum over k. Hence, the expression

I(y, ẏ) = − i

ε

∑
|k|≤N+1

k(y−k)Tẏk (3.2)

satisfies
d

dt
I
(
y(t), ẏ(t)

)
= O(εN ). (3.3)

We then obtain the following extension of Theorem XIII.6.2 of [14] to a state-
dependent high frequency.

Theorem 3.1 Under the assumptions of Theorem 2.1,

I
(
y(t), ẏ(t)

)
= I

(
y(0), ẏ(0)

)
+O(εN )

I
(
y(t), ẏ(t)

)
= I

(
q(t), q̇(t)

)
+O(ε).

The constants symbolised by O are independent of ε and t with 0 ≤ t ≤ T , but
depend on N and T .

Proof The first statement follows from (3.3). Differentiating yk = zkeikφ/ε

with respect to t and using (2.4) yields

ẏk =
(
żk + i

kφ̇

ε
zk
)

eikφ/ε = i
kω(z00)

ε
yk +O(εk),

which inserted into the definition of I gives

I(y, ẏ) =
∑

|k|≤N+1

k2
(ω(z00)

ε2
|yk|2 +O(εk)

)
= 2

ω(z00)

ε2
|y1|2 +O(ε).

Inserting the modulated Fourier expansion into I(q, q̇) shows that the domi-
nant term is the same as for I(y, ẏ). ut

Patching together many short intervals of length O(1), Theorems 2.1 and
3.1 yield the following long-time result in the same way as in the proof of
Theorem XIII.6.3 of [14].
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Theorem 3.2 If the solution q(t) of (1.2) stays in a compact set for 0 ≤ t ≤
ε−N , then

I
(
q(t), q̇(t)

)
= I
(
q(0), q̇(0)

)
+O(ε) +O(tεN ).

The constants symbolised by O are independent of ε and t with 0 ≤ t ≤ ε−N ,
but depend on N . ut

The long-time adiabatic invariance of the actions (even over times expo-
nentially long in 1/ε) was previously proved by Reich [18] in the case of a
single fast degree of freedom (d1 = 1) using results from Hamiltonian pertur-
bation theory. For the case of time-dependent frequencies ω(t)/ε a proof via
modulated Fourier expansions is given in [20].

4 Modulated Fourier expansion for the Störmer–Verlet method

The Störmer–Verlet or leapfrog method (see, e.g., [13,14]) for a second-order
differential equation q̈ = f(q), when used with stepsize h, determines position
approximations qn ≈ q(nh) via the two-step formula

qn+1 − 2qn + qn−1 = h2f(qn). (4.1)

The velocity (or momentum) approximation pn ≈ q̇(nh) is obtained from

pn =
1

2h

(
qn+1 − qn−1

)
. (4.2)

As is well-known, the method admits a one-step formulation, which makes it a
symplectic method in the Hamiltonian case where f(q) is the negative gradient
of a potential, as in (1.2).

In analogy to the exact solution of (1.2), we consider a modulated Fourier
expansion

qn ≈
∑
k∈Z

zk(t) eikφ(t)/ε =
∑
k∈Z

yk(t), t = nh, (4.3)

for the numerical solution of the Störmer–Verlet method (4.1). We use the
same symbols zk(t) and φ(t) for the numerical coefficient functions and phase
function, respectively, which now depend on h and η = h/ε.

Theorem 4.1 Consider the numerical solution qn of the Störmer–Verlet method
applied to (1.2) with initial values satisfying the bounded energy condition
(1.3). Suppose that, for 0 ≤ nh ≤ T , qn = (qn,0, qn,1) stays in a compact
set K and

h

ε
ω(qn,0) ≤ 2 sin

( π

N + 2

)
(4.4)

for some odd integer N ≥ 1. Then the numerical solution admits an expansion

qn =
∑

|k|≤N+1

zk(t) eikφ(t)/ε +RN (t), t = nh, (4.5)
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where z
±(N+1)
1 (t) = 0, and the phase function satisfies

sin
( h

2 ε
φ̇(t)

)
=

h

2 ε
ω
(
z00(t)

)
and φ(0) = 0. (4.6)

The functions zk(t) =
(
zk0 (t), zk1 (t)

)
together with their derivatives (up to ar-

bitrary order M) are bounded by

zk0 =

{
O(εk) for k even

O(εk+2) for k odd
zk1 =

{
O(εk+2) for k even

O(εk) for k odd
(4.7)

for k = 0, . . . , N + 1. Moreover, z−k = zk for all k. The remainder term is
bounded by

RN (t) = O(t2εN ) for 0 ≤ t = nh ≤ T. (4.8)

With this bound, the functions zkj are unique up to terms of size O(εN+2).
The constants symbolised by the O-notation are independent of ε, h and t with
0 ≤ t ≤ T , but they depend on N , T , the constants in (1.3), on bounds of
derivatives of ω(q0) and U(q0, q1) on K, and on the maximum order M of
considered derivatives of zk(t).

Proof We aim to approximate

qn+1 − 2qn + qn−1 ≈
∑

|k|≤N+1

(
yk(t+ h)− 2yk(t) + yk(t− h)

)
,

where yk(t) = zk(t)eikφ(t)/ε with smooth functions zk(t) and φ(t). We expand
yk(t+ h) as (using η = h/ε)

yk(t+h) =
(
zk(t)+hżk(t)+

h2

2
z̈k(t)+ . . .

)
eikφ(t)/εeikηφ̇(t)

(
1+ikη

h

2
φ̈(t)+ . . .

)
.

With the notation δ2hy
k(t) =

(
yk(t + h) − 2yk(t) + yk(t − h)

)
/h2 we have

δ2hy
0(t) = δ2hz

0(t) = z̈0(t)+O(h2) for k = 0. Using the identity eix+e−ix−2 =
4 sin2(x/2) we obtain for k 6= 0, omitting the argument t,

δ2hy
k =

1

h2

(
4 sin2

(kηφ̇
2

)
zk + 2ih sin

(
kηφ̇

)
żk + ikηh cos

(
kηφ̇

)
φ̈zk + . . .

)
eikφ/ε.

Similar to our procedure for the exact solution, we insert this expression into
the numerical scheme, we expand the nonlinearities around the non-oscillatory
part z0(t), and we compare the coefficients of eikφ(t)/ε. As in the proof of
Theorem 2.1 this yields differential and algebraic relations for the coefficient
functions zk(t) =

(
zk0 (t), zk1 (t)

)
and for φ(t).

Replacing in the expression for δ2hy
1 the factor h−2 by η−2ε−2 and then

equating the ε−2 terms in the part of the Störmer–Verlet scheme corresponding
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to the second equation of (1.2), yields the relation (4.6). For z00 and z±11 we
get the coupled system of differential equations

z̈00 = −ω(z00)
2(z11)Tz−11

ε2
∇q0ω(z00)−∇q0U(z00 , 0) +O(ε)

ż±11

ε
= −∇q0ω(z00)Tż00

2ω(z00)

z±11

ε

(
1− η2

2 ω(z00)2

1− η2

4 ω(z00)2

)
+O(ε),

which up to the O(ε) terms and the factor in big brackets are identical to
those for the exact solution. The initial values for the differential equations
of z00 and z±11 are determined from the condition that the equation (4.5) is
satisfied without remainder term for t = 0 and t = h.

For k 6= 0 the coefficient of zk0 in δ2hy
k
0 is 4h−2 sin2(kηφ̇/2). The coefficient

of zk1 in δ2hy
k
1 − ε−2ω(z00)2yk1 equals, using (4.6),

4

h2
sin2

(kηφ̇
2

)
− ω(z00)2

ε2
=

4

h2
sin2

(kηφ̇
2

)
− 4

h2
sin2

(ηφ̇
2

)
=

4

h2
sin
( (k − 1)

2
ηφ̇
)

sin
( (k + 1)

2
ηφ̇
)
.

After the division by 4/h2, the coefficients of zk0 (with k 6= 0) and zk1 (with
k 6= ±1) are therefore

sin2
(k

2
ηφ̇
)

and sin
( (k − 1)

2
ηφ̇
)

sin
( (k + 1)

2
ηφ̇
)
, (4.9)

respectively. Since, by (4.4),

sin
(η

2
φ̇(t)

)
=
η

2
ω
(
z00(t)

)
=
η

2
ω(qn,0) +O(ε) ≤ sin

( π

N + 2

)
+O(ε)

for t = nh, we have η
2 φ̇(t) ≤ π

N+2 + O(ε), so that the first factor of (4.9)
is bounded away from 0 for |k| ≤ N + 1, and the second factor is bounded

away from 0 for |k| ≤ N . Since we assumed z
±(N+1)
1 = 0, this allows us to

construct the functions zk for |k| ≤ N + 1 in the same way as in the proof of
Theorem 2.1, with the same bounds.

We next consider the defect in (4.1) on inserting the sum of (4.5). Up
to terms of size O(εN+1) the defect consists of smooth functions multiplied

by eikφ̇/ε with |k| ≥ N + 1. By construction, the coefficient of e±i(N+1)φ̇/ε

vanishes in the 0-component of the defect. The coefficient of e±i(N+1)φ̇/ε in
the 1-component of the defect consists of a sum of products with factors
(zα1

1 , zα2
0 , . . . , zαm

0 ) with m ≥ 2 and α1 + . . .+ αm = ±(N + 1), divided by ε2.
If N is odd (i.e., N +1 even), then either α1 is even or one of the remaining αi
is odd. In each case we get a O(εN+1) bound for the coefficient of e±i(N+1)φ̇/ε

in the 1-component of the defect. The coefficients of eikφ̇/ε with |k| ≥ N + 2
are bounded by O(εN ).
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We thus obtain a small defect of size O(εN ) when the expansion is inserted
into the Störmer–Verlet scheme (4.1). On a finite time interval 0 ≤ t ≤ T this
implies the stated error bounds (4.8) by the same arguments as in the constant-
frequency case. ut

The construction of the previous proof implies that the functions yk(t) =
zk(t) eikφ(t)/ε satisfy the second order difference equation, with the notation
δ2hy

k(t) =
(
yk(t+ h)− 2yk(t) + yk(t− h)

)
/h2,

δ2hy
k(t) = − 1

ε2
∇−kV

(
y(t)

)
−∇−kU

(
y(t)

)
+O(εN ), (4.10)

where y = (yk)|k|≤N+1 is the vector of coefficient functions and the extended
potentials U(y) and V(y) are the same as in Section 2.

5 Adiabatic invariant of the Störmer–Verlet method

We consider the modulated Fourier expansion on an interval of length O(h),
where we can replace the coefficient functions zk(t) and the phase function φ(t)
of (4.6) by Taylor polynomials of degree M ≥ N + 3. Because of h = O(ε),
this keeps the defect in (4.10) of size O(εN ), and the remainder RN (t) in (4.5)
of size O(t2εN ). We will show that the modulated Fourier expansion has two
almost-invariants Ih[z](t) and Hh[z](t), where this notation indicates that the
expression depends on zk(t), żk(t), . . . , (zk)(M)(t) for |k| ≤ N + 1.

We introduce the modified frequency

ωh(q0) = ω(q0)

√
1−

(hω(q0)

2ε

)2
and the corresponding modified action

Ih(q, p) =
1

2

|p1|2

ωh(q0)
+
ωh(q0)

2 ε2
|q1|2. (5.1)

Theorem 5.1 Under the assumptions of Theorem 4.1, there exists an almost-
invariant Ih[z](t) of the modulated Fourier expansion, such that

Ih[z](t) = Ih[z](0) +O(tεN ) for 0 ≤ t ≤ h

Ih[z](nh) = Ih(qn, pn) +O(ε) for n = 0, 1.

The constants symbolised by O are independent of ε and h, but depend on N
and M .

In the proof we will use the following auxiliary result.
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Lemma 5.1 Let ϕ(τ) be a polynomial in τ of degree d ≥ 2 with real coeffi-
cients bounded by B, let 0 < ε ≤ 1 and set

f(τ) = eiϕ(τ)/ε.

Let m ≥ 2 be an integer. Then,

1

m!
f (m)(0) =

1

m!

( iϕ̇(0)

ε

)m
eiϕ(0)/ε +

rm
εm

with

|rm| ≤ Ccm
( ε

m!
+
εm(d−1)/d

(m/d)!

)
,

where C and c depend only on B and d (and are, in particular, independent
of ε and m).

Proof We consider the first terms in the Taylor expansion of ϕ(τ) and write

ϕ(τ) = ϕ(0) + τϕ̇(0) + τ2ψ(τ).

With the entire complex function

g(τ) = ei(ϕ(0)+τϕ̇(0))/ε
eiτ

2ψ(τ)/ε − 1

τ2/ε

we then have

f(τ) = ei(ϕ(0)+τϕ̇(0))/ε +
τ2

ε
g(τ)

and hence
rm
εm

=
1

m!

dm

dτm

∣∣∣
τ=0

(τ2
ε
g(τ)

)
.

By Cauchy’s estimates, the derivatives of g are bounded, for arbitrary radius
R > 0, by

|g(m(0)|
m!

≤ Mg(R)

Rm
with Mg(R) = max

|τ |=R
|g(τ)|,

and we note that

Mg(R) =

{
O(εecR

d/ε) for R ≥ 1

O(ecR/ε) for R ≤ Const.

We optimise R in dependence of m, which leads us to choose

Rd =
mε

cd
if

mε

cd
≥ 1, and R =

mε

c
else.

This choice yields the bound

|g(m)(0)|
m!

≤ Cem
( c

mε

)m
+ Cεem/d

( cd
mε

)m/d
,

which together with the Stirling formula for factorials and the Leibniz formula
for the higher derivatives of products of functions yields the stated result. ut
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Proof (of Theorem 5.1). As explained before, we can assume that the coeffi-
cient functions zk(t) and the phase function φ(t) are polynomials of degree at
most M . Hence, yk(t) = zk(t)eikφ(t) is an entire analytic function of t.

We multiply (4.10) with −iky−k/ε, and sum over k. Using the invariance
property (3.1) of U and V, we obtain

− i

ε

∑
|k|≤N+1

k y−k(t)T δ2hy
k(t) = O(εN ).

Since yk is an entire function, it has a convergent Taylor expansion

δ2hy
k(t) =

∑
`≥0

2h2`

(2`+ 2)!

d2`+2

dt2`+2
yk(t).

With the fourth of the “magic formulas” on p. 508 of [14] we therefore have
(omitting the superscript k on yk)

Im
(
yT δ2hy

)
=
∑
`≥0

2h2`

(2`+ 2)!
Im
(
yTy(2`+2)

)
=
∑
`≥0

2h2`

(2`+ 2)!
Im

d

dt

(
yTy(2`+1) − ẏTy(2`) + · · · ± y(`)Ty(`+1)

)
=

d

dt

∑
`≥0

2h2`

(2`+ 2)!
Im
(
yTy(2`+1) − ẏTy(2`) + · · · ± y(`)Ty(`+1)

)
,

where interchanging the derivative with the infinite sum is justified by the
analyticity of the functions. Each of the products dr

dtr (y−k)T ds

dts y
k can be writ-

ten as a smooth function of zk and its derivatives and of the derivatives of φ,
which are expressed as functions of z00 and its derivatives by (4.6). Note that
φ(t) does not appear, since it cancels in the products. We then obtain that
there is a smooth function Ih[z](t) such that

d

dt
Ih[z](t) = − i

ε

∑
|k|<N

k y−k(t)T δ2hy
k(t) = O(εN ).

Integrating this equation yields the first statement of the theorem.

For the proof of the second statement we elaborate the dominant term of
Ih[z](t). We fix t and consider yk(t + τ) = zk(t + τ)eikφ(t+τ)/ε. For k 6= 0,
Lemma 5.1 and the bounds (4.7) give us

1

m!

dm

dtm
yk(t) =

1

m!
zk(t)

( ik

ε
φ̇(t)

)m
eikφ(t)/ε+O

( 1

(m/M)!

( c
ε

)m−1−|k|)
, (5.2)

where c and the constant symbolised by O are independent of m ≥ 1 and ε.
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Inserting (5.2) into (−1)r dr

dtr (y−k)T ds

dts y
k, the dominant term is seen to be

the same whenever r+ s = 2`+ 1 and hence, omitting the superscript k in yk,
we obtain

2

(2`+ 2)!

(
y(t)

T
y(2`+1)(t)− ẏ(t)

T
y(2`)(t) + · · · ± y(`)(t)

T
y(`+1)(t)

)
=

2

(2`+ 2)!
(`+ 1)

( ik

ε
φ̇(t)

)2`+1

|zk(t)|2 +O
( 1

(`/M)!

( c
ε

)2`−2|k|)
.

This gives us

Ih[z](t) = − i

ε

∑
0<|k|≤N+1

( ik

h
|zk(t)|2

∑
`≥0

(−1)`

(2`+ 1)!

(kh
ε
φ̇(t)

)2`+1

+O(ε2|k|)
)

=
1

εh

∑
0<|k|≤N+1

(
k|zk(t)|2 sin

(kh
ε
φ̇(t)

)
+O(hε2|k|)

)
=

2

εh
|z1(t)|2 sin

(h
ε
φ̇(t)

)
+O(ε).

Using (4.6) and the definition of the modified frequency to obtain

sin
(h
ε
φ̇(t)

)
= 2 sin

( h
2ε
φ̇(t)

)
cos
( h

2ε
φ̇(t)

)
=
h

ε
ωh
(
z00(t)

)
,

this finally becomes

Ih[z](t) = 2ωh(z00(t))
|z1(t)|2

ε2
+O(ε). (5.3)

To complete the proof of the second statement we also have to elaborate
the dominant term of Ih(qn, pn). From Theorem 4.1 we get for the velocity
approximation pn of (4.2) the modulated Fourier expansion at t = tn,

pn =
1

2h

∑
|k|≤N+1

(
yk(t+ h)− yk(t− h)

)
+O(hεN ),

where yk(t) = zk(t)eikφ(t)/ε are the coefficient functions of Theorem 4.1 corre-
sponding to starting approximations qn−1 and qn. Expanding the expression
into a (convergent) Taylor series around h = 0 and using (5.2), we obtain for
the second component of pn = (pn,0, pn,1) that

pn,1 =
1

2h

∑
|k|≤N+1

∑
`≥0

2h2`+1

(2`+ 1)!

d2`+1

dt2`+1
yk1 (t) +O(hεN )

=
i

h

∑
|k|≤N+1

(
zk1 (t)eikφ(t)/ε

∑
`≥0

(−1)`

(2`+ 1)!

(kh
ε
φ̇(t)

)2`+1

+O(hε|k|)

)

=
i

h

(
z11(t)eiφ(t)/ε − z−11 (t)e−iφ(t)/ε

)
sin
(h
ε
φ̇(t)

)
+O(ε)

=
i

ε

(
z11(t)eiφ(t)/ε − z−11 (t)e−iφ(t)/ε

)
ωh(z00(t)) +O(ε).
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This yields

|pn,1|2 =
1

ε2

∣∣∣z11(t)eiφ(t)/ε − z−11 (t)e−iφ(t)/ε
∣∣∣2ωh(z00(t))2 +O(ε). (5.4)

From Theorem 4.1 we have

|qn,1|2 =
∣∣∣z11(t)eiφ(t)/ε + z−11 (t)e−iφ(t)/ε

∣∣∣2 +O(ε3). (5.5)

Using qn,0 = z00(t) +O(ε3) this yields, with yk1 (t) = zk1 (t)eikφ(t)/ε at t = tn,

Ih(qn, pn) =
1

2

|pn,1|2

ωh(qn,0)
+
ωh(qn,0)

2ε2
|qn,1|2

=
ωh
(
z00(t)

)
2ε2

(∣∣y11(t)− y−11 (t)
∣∣2 +

∣∣y11(t) + y−11 (t)
∣∣2)+O(ε)

=
ωh
(
z00(t)

)
ε2

· 2
∣∣y11(t)

∣∣2 +O(ε)

= Ih[z](t) +O(ε),

which completes the proof. ut

By patching together many short intervals, in the same way as in [14,
Sect. XIII.7], we obtain from Theorem 5.1 the following long-time near-conser-
vation result.

Theorem 5.2 Under the conditions of Theorem 4.1,

Ih(qn, pn) = Ih(q0, p0) +O(ε) for 0 ≤ nh ≤ ε−N+1,

where the constant symbolised by O is independent of n, h, ε, but depends on N .

Remark 5.1 The numerical experiments of [3] show that with

hω

2ε
= sin

( π

N + 1

)
, i.e., sin

(hφ̇
2ε

)
= sin

( π

N + 1

)
the error in the adiabatic invariant in the constant-frequency case does not
behave more favourably than O(ε) + O(tεN ), as is illustrated for N = 2, 3.
Condition (4.4), which appears in Theorem 4.1, shows that in Theorem 5.2
little is lost in comparison with the constant-frequency case.



16 E. Hairer and Ch. Lubich

6 Energy conservation of the Störmer–Verlet method

We show that the Störmer–Verlet method nearly conserves a modified energy
over long times. We note that the total energy can be written as

H(q, p) = ω(q0)I(q, p) + 1
2 |p0|

2 + U(q),

and with another modified frequency

ω̃h(q0) =
2ε

h
arcsin

( h
2ε
ω(q0)

)
we consider the modified energy

Hh(q, p) = ω̃h(q0)Ih(q, p) + 1
2 |p0|

2 + U(q). (6.1)

Theorem 6.1 Under the assumptions of Theorem 4.1, there exists an almost-
invariant Hh[z](t) of the modulated Fourier expansion, such that

Hh[z](t) = Hh[z](0) +O(tεN ) for 0 ≤ t ≤ h

Hh[z](nh) = Hh(qn, pn) +O(ε) for n = 0, 1.

The constants symbolised by O are independent of ε and h, but depend on N
and M .

Proof The proof proceeds similarly to that of Theorem 5.1. We can again
assume that the coefficient functions zk(t) and the phase function φ(t) are
polynomials, so that yk(t) = zk(t)eikφ(t) is an entire analytic function of t.

We multiply (4.10) with ẏ−k and sum over k to obtain∑
|k|≤N+1

ẏ−k(t)T δ2hy
k(t) = − d

dt

( 1

ε2
V(y) + U(y)

)
+O(εN ).

With the first of the “magic formulas” on p. 508 of [14] we have (omitting the
superscript k on yk)

Re
(
ẏ
T
δ2hy
)

=
∑
`≥0

2h2`

(2`+ 2)!
Re
(
ẏ
T
y(2`+2)

)
=
∑
`≥0

2h2`

(2`+ 2)!
Re

d

dt

(
ẏ
T
y(2`+1) − ÿTy(2`) + · · · ∓ y(`)

T
y(`+2) ± 1

2y
(`+1)

T
y(`+1)

)
=

d

dt

∑
`≥0

2h2`

(2`+ 2)!
Re
(
ẏ
T
y(2`+1) − ÿTy(2`) + · · · ∓ y(`)

T
y(`+2) ± 1

2y
(`+1)

T
y(`+1)

)
.

Each of the products dr

dtr (y−k)T ds

dts y
k can be written as a smooth function

of zk and its derivatives and of the derivatives of φ, which are expressed as
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functions of z00 and its derivatives by (4.6). We then obtain that there is a
smooth function Kh[z](t) such that

d

dt
Kh[z](t) = − d

dt

( 1

ε2
V(z) + U(z)

)
+O(εN ).

Integrating this equation yields the first statement of the theorem for

Hh[z] = Kh[z] +
1

ε2
V(z) + U(z).

Inserting (5.2) into (−1)r−1 dr

dtr (y−k)T ds

dts y
k for k 6= 0, the dominant term is

seen to be the same whenever r+s = 2`+2 and hence, omitting the superscript
k in yk and omitting henceforth the argument t, we have

2

(2`+ 2)!

(
ẏ
T
y(2`+1) − ÿTy(2`) + · · · ± 1

2y
(`+1)

T
y(`+1)

)
= − 2

(2`+ 2)!
(`+ 1

2 )
( ik

ε
φ̇
)2`+2

|zk|2 +O
( 1

(`/M)!

( c
ε

)2`+1−2|k|)
.

This gives

Kh[z] = 1
2 |ż

0|2 −
∑

0<|k|≤N+1

(∑
`≥0

2h2`

(2`+ 2)!
(`+ 1

2 )
( ik

ε
φ̇
)2`+2

|zk|2 +O(ε2|k|−1)

)

= 1
2 |ż

0|2 +
∑

0<|k|≤N+1

k

ε
φ̇
|zk|2

h

∑
`≥0

(−1)`

(2`+ 1)!

(kh
ε
φ̇
)2`+1

+
∑

0<|k|≤N+1

|zk|2

h2

∑
`≥0

(−1)`+1

(2`+ 2)!

(kh
ε
φ̇
)2`+2

+O(ε)

= 1
2 |ż

0|2 +
2|z1|2

εh
φ̇ sin

(h
ε
φ̇
)
− 2|z1|2

h2

(
1− cos

(h
ε
φ̇
))

+O(ε)

= 1
2 |ż

0|2 +
2|z1|2

ε2
ω̃h(z00)ωh(z00)− |z

1|2

ε2
ω(z00)2 +O(ε)

= 1
2 |ż

0
0 |2 + ω̃h(z00) Ih[z]− 1

ε2
V(z) +O(ε),

where in the second line we split (`+ 1
2 ) = (`+ 1)− 1

2 , in the last-but-one line
we use the definitions of the modified frequencies ωh, ω̃h, and (4.6) in

1− cos
(h
ε
φ̇
)

= 2 sin
( h

2ε
φ̇
)2

= 2
( h

2ε

)2
ω(z00)2,

and in the last line we use (5.3) and the definition of V together with the
bounds (4.7), which give

V(z) = ω(z00)2|z11 |2 +O(ε3).

We thus obtain

Hh[z] = ω̃h(z00) Ih[z] + 1
2 |ż

0
0 |2 + U(z0) +O(ε),

and with Theorem 5.1 this yields the second statement of the theorem. ut



18 E. Hairer and Ch. Lubich

0 50 100

−1.0

−.5

.0

.5

0 50 100

−1.0

−.5

.0

.5

5 10
.0

.5

1.0

1.5

2.0

0 50 100

−.03

.00

.03

.06

0 50 100

−.03

.00

.03

.06

H(qn, pn)

I(qn, pn)

Hh(qn, pn)

Ih(qn, pn)

Fig. 7.1 Numerical experiment of Section 7. The pictures show the Hamiltonian H, the
action I, as well as the modified Hamiltonian Hh and the modified action Ih along the
numerical solution obtained with stepsizes h = ε = 0.01 (grey) and h = ε/2 (black). The
picture in the middle shows the scaled frequency hω(q0)/ε as a function of time for both
stepsizes. The horizontal lines indicate positions of numerical resonance.

As before, this leads to a long-time near-conservation result along the lines
of [14, Sect. XIII.7].

Theorem 6.2 Under the conditions of Theorem 4.1,

Hh(qn, pn) = Hh(q0, p0) +O(ε) for 0 ≤ nh ≤ ε−N+1,

where the constant symbolised by O is independent of n, h, ε, but depends on N .

7 Numerical experiment

We consider the problem of [14, Section I.5.1], where we replace the constant
frequency ω by ω(q0)/ε =

(
1 + sin2(q01)

)/
ε (q01 denotes the first component
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of the vector q0). We put ε = 0.01 and we apply the Störmer–Verlet method
(4.1) once with stepsize h = ε, and once with stepsize h = ε/2.

The upper two pictures of Figure 7.1 show the deviation of the Hamilto-
nian H and that of the action I along the numerical solution. For the larger
stepsize h = ε the result is drawn in grey, whereas that for h = ε/2 is in black.
The lower two pictures present the analogous results for the modified Hamil-
tonian Hh of (6.1) and the modified action Ih of (5.1). Notice the different
scale on the vertical axes. We see that the modified quantities are much better
conserved than the original ones. For the modified Hamiltonian we see a huge
improvement when passing from the larger to the smaller stepsize. No such im-
provement is observed for the modified action. This indicates that oscillations
of this size are already in the action along the analytical solution.

For completeness, we have drawn in the middle picture of Figure 7.1 the
function hω(q0)/ε along the numerical solution (again for both stepsizes). For
the larger stepsize h = ε this value is at certain time instances very close
to 2 (for constant frequency the condition hω/ε < 2 is necessary for stability).
The horizontal broken lines indicate the positions where hω takes the values
2 sin(πr/k) for k = 3, . . . , 7 and r = 1, . . . , (k − 1)/2 (numerical resonance).
The smaller k, the thicker is the dashed line. We see that for the stepsize
h = ε/2 the restriction (4.4) is satisfied with N = 5.
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