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Abstract

The Adaptive Verlet method [7] and variants [6] are time-reversible schemes

for treating Hamiltonian systems subject to a Sundman time transformation.

These methods have been observed in computer experiments to exhibit superior

numerical stability when implemented in a counterintuitive \reciprocal" formu-

lation. Here we give a theoretical explanation of this behavior by examining the

leading terms of the modi�ed equation (backward error analysis) and those of

the asymptotic error expansion. With this insight we are able to improve the

algorithm by simply correcting the starting stepsize.
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1 Introduction

Consider a mechanical Hamiltonian system of the form

d

dt

q = M

�1

p; q(t

0

) = q

0

; (1)

d

dt

p = F (q); p(t

0

) = p

0

; (2)

where q; p 2 R

N

, M 2 R

N�N

is a positive de�nite matrix, and F = �r

q

V for

some smooth, real-valued potential function V . If di�erent time-scales are present in
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the solution of (1)-(2), an e�cient numerical treatment requires variable steps. An

alternative approach is to apply a time transformation of the form

dt

d�

= G(q; p);

with G a smooth, positive function (also called Sundman transformation) so that, by

viewing q and p as functions of the new variable � , the equations of motion become

d

d�

q = gM

�1

p; (3)

d

d�

p = gF (q); (4)

where g = G(q; p). Applying a numerical method with constant stepsize h to (3)-

(4) is essentially equivalent to applying the method with stepsize hg

n

to (1)-(2). If

G(q;�p) = G(q; p), the change of the time variable preserves the reversing symmetry

associated to (1)-(2), a property that has been found to be important for recovering

realistic qualitative behavior of the original system in numerical simulations [10, 8].

In this article we consider a variant of Verlet's method written in the form

q

n+1=2

= q

n

+

h

2

g

n

M

�1

p

n+1=2

; (5)

p

n+1=2

= p

n

+

h

2

g

n

F (q

n

); (6)

q

n+1

= q

n+1=2

+

h

2

g

n+1

M

�1

p

n+1=2

; (7)

p

n+1

= p

n+1=2

+

h

2

g

n+1

F (q

n+1

): (8)

Here h represents the �ctive timestep (i.e. stepsize in �), and the indices indicate the

timestep. The most obvious choice of g

n

is

g

n

= G(q

n

; p

n

); (9)

which, however, results in an implicit algorithm.

In order to avoid this implicitness, it was suggested in [7] to put g

0

= G(q

0

; p

0

),

and to update the time-scaling factor g from a two-term recurrence relation

	(g

n

; g

n+1

; q

n

; q

n+1=2

; q

n+1

; p

n

; p

n+1=2

; p

n+1

) = 0

with symmetry preserving 	. Obviously, the latter equation has to be consistent with

the equation g(�

n

) = G(q(�

n

); p(�

n

)) in the limit of small h.

A natural choice of 	 is

	 = g

n+1

+ g

n

� 2G(q

n+1=2

; p

n+1=2

); (10)

but in experiments this has been found to behave unreliably, particularly in the pres-

ence of large forces. A more robust approach is to use the corresponding equation for

the reciprocal of g [6],

	 =

1

g

n+1

+

1

g

n

�

2

G(q

n+1=2

; p

n+1=2

)

: (11)
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Various semi-explicit and implicit variants of Adaptive Verlet proposed in [7] also use

the reciprocal relation. Until now, the reason for this counterintuitive modi�cation of

the recurrence relation has not been explained. In Sect. 2, we study for the various

methods the leading terms of the modi�ed equation (backward error analysis) and

those of the asymptotic error expansions. Each of these has a (nonphysical) oscillating

part determined from a certain di�erential or algebraic equation; a simple analysis

of this leading oscillatory term explains the observed di�erences in stability of the

methods. As an outcome of this analysis, we show in Sect. 3 how the oscillations can

be attenuated by correcting the starting stepsize.

Another extension of the Verlet scheme to variable stepsizes has recently been

proposed independently in [3] and in [9]. In addition to being symmetric, it is a sym-

plectic method, but it has the disadvantage of being implicit in g

n+1

. A comparison

of the di�erent extensions is given in [1].

2 Backward Error Analysis and Asymptotic Expansions

For the choice g

n

= G(q

n

; p

n

), the method is a symmetric one-step method applied to

an ordinary di�erential equation. It is a classical result that the numerical solution can

then be formally written as the exact solution of a modi�ed di�erential equation, and

that the global error possesses an expansion in even powers of h (see [5, pp. 555-559]

and [4, Sect. II.8]).

We now turn to the more interesting case where g

n

is given by a two-term recursion,

which allows the algorithm to be completely explicit. The following theorem shows

that in this case the numerical solution is a superposition of a smooth function with

oscillatory terms. Such a phenomenon is similar to the weak instability of two-step

methods (see [4, Sect. III.9]).

Theorem 1 The numerical solution of the Adaptive Verlet method (5)-(8) can for-

mally be written as

q

n

=

e

q(�

n

)+(�1)

n

b

q(�

n

); p

n

=

e

p(�

n

)+(�1)

n

b

p(�

n

); g

n

=

e

g(�

n

)+(�1)

n

b

g(�

n

); (12)

where �

n

= nh and

e

q

0

=

e

gM

�1

e

p+ h

2

e

Q

2

(�) + : : : ;

b

q = h

2

b

Q

2

(�) + : : : ; (13)

e

p

0

=

e

gF (

e

q ) + h

2

e

P

2

(�) + : : : ;

b

p = h

2

b

P

2

(�) + : : : ; (14)

e

g = G(

e

q;

e

p ) + h

2

e

G

2

(�) + : : : ;

b

g

0

=

b

G(�) + h

2

b

G

2

(�) + : : : ; (15)

with uniquely determined initial values satisfying

q

0

=

e

q(0) +

b

q(0); p

0

=

e

p(0) +

b

p(0); g

0

=

e

g(0) +

b

g(0): (16)

All of the above expansions are formal and in even powers of h. The functions in

(13)-(15) depend only on

e

q;

e

p and

b

g. The functions

b

G;

b

G

2

; : : : and also

b

Q

2

;

b

P

2

; : : :

contain

b

g as factor, and

b

g(0) = O(h

2

).
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Remark. The right hand side of the di�erential equation for

b

g (15) contains

b

g as

a factor, and

b

g(0) = O(h

2

); these facts imply that

b

g(�) = O(h

2

) for � on compact

intervals. Since, the functions

b

Q

2

and

b

P

2

also contain

b

g as factor, we have in addition

b

q(�) = O(h

4

) and

b

p(�) = O(h

4

).

Proof. The idea is to insert (12) into the method (5)-(8), to expand, and to com-

pare like powers of h. This computation is signi�cantly simpli�ed if we exploit the

symmetric structure of the method and if we expand the resulting expressions around

� := �

n

+h=2. Neglecting terms of order O(h

4

) and those of the form O(h

2

b

q ), O(h

2

b

p ),

O(

b

q

2

), O(

b

q

b

p ), O(

b

p

2

)) and omitting the obvious argument � , we get

1

2

(p

n+1

+ p

n

) =

e

p+

h

2

8

e

p

00

� (�1)

n

h

2

b

p

0

+ : : :

h

4

(g

n

� g

n+1

) = �

h

2

4

e

g

0

+ (�1)

n

�

h

2

b

g +

h

3

16

b

g

00

�

+ : : : :

Using these and similar relations for other variables, we obtain for the intermediate

approximations q

n+1=2

and p

n+1=2

the expansions

p

n+1=2

=

1

2

(p

n+1

+ p

n

) +

h

4

�

g

n

F (q

n

)� g

n+1

F (q

n+1

)

�

=

e

p+

h

2

8

�

e

p

00

� 2(

e

g F (

e

q ))

0

�

(17)

�(�1)

n

h

2

�

b

p

0

�

b

gF (

e

q )�

e

gF

q

(

e

q )

b

q

�

+ (�1)

n

h

3

16

(

b

gF (

e

q ))

00

+ : : : ;

q

n+1=2

=

1

2

(q

n+1

+ q

n

) +

h

4

(g

n

� g

n+1

)M

�1

p

n+1=2

=

e

q +

h

2

8

�

e

q

00

� 2

e

g

0

M

�1

e

p+ 2

b

g

2

M

�1

F (

e

q )

�

� (�1)

n

h

2

�

b

q

0

�

b

gM

�1

e

p

�

(18)

+(�1)

n

h

3

16

�

b

gM

�1

e

p

00

+

b

g

00

M

�1

e

p� 2

b

g(

e

gM

�1

F (

e

q ))

0

�2

b

g

e

g

0

M

�1

F (

e

q )

�

+ : : : ;

where F

q

(q) denotes the derivative of F with repect to q, and

0

denotes the derivative

with respect to � . We now write the main formulas of the method (with the choice

(10) for g

n

) as

q

n+1

� q

n

=

h

2

(g

n

+ g

n+1

)M

�1

p

n+1=2

; (19)

p

n+1

� p

n

=

h

2

�

g

n

F (q

n

) + g

n+1

F (q

n+1

)

�

; (20)

1

2

(g

n+1

+ g

n

) = G(q

n+1=2

; p

n+1=2

): (21)

Inserting the relations (12) and (17)-(18), we get
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h

e

q

0

+

h

3

24

e

q

000

� (�1)

n

2

b

q + : : : (22)

= h

�

e

g +

h

2

8

e

g

00

� (�1)

n

h

2

b

g

0

�

M

�1

�

e

p+

h

2

8

(

e

p

00

� 2(

e

g F (

e

q ))

0

)

+(�1)

n

h

2

b

gF (

e

q )

�

+ : : : ;

h

e

p

0

+

h

3

24

e

p

000

� (�1)

n

2

b

p+ : : : (23)

= h

�

e

gF (

e

q ) +

b

gF

q

(

e

q )

b

q

�

+

h

3

8

(

e

gF (

e

q ))

00

� (�1)

n

h

2

2

(

b

gF (

e

q ))

0

+ : : : ;

e

g +

h

2

8

e

g

00

� (�1)

n

h

2

b

g

0

� (�1)

n

h

3

48

b

g

000

+ : : : (24)

= G(

e

q;

e

p ) +G

q

(

e

q;

e

p )(q

n+1=2

�

e

q ) +G

p

(

e

q;

e

p )(p

n+1=2

�

e

p ) + : : : ;

where G

q

and G

p

denote partial derivatives. Comparing the non-oscillating and os-

cillating parts in (22)-(24) yields equations for

e

q

0

;

e

p

0

;

e

g and

b

q;

b

p;

b

g

0

, respectively. The

higher derivatives appearing in the right-hand side have to be eliminated iteratively.

This gives the modi�ed equations (13)-(15). We obtain for example

b

G(

e

q;

e

p;

b

g ) = �

b

g

�

G

q

(

e

q;

e

p )M

�1

e

p+G

p

(

e

q;

e

p )F (

e

q )

�

: (25)

The algebraic relations for

b

q;

b

p;

e

g in (13)-(15) together with (16) constitute a set of six

equations for the unknowns

e

q(0);

b

q(0);

e

p(0);

b

p(0);

e

g(0);

b

g(0). By the implicit function

theorem they have a unique solution close to (q

0

; 0; p

0

; 0; g

0

; 0),which can be written

as a formal series in powers of h

2

.

Remark. For the choice (11) only the equations (21) and (24) have to be adapted,

and one gets

b

G(

e

q;

e

p;

b

g ) = +

b

g

�

G

q

(

e

q;

e

p )M

�1

e

p+G

p

(

e

q;

e

p )F (

e

q )

�

; (26)

instead of (25). For the more general situation

1

2

�

L(g

n+1

) + L(g

n

)

�

= L

�

G(q

n+1=2

; p

n+1=2

)

�

;

which includes (10) and (11) as special cases, we get

b

G(

e

q;

e

p;

b

g ) = �

b

g

�

1 +

L

gg

(

e

g )

e

g

L

g

(

e

g )

��

G

q

(

e

q;

e

p )M

�1

e

p+G

p

(

e

q;

e

p )F (

e

q )

�

: (27)

Corollary 2 (Asymptotic Expansions) The functions

e

q(�),

b

q(�),

e

p(�),

b

p(�),

e

g(�),

b

g(�) of Theorem 1 all have asymptotic expansions in even powers of h. In

particular,

e

g(�) = g(�) + h

2

g

2

(�) +O(h

4

);

b

g(�) = h

2

b

g

2

(�) + h

4

b

g

4

(�) +O(h

6

); (28)

where g(�) = G(q(�); p(�)) with (q(�); p(�)) the solution of (3)-(4).
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For the choice (10) of g

n

with G(q) only depending on q,

b

g

2

(�) =

G(q

0

)

2

8g(�)

�

G(q

0

)G

qq

(q

0

)(M

�1

p

0

;M

�1

p

0

) + 2(G

q

(q

0

)M

�1

p

0

)

2

�

; (29)

and for the choice (11) we have:

b

g

2

(�) =

g(�)

8

G(q

0

)G

qq

(q

0

)(M

�1

p

0

;M

�1

p

0

): (30)

Proof. We insert the formulas (28) and similar equations for

e

q(�),

b

q(�),

e

p(�),

b

p(�)

into the modi�ed di�erential-algebraic system (13)-(15), then compare like powers of

h. This yields di�erential equations for

e

q

2i

(�),

e

p

2i

(�),

b

g

2i

(�), and algebraic relations

for

b

q

2i

(�),

b

p

2i

(�),

e

g

2i

(�). A straightforward computation gives (for (10)):

g

2

(�) = �

1

8

g

00

(�) +G

q

(q(�); p(�))

�

1

8

q

00

(�) + q

2

(�)�

1

4

g

0

(�)M

�1

p(�)

�

+G

p

(q(�); p(�))

�

p

2

(�)�

1

8

p

00

(�)

�

; (31)

b

g

2

0

(�) = �

b

g

2

(�)g

0

(�)=g(�): (32)

The di�erential equation (32) can be solved for

b

g

2

(�), and we obtain

b

g

2

(�)g(�) =

b

g

2

(0)g(0). Since q

2

(0) = p

2

(0) = 0, we get g

2

(0) from (31) and then

b

g

2

(0) from (16).

This yields the formula (29) for

b

g

2

(�). Formula (30) is obtained in the same way.

Example 1 For an illustration of the oscillatory terms in the numerical solution and

in the stepsizes we consider the problem

q

0

= p; p

0

= �1=q

2

; G(q) = q

2

;

with initial values q

0

= 1; p

0

= �2. We apply the adaptive Verlet method with �ctive

stepsize h = 0:08. The picture on the left in Fig. 1 shows the values of g

n

as a function

of the time t

n

, (i) for the choice (10) (indicated by small circles), and (ii) for the choice

(11) (small squares). The second and third pictures of Fig. 1 show the values g

n

�g(t

n

)

together with the smooth curves �h

2

b

g

2

(t). For the choice (10) we observe increasing

oscillations, and for t � 0:22 the numerical solution becomes meaningless and the

stepsizes hg

n

even become negative. We have joined consecutive points of fg

n

g by

a polygon in order to better illustrate this phenomenon. For the choice (11) the

oscillations are very small (they can be observed only in the scale of the third picture)

and they are decreasing. This can be explained by the fact that

b

g

2

(t) is inversely

proportional to g(t) for the choice (10), whereas it is proportional to g(t) for the

choice (11), and g(t) = q(t)

2

is approaching zero. The second and third pictures show

excellent agreement of g

n

with the expansion g(t

n

)+h

2

g

2

(t

n

)+(�1)

n

h

2

b

g

2

(t

n

)+O(h

4

),

even for the rather large value h = 0:08 (observe that in the last two pictures the term

h

2

g

2

(t) is not included in the smooth function).
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−.01

Figure 1: The values of g

n

(left picture) and g

n

� g(t

n

) (second and third pictures) as

a function of time t

n

; circles indicate the results for the choice (10), and squares for

the choice (11).

3 Elimination of the Dominant Oscillatory Terms

In the proof of Corollary 2, we have seen that the function

b

g

2

(�) is the solution

of a linear autonomous di�erential equation. If we are able to achieve

b

g

2

(0) = 0,

the function

b

g

2

(�) will remain zero for all � and the dominant term in

b

g(�) will be

eliminated, implying

b

g(�) = O(h

4

). Since

b

g is a factor in the algebraic relations

(13)-(14) for

b

q and

b

p, this will also imply that

b

q(�) = O(h

6

) and

b

p(�) = O(h

6

).

The idea is to use

g

0

= G(q

0

; p

0

) + �

2

h

2

+ �

4

h

4

+ : : : (33)

for the initial stepsize instead of g

0

= G(q

0

; p

0

). Such a choice neither a�ects the

modi�ed di�erential-algebraic system (13)-(15) nor the relations (16) for its initial

values. If (33) is an expansion in even powers of h, the symmetry of the method will

not be destroyed. If g

0

is computed from (33), the value of

b

g

2

(0) is given by

�

2

= g

2

(0) +

b

g

2

(0):

Therefore, the choice �

2

= g

2

(0) with g

2

(0) given by (31) implies

b

g

2

(0) = 0.

Example 2 For the problem of Example 1 it is not di�cult to compute g

2

(0) from

(31). We have g

2

(0) = �5 for the choice (10) and g

2

(0) = �1 for (11). With the

same �ctive stepsize h = 0:08 and with the same initial values as before we apply the

adaptive Verlet scheme, but we use g

0

= G(q

0

) + h

2

g

2

(0) instead of g

0

= G(q

0

). The

result is shown in Fig. 2. The values of g

n

(�rst picture) and g

n

� g(t

n

) for the choice

(10) (second picture) still show an oscillating behaviour, but the magnitude of the

oscillations is smaller and proportional to h

4

. For the choice (11) (small squares) the

oscillations are completely eliminated.

For general problems, the computation of the value g

2

(0) with the help of a for-

mula like (31) can be cumbersome, in particular if G also depends on p. It is of

course possible to use automatic di�erentiation [2]. Another possibility is to apply

the adaptive Verlet scheme with g

0

= G(q

0

; p

0

) two steps with positive �ctive stepsize

7
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Figure 2: The same interpretation as in Fig. 1, but with g

0

= G(q

0

) +h

2

g

2

(0) instead

of g

0

= G(q

0

).

� and two steps with �� (for � something like � � eps

1=4

, where eps is the machine

precision, the roundo� and truncation errors are of the same order). From the values

g

�2

; g

�1

; g

0

; g

1

; g

2

, obtained in this way, we then compute the fourth central di�erence

�

4

= g

�2

� 4g

�1

+ 6g

0

� 4g

1

+ g

2

;

which eliminates the smooth terms up to order four and yields �

4

= 16�

2

b

g

2

(0)+O(�

4

).

With the starting stepsize

g

0

= G(q

0

; p

0

)�

h

2

16 �

2

�

4

(34)

we therefore eliminate the dominant oscillatory terms. We repeated the numerical

experiment of Example 2 with g

0

from (34) and observed the same e�ect as with

g

0

= G(q

0

) + h

2

g

2

(0).
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