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We analyse the eigenvectors of the adjacency matrix of the Erdős-Rényi graph G(N, d/N) for√
logN � d . logN . We show the existence of a localized phase, where each eigenvector is

exponentially localized around a single vertex of the graph. This complements the completely
delocalized phase previously established in [12]. For large enough d, we establish a mobility edge
by showing that the localized phase extends up to the boundary of the delocalized phase. We
derive explicit asymptotics for the localization length up to the mobility edge and characterize
its divergence near the phase boundary.
The proof is based on a rigorous verification of Mott’s criterion for localization, comparing
the tunnelling amplitude between localization centres with the eigenvalue spacing. The first
main ingredient is a new family of global approximate eigenvectors, for which sharp enough
estimates on the tunnelling amplitude can be established. The second main ingredient is a
lower bound on the spacing of approximate eigenvalues. It follows from an anticoncentration
result for these discrete random variables, obtained by a recursive application of a self-improving
anticoncentration estimate due to Kesten.
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1. Introduction

1.1. Overview. Let A be the adjacency matrix of a graph with vertex set [N ] = {1, . . . , N}.
We are interested in the geometric structure of the eigenvectors of A, in particular their spatial
localization. An `2-normalized eigenvector w = (wx)x∈[N ] ∈ RN gives rise to a probability measure
x 7→ w2

x on the set of vertices [N ]. Informally, w is delocalized if its mass is approximately uniformly
distributed throughout [N ], and localized if its mass is essentially concentrated on a small number
of vertices.

In this paper we study the spatial localization of eigenvectors for the Erdős-Rényi graph
G ≡ G(N, d/N). It is the simplest model of a random graph, where each edge of the complete
graph on N vertices is kept independently with probability d/N , with 0 6 d 6 N . Here, d ≡ dN
is a parameter whose interpretation is the expected degree of a vertex. It is well known that G
undergoes a dramatic change in behaviour at the critical scale d � logN , which is the scale at and
below which the vertex degrees do not concentrate. For d� logN , with high probability all degrees
are approximately equal and the graph is homogeneous. On the other hand, for d . logN , the
degrees do not concentrate and the graph becomes highly inhomogeneous: it contains for instance
hubs of large degree, leaves, and isolated vertices. As long as d > 1, the graph G has with high
probability a unique giant component, and we shall always restrict our attention to it.

The Erdős-Rényi graph G at and below criticality was proposed in [12] as a simple and natural
model on which to address the question of spatial localization of eigenvectors. Its graph structure
provides an intrinsic and nontrivial notion of distance, which allows for a study of the geometry of
the eigenvectors. It can be interpreted as a model of quantum disorder, where the disorder arises
from the random geometry of the graph. Moreover, its phase diagram turns out to be remarkably
amenable to rigorous analysis.

In this paper we establish the existence of a fully localized phase in a region of the phase
diagram of G near the spectral edge. This complements the completely delocalized phase established
in [12,14,44,52]. Our results in both phases are quantitative with essentially optimal bounds.

As a consequence, for a range of critical densities d � logN , we establish a mobility edge
separating the localized and delocalized phases. We derive the explicit behaviour of the localization
length on either side of the mobility edge. In particular, we show how the localization length
diverges as one approaches the mobility edge from the localized phase (see Figure 1.3 below). The
Erdős-Rényi graph at criticality is hence one of the very few models where a mobility edge can be
rigorously established. Moreover, our proofs yield strong quantitative control of the localization
length in the localized phase, as well as complete delocalization in the delocalized phase, all the
way up to the mobility edge in both phases. To the best of our knowledge, this is the first time
quantitative control is obtained in the vicinity of the mobility edge.

A graphical overview of the main result of this paper, and how it fits into the previous results
of [12, 14], is provided by the phase diagram of Figure 1.1. It depicts three phases, which are
most conveniently characterized by the `∞-norm ‖w‖∞ of an `2-normalized eigenvector w. Clearly,
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N−1 6 ‖w‖2∞ 6 1, where ‖w‖2∞ = 1 corresponds to localization at a single vertex and ‖w‖2∞ = N−1

to perfect delocalization. We say that an eigenvalue λ of the rescaled adjacency matrix H ..= A/
√
d

with eigenvector w belongs to

(i) the localized phase if ‖w‖2∞ � 1,

(ii) the delocalized phase if ‖w‖2∞ = N−1+o(1),

(iii) the semilocalized phase if ‖w‖2∞ > N−γ for some constant γ < 1.

In particular, the localized phase is a subphase of the semilocalized phase. The result of this paper
is the existence of phase (i), while phases (ii) and (iii) were previously established in [12,14].

delocalized

b

−2 0 2

b∗

-2 2

localized

semilocalized

1

λ

Figure 1.1. The phase diagram of the rescaled adjacency matrix A/
√
d of the (giant component of the)

Erdős-Rényi graph G(N, d/N) at criticality, where d = b logN with b fixed. The horizontal axis records the
location λ in the spectrum and the vertical axis the sparseness parameter b. The spectrum is confined to
the coloured region, which is split into the indicated phases. The thick purple lines correspond to phase
boundaries, which are not covered by our results. (The phase boundary at energy 0 for b 6 1 is discussed
in [12,14].) For large enough b, there is a mobility edge between the localized and the delocalized phases at
energies ±2.

We now briefly describe the structure of the phase diagram in Figure 1.1. It is well known [79]
that, as long as d� 1, the global eigenvalue density of H converges to the semicircle law supported
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in [−2, 2]. We write d = b logN for some constant1 b > 0. The localized and semilocalized phases
exist only if b < b∗, where

b∗ ..= 1
2 log 2− 1 ≈ 2.59 . (1.1)

For fixed b < b∗, the spectrum splits into two disjoints parts, the delocalized phase (−2, 0) ∪ (0, 2)
and the semilocalized phase (−λmax,−2)∪ (2, λmax), where λmax > 2 is an explicit function of b (see
(B.3) below). A region (−λmax,−λloc)∪ (λloc, λmax) near the spectral edges is in fact fully localized,
where 2 6 λloc < λmax. In particular, for large enough b, the semilocalized phase consists entirely of
the localized phase, i.e. λloc = 2. For smaller values of b, the diagram in Figure 1.1 does not rule out
the possibility of an eigenvector w in the semilocalized phase satisfying ‖w‖2∞ = N−γ+o(1) for some
constant γ ∈ (0, 1). This latter scenario corresponds to eigenvectors that are neither fully localized
nor fully delocalized2, where γ ∈ (0, 1) plays the role of an anomalous fractal dimension. In fact, it
is plausible that such fractal eigenvectors occur in the semilocalized phase for small enough b; for
more details, we refer to [73] and the heuristic discussion on localization phenomena later in this
subsection, as well as Appendix G below.

The localization-delocalization transition for G described above is an example of an Anderson
transition, where a disordered quantum system exhibits localized or delocalized states depending on
the disorder strength and the location in the spectrum, corresponding to an insulator or conductor,
respectively. Originally proposed in the 1950s [16] to model conduction in semiconductors with
random impurities, this phenomenon is now recognized as a general feature of wave transport in
disordered media, and is one of the most influential ideas in modern condensed matter physics
[3,45,62,66]. It is expected to occur in great generality whenever linear waves, such as quantum
particles, propagate through a disordered medium. For weak enough disorder, the stationary states
are expected to be delocalized, while a strong enough disorder can give rise to localized states.

The general heuristic behind localization is the following. A disordered quantum system is
characterized by its Hamiltonian H, a large Hermitian random matrix. The disorder inherent in H
gives rise to spatial regions where the environment is in some sense exceptional, such as vertices of
unusually large degree for the Erdős-Rényi graph3. These regions are possible localization centres,
around which localized states may form. Whether they do so is captured by the following well-known
rule of thumb, also known as Mott’s criterion: localization occurs whenever the eigenvalue spacing
is much larger than the tunnelling amplitude between localization centres. The simplest illustration
of this rule is for a two-state system whose Hamiltonian is the matrix

( a τ
τ b

)
. Setting the tunnelling

amplitude τ between the two sites to zero, we have an eigenvalue spacing |a− b|. Denoting by e1, e2
the standard basis vectors of R2, we find that if |τ | � |a− b| then the eigenvectors are approximately
e1, e2, corresponding to localization, and if |τ | � |a− b| then the eigenvectors are approximately

1√
2(e1 ± e2), corresponding to delocalization.
More generally, for a disordered Hamiltonian H defined on some connected graph, a simple yet

instructive way to think of the rule of thumb is to suppose that the localization centres are spatially
separated, and to construct the Hamiltonian Ĥ from H by removing edges from the graph so as to
disconnect the localization centres from each other. Hence, Ĥ is defined on a union of connected

1Our results hold also for d� logN , i.e. below the critical scale, but in this overview we suppose for simplicity
that b is a constant.

2In the literature, this phenomenon is sometimes referred to as nonergodic delocalization.
3For the Anderson model discussed below, these regions arise from an unusually large mean random potential. We

note that, just like the large degree vertices for G, these regions arise as a result of a collective phenomenon, requiring
the conspiracy of a large number of independent random variables to yield an exceptional local configuration.
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components, each of which is associated with a single localization centre. Denote by W the set of
localization centres, which are vertices in the underlying graph. A component associated with a
localization centre x ∈ W trivially gives rise to a localized state w(x) of Ĥ with eigenvalue θ(x),
which has the interpretation of the energy of the localization centre x. Upon putting back the
removed edges, one can imagine two scenarios:

(i) localization, where the eigenvectors of H remain close to the eigenvectors w(x) of Ĥ;

(ii) hybridization, where eigenvectors w(x) associated with several resonant localization centres x
with similar energies θ(x) are superimposed to form eigenvectors of H.

We refer to Figure 1.2 for an illustration of this dichotomy.

H

Ĥ

loc
aliz

atio
n

hybridization

spec(Ĥ)
spec(H)

H

H

spec(Ĥ)
spec(H)

spec(Ĥ)

Figure 1.2. A schematic illustration of the localization-hybridization dichotomy. A disordered Hamiltonian
H defined on a graph has three localization centres whose energies are in resonance. They are indicated
in red, green, and blue. The Hamiltonian Ĥ is obtained from H by splitting the graph into disconnected
components around each localization centre. This gives rise to three eigenvalues of Ĥ associated with the
three components. Each component associated with a centre x carries a localized state w(x) drawn as a
decaying density in the colour corresponding to that of the centre. The spectrum of Ĥ is drawn above the
real line in dotted lines that match the colour of the associated centre. Upon putting back the edges of the
graph to return to H, we can have either localization or hybridization, depending on Mott’s criterion. In each
case, we draw the spectrum of H below the real line. In the case of localization, the eigenvectors of H remain
close to w(x) and the eigenvalues are shifted by an amount that is small compared to the eigenvalue spacing.
In the case of hybridization, the eigenvectors of H are delocalized over the three centres, being approximately
nontrivial linear combinations of all three vectors w(x).
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To use Mott’s criterion, we note that one possible way of quantifying the tunnelling amplitude is

τ ..= max
x∈W
‖(H − θ(x))w(x)‖ . (1.2)

Indeed, this expression clearly generalizes the tunnelling amplitude for the two-level system given
above, expressing in general the error arising from putting back the edges of H missing from Ĥ, with
respect to the family (w(x))x∈W . It measures the extent to which the localized eigenvectors w(x)
of Ĥ are approximate eigenvectors of H (sometimes also called quasi-modes of H). Under some
assumptions on the localization components, τ also controls the off-diagonal part in a block-diagonal
representation of H in the basis (w(x) .. x ∈ W); see Section 2.3 below. Mott’s criterion states that
localization occurs whenever τ � ∆, where

∆ ..= min
x 6=y∈W

|θ(x)− θ(y)| (1.3)

is the eigenvalue spacing. Otherwise, we expect hybridization. The main difficulty in establishing
localization is therefore to control resonances, i.e. pairs of vertices x, y such that |θ(x) − θ(y)| is
small, and to rule out hybridization. Although this picture is helpful in gaining intuition about
localization, in many instances, such as in the proof for the Erdős-Rényi graph in this paper4, it is
but a rough caricature and the true picture is considerably more subtle (as we explain later in this
subsection and in more detail in Section 2.3).

The semilocalized phase of the Erdős-Rényi graph from [12] is a phase where the eigenvectors
are concentrated around a small number of localization centres, but where hybridization cannot be
ruled out. As shown in [12], the set of all possible localization centres of G corresponds to vertices
x ∈ [N ] whose normalized degree

αx ..=
∑
y∈[N ]

H2
xy = 1

d

∑
y∈[N ]

Axy

is greater than 2. The energy θ(x) of a localization centre x is approximately equal to Λ(αx), where
we introduced the function Λ: [2,∞)→ [2,∞) through

Λ(α) ..= α√
α− 1

. (1.4)

As shown in [13] (see also [74]), there is a one-to-one correspondence between eigenvalues λ > 2
in the semilocalized phase and vertices x of normalized degree αx > 2 given by λ = Λ(αx) + o(1).
An eigenvalue λ in the semilocalized phase has an eigenvector that is almost entirely concentrated
in small balls around the set of vertices Wλ

..= {x ∈ [N ] .. Λ(αx) = λ + o(1)} in resonance with
the energy λ [12]. The size of the set of resonant vertices Wλ is comparable to the density of
states, equal to Nρb(λ)+o(1) for an explicit exponent ρb(λ) < 1 given in (B.4) in Appendix B below.
Hence, owing to the small size of the set of resonant vertices Wλ, the semilocalized phase is sharply
distinguished from the delocalized phase. However, the key issue of controlling resonances and
ruling out hybridization is not addressed in [12] (see Figure 1.2).

In this paper we prove localization by ruling out hybridization among the resonant vertices.
Our result holds for the largest and smallest Nµ eigenvalues for µ < 1

24 . For small enough µ, our
obtained rate of exponential decay is optimal all the way up to radii of the order of the diameter

4Or for the Anderson model e.g. in [47].
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of the graph. The bound 1
24 is not optimal, and we expect that by a refinement of the method

developed in this paper it can be improved; for the sake of keeping the argument reasonably simple,
we refrain from doing so here. Heuristic arguments suggest that the optimal upper bound for µ is 1

4 ;
see Appendix G below as well as [73].

At this point it is helpful to review the previous works [12,15], which addressed the tunnelling
amplitude (1.2) in the above simple picture of localization based on disjoint neighbourhoods of
localization centres. In [12], the estimate τ . d−1/2 was established in the entire semilocalized phase,
while in [15] it was improved to τ . d−3/2 at the spectral edge. In fact, here we argue that the best
possible bound on τ in terms of the local approximate eigenvectors w(x) introduced above is e−c

logN
log d

for some constant c > 0. To see this, we recall from [12] that the vector w(x) is exponentially
decaying around x at some fixed rate C > 0 depending on b. Thus, the best possible estimate for τ
arising from the exponential decay is e−Cr, where r � diam(G) = logN

log d (1 + o(1)) (see [34]).
As for the eigenvalue spacing (1.3), it was not addressed at all in [12]. In [15], it was estimated

at the spectral edge as ∆ > d−1−ε with high probability for any constant ε > 0. Combined with the
bound τ . d−3/2 at the spectral edge obtained in [15], one finds that Mott’s criterion is satisfied
at the spectral edge. This observation was used in [15] to prove localization for the top O(1)
eigenvectors.

In the interior of the localized phase, the eigenvalue spacing at energy λ is typically of order
N−ρb(λ), where ρb(λ) > 0 is an exponent defined in (B.4) below. This is much smaller than the
best possible estimate on the tunnelling amplitude, e−c

logN
log d = N−o(1). Hence, Mott’s criterion is

never satisfied inside the localized phase, and thus the simple picture based on local approximate
eigenvectors cannot be used to establish localization. In this paper we therefore introduce a new
setup for proving localization.

The first key idea of our proof is to abandon the above simple picture of localization, and to
replace the local approximate eigenvectors w(x) by global approximate eigenvectors, denoted by
u(x), which approximate eigenvectors of H much more accurately and therefore lead to a much
smaller tunnelling amplitude (1.2). To define u(x), we consider the graph obtained from G by
removing all localization centres except x; we denote by λ(x) the second largest eigenvalue of its
adjacency matrix, and by u(x) the associated eigenvector. The latter is localized around the vertex
x. Crucially, the quantity (1.2) with w(x) replaced by u(x) can now be estimated by a polynomial
error N−ζ for some ζ > 0.

The price to pay for passing from local approximate eigenvectors w(x) to global approximate
eigenvectors u(x) is a breakdown of orthogonality. Indeed, the vectors u(x) have a nonzero overlap,
and a significant difficulty in our proof is to control these overlaps and various resulting interactions
between localization centres.

To complete the verification of Mott’s criterion, we need to establish a polynomial lower bound
minx 6=y∈W |λ(x) − λ(y)| > N−η for some η < ζ. Clearly, the left-hand side cannot be larger than
the eigenvalue spacing N−ρb(λ) at the energy λ we are considering, which yields the necessary
bound η > ρb(λ) > 0. Hence, we require an anticoncentration result for the eigenvalue difference
λ(x) − λ(y) on a polynomial scale. Owing to the discrete law of G (a product of independent
Bernoulli random variables), methods based on smoothness such as Wegner estimates [77] are not
available, and obtaining strong enough anticoncentration is the most involved part of our proof.
Our basic strategy is to perform a recursive resampling of neighbourhoods of increasingly large
balls around y. At each step, we derive a concentration bound for λ(x) and an anticoncentration
bound for λ(y). The key tool for the latter is a self-improving version, due to Kesten [59], of a
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classical anticoncentration result of Doeblin, Lévy, Kolmogorov, and Rogozin. In order to obtain
sufficiently strong anticoncentration, it is crucial to perform the recursion up to radii comparable to
the diameter of G.

We conclude this overview with a survey of related results. The eigenvalues and eigenvectors of
the Erdős-Rényi graph have been extensively studied in the denser regime d� logN . Complete
eigenvector delocalization for d� logN was established in [44,52]. The local spectral statistics in
the bulk were proved to follow the universal GOE statistics in [42,54] for d > No(1). At the spectral
edge, the local spectral statistics were proved to be Tracy-Widom for d� N1/3 [42,65], to exhibit a
transition from Tracy-Widom to Gaussian at d � N1/3 [55], and to be Gaussian throughout the
regime No(1) 6 d � N1/3 [51, 55]. In fact, in the latter regime the Tracy-Widom statistics were
recovered in [57,63] after subtraction of an explicit random shift.

The random d-regular graph is another canonical model of sparse random graphs. Owing to
the regularity constraint, it is much more homogeneous than the Erdős-Rényi graph and only
exhibits a delocalized phase. The eigenvectors were proved to be completely delocalized for all d > 3
in [20,21,56], and the local spectral statistics in the bulk were shown to follow GOE statistics for
d > No(1) in [18] and at the edge Tracy-Widom statistics for No(1) 6 d � N1/3 in [19, 58] or for
N2/3 � d 6 N/2 in [50].

Anderson transitions have been studied in a variety of models. The archetypal example is the
tight-binding, or Anderson, model on Zd [1, 2, 11, 17]. In dimensions d 6 2, all eigenvectors of
the Anderson model are expected to be localized, while for d > 3 a coexistence of localized and
delocalized phases, separated by a mobility edge, is expected for small enough disorder. So far,
only the localized phase of the Anderson model has been understood rigorously, starting from the
landmark works [7, 47]; see for instance [11] for a recent survey.

Although a rigorous understanding of the metal-insulator transition for the Anderson tight-
binding model is still elusive, some progress has been made for random band matrices. Random band
matrices [32,48,67,78] interpolate between the Anderson model and mean-field Wigner matrices.
They retain the d-dimensional structure of the Anderson model but have proved more amenable to
rigorous analysis. They are conjectured [48] to have a similar phase diagram as the Anderson model
in dimensions d > 3. For d = 1 much has been understood both in the localized [33,35,68,69] and
the delocalized [29–31, 37–41, 43, 53, 70, 71, 83] phases. For large enough d, recent progress in the
delocalized phase has been made in [80–82]. A simplification of band matrices is the ultrametric
ensemble [49], where the Euclidean metric of Zd is replaced with an ultrametric arising from a tree
structure. For this model, a phase transition was rigorously established in [75].

Another modification of the d-dimensional Anderson model is the Anderson model on the Bethe
lattice, an infinite regular tree corresponding to the case d =∞. For it, the existence of a delocalized
phase was shown in [8, 46, 60]. In [9, 10] it was shown that for unbounded random potentials
the delocalized phase exists for arbitrarily weak disorder. The underlying mechanism is resonant
delocalization, in which the exponentially decaying tunnelling amplitudes between localization
centres are counterbalanced by an exponentially large number of possible channels through which
tunnelling can occur, so that Mott’s criterion is violated. As a consequence, the eigenvectors
hybridize.

Heavy-tailed Wigner matrices, or Lévy matrices, whose entries have α-stable laws for 0 < α < 2,
were proposed in [36] as a simple model that exhibits a transition in the localization of its eigenvectors;
we refer to [6] for a summary of the predictions from [36,72]. In [26,27] it was proved that eigenvectors
are weakly delocalized for energies in a compact interval around the origin, and for 0 < α < 2/3
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eigenvectors are weakly localized for energies far enough from the origin. In [6] full delocalization,
as well as GOE local eigenvalue statistics, were proved in a compact interval around the origin, and
in [5] the law of the eigenvector components was computed. Recently, by comparison to a limiting
tree model, a mobility edge was established in [4] for α near 0 or 1.
Conventions. Every quantity that is not explicitly called fixed or a constant is a sequence depending
on N . We use the customary notations o(·) and O(·) in the limit N →∞. For nonnegative X,Y , if
X = O(Y ) then we also write X . Y , and if X = o(Y ) then we also write X � Y . Moreover, we
write X � Y to mean X . Y and Y . X. We say that an event Ω holds with high probability if
P(Ω) = 1− o(1). Throughout this paper every eigenvector is assumed to be normalized in `2([N ]).
Finally, we use κ ∈ (0, 1) to denote a small positive constant, which is used to state assumptions
and definitions; a smaller κ always results in a weaker condition.

1.2. Results. Let G ≡ G(N, d/N) be the Erdős-Rényi graph with vertex set [N ] and edge
probability d/N for 0 6 d 6 N . Let A = (Axy)x,y∈[N ] ∈ {0, 1}N×N be the adjacency matrix of G.
Thus, A = A∗, Axx = 0 for all x ∈ [N ], and (Axy .. x < y) are independent Bernoulli(d/N) random
variables. Define the rescaled adjacency matrix

H ..= A/
√
d .

We always assume that d satisfies√
logN log logN � d 6 3 logN . (1.5)

Owing to the nonzero expectation of H, it is well known that the largest eigenvalue of H, denoted
by λ1(H), is an outlier separated from the rest of the spectrum (see e.g. Proposition 3.4 (iv) below),
and we shall always discard it from our discussion. The lower bound of (1.5) is made for convenience,
to ensure that λ1(H) is separated from the bulk spectrum5; the upper bound of (1.5) is made
without loss of generality, since for d > 3 logN the localized phase does not exist and the entire
spectrum is known to belong to the delocalized phase [12,14].

We denote by Br(x) (respectively by Sr(x)) the closed ball (respectively the sphere) of radius r
with respect to the graph distance of G around the vertex x. We refer to Section 2.1 below for a
full account of notations used throughout this paper.

The localized phase is characterized by a threshold α∗ defined, for any fixed κ ∈ (0, 1) and
µ ∈ [0, 1], as

α∗ ≡ α∗(µ) ..= max
{

inf
{
α > 0 : P(α1 > α) 6 Nµ−1}, 2 + κ

}
. (1.6)

We refer to Appendix B below for the basic qualitative properties of α∗ as well as a graph. We shall
show exponential localization for any eigenvector with eigenvalue λ satisfying the condition

λ 6= λ1(H) , |λ| > Λ(α∗(µ)) + κ , (1.7)

for sufficiently small µ > 0. In particular, the number of eigenvalues λ satisfying (1.7) is with high
probability Nµ+o(1) as κ→ 0; see Remark 1.2 below.

5In fact, to ensure the separation, the weaker lower bound d �
√

logN/ log logN would be sufficient; see [61]
and [15, Remark 1.4] for detailed explanations. We impose the slightly stronger lower bound in (1.5) for convenience,
as it allows us to directly import results from [12] that were proved under this condition.
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1.2.1. Exponential localization. Our main result is the following theorem. We recall that by conven-
tion all eigenvectors are normalized.

Theorem 1.1 (Exponential localization). Suppose that (1.5) holds. Fix κ ∈ (0, 1) and µ ∈ (0, 1/24).
Then there is a constant c ∈ (0, 1) depending on κ such that, with high probability, for any eigenvector
w = (wx)x∈[N ] of H with eigenvalue λ satisfying (1.7), there exists a unique vertex x ∈ [N ] with
αx > α∗(µ) such that

w2
x = αx − 2

2(αx − 1) + o(1) , ‖w|Bi(x)c‖ .
√
αx(1− c)i , (1.8)

for all i ∈ N with 1 6 i 6 1
6

logN
log d .

Remark 1.2 (Eigenvalue locations). The eigenvalue λ of the eigenvector w and the associated
vertex x from Theorem 1.1 satisfy |λ| = Λ(αx) + o(1) with high probability. This follows from (2.4)
and (3.3) below.

The eigenvalue locations in the localized phase were previously studied in [13, Theorem 2.1]
(see also [12, Theorem 1.7]). In particular, if d > b∗ logN then the localized phase does not exist
(see [13, Remark 2.5]) and there is no eigenvalue ofH satisfying (1.7). Conversely, if d 6 (b∗−ε) logN
for some constant ε > 0 then for small enough κ > 0 there is a polynomial number of eigenvalues
satisfying (1.7), by [12, Theorem 1.7]. By the same argument, if d/ logN is small enough, then with
high probability Nµ+o(1) eigenvalues of H satisfy (1.7) as N →∞ and κ→ 0.

Remark 1.3 (Conditions in Theorem 1.1). The exponential decay in Theorem 1.1 holds up to the
scale logN

log d of the diameter of G. The upper bound 1/24 and the factor 1/6 are not optimal (see the
discussion in Appendix G), and they can be improved with some extra effort, which we however
refrain from doing here.

Remark 1.4 (Optimal exponential decay). If µ is sufficiently small then the rate 1−c of exponential
decay from (1.8) can be made explicit. Suppose (1.5). Then for each small enough constant ε > 0
and small enough constant µ > 0, depending on ε, with high probability, for any eigenvector w of H
with eigenvalue λ satisfying (1.7), there exists a unique vertex x ∈ [N ] with αx > α∗(µ) such that

‖w|Bi(x)c‖ .
√
αx

(1 +O(ε)√
αx − 1

)i+1
(1.9)

for each i ∈ N satisfying i� logN
log d

1
log 10 logN

d

. This follows from (2.3) and Proposition 4.3 below.
The rate of decay in (1.9) is optimal up to the error term O(ε). Indeed, by Theorem 1.6 and the

explicit form (1.10)–(1.11) below, we find that

‖w|Bi(x)c‖ �
√
αx

( 1√
αx − 1

)i+1
+ o(1) .

for any fixed i ∈ N. In particular, (1.9) improves the rate qi

(1−q)2 with q = (2 + o(1))
√
αx−1
αx

obtained
in [15, Theorem 1.7] at the spectral edge, corresponding to αx = (1 + o(1))α∗(0).
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1.2.2. Geometric structure of eigenvectors. Next, we describe the precise geometric structure of
the eigenvectors in the localized phase. For any vertex x with αx > 2 and radius r ∈ N∗, we shall
define two local vectors, wr(x) and vr(x), which depend only on G in the ball Br(x). If w is an
eigenvector of H as in Theorem 1.1 with associated vertex x, then w will be well approximated by
wr(x) and vr(x) for suitably chosen r � 1.

To define these local vectors, we need the following definitions. Let r ∈ N∗. For α > 2 define the
positive sequence (ui(α))r−1

i=0 through

u1(α) ..=
(

α

α− 1

)1/2
u0(α) , ui(α) ..=

( 1
α− 1

)(i−1)/2
u1(α) (1 6 i 6 r − 1) . (1.10)

We normalize the sequence by choosing u0(α) > 0 such that ∑r−1
i=0 ui(α)2 = 1.

Definition 1.5 (Localization profile vectors wr(x) and vr(x)). Let r ∈ N∗ and x ∈ [N ].

(i) Denote by wr(x) an eigenvector of H|Br(x) associated with its largest eigenvalue, chosen so
that its value at x is nonnegative. Here H|Br(x) denotes the matrix H restricted to the vertices
in Br(x) (See Section 2.1 below.)

(ii) For αx > 2 and (ui(α))r−1
i=0 as in (1.10), define

vr(x) ..=
r−1∑
i=0

ui(αx)
1Si(x)

|Si(x)|1/2
, (1.11)

where 1Si(x) denotes the indicator function of the sphere Si(x).

Note that wr(x) is unique by the Perron-Frobenius theorem for irreducible matrices with
nonnegative entries.

Theorem 1.6 (Localization profile). Suppose that (1.5) holds and fix κ ∈ (0, 1) and µ ∈ (0, 1/24).
With high probability, for any eigenvector w of H with eigenvalue λ satisfying (1.7), there exists a
unique vertex x ∈ [N ] with αx > α∗(µ) such that6

w = wr(x) + o(1) = vr(x) + o(1) (1.12)

for each r ∈ N∗ satisfying log d � r 6 1
6

logN
log d . Here, o(1) is meant with respect to the Euclidean

norm on RN .

In particular, w has locally the radial exponentially decaying structure of vr(x).
1.2.3. Mobility edge and localization length. Next, we combine the results of this paper with those
obtained for the delocalized phase in [12, 14] to establish a mobility edge at ±2 for certain values of
d, and analyse the structure of the eigenvectors quantitatively in the vicinity of the mobility edge.

Theorem 1.7 (Mobility edge). Fix κ > 0 and suppose that 23
24 + κ 6 d

b∗ logN 6 1− κ. Then, with
high probability, for any eigenvector w of H with eigenvalue λ 6= λ1(H) we have the following
dichotomy.

(i) (Localized phase) If |λ| > 2 + κ then w is exponentially localized as in (1.8) and (1.12).
6We assume that the sign of w is chosen suitably.
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(ii) (Delocalized phase) If |λ| 6 2− κ then w is completely delocalized in the sense that

‖w‖2∞ 6 N−1+o(1) . (1.13)

Both phases in Theorem 1.7 are nonempty under the assumption on d; see Section 1.1 and [13,
Remark 2.5]. Theorem 1.7 establishes a dichotomy because (1.8) and (1.13) are mutually exclusive,
since ‖w‖2∞ > w2

x = αx−2
2(αx−1) + o(1) & 1 if αx > α∗(µ) > 2 + κ.

Next, we investigate the spatial extent of the eigenvectors near the mobility edge. To that end,
we use the following notion of localization length. With each normalized vector w we associate the
length

`(w) ..= min
x∈[N ]

∑
y∈[N ]

d(x, y)w2
y , (1.14)

where d(x, y) denotes the distance from x to y in the graph G. Regarding y 7→ w2
y as a probability

measure on [N ], the quantity `(w) expresses the minimal expected distance from a reference vertex
x. The minimizing vertex x has the interpretation of a localization centre for w.

Denote by diam(G) the diameter7 of G. It is a classical fact [34] that with high probability
diam(G) = logN

log d (1 + o(1)) as long as d� 1.

Theorem 1.8 (Localization length). Fix κ > 0 and suppose that 23
24 + κ 6 d

b∗ logN 6 1− κ. Then,
with high probability, for any eigenvector w of H with eigenvalue λ 6= λ1(H) we have

`(w) =


|λ|

2
√
λ2−4 + o(1) if |λ| > 2 + κ

diam(G)(1 + o(1)) if |λ| 6 2− κ .
(1.15)

Remark 1.9. By the same proof, the first estimate of (1.15) holds also for all eigenvectors satisfying
the conditions of Theorem 1.1. Moreover, the constant 23

24 is not optimal and can be reduced with
some extra effort.

Theorem 1.8 shows that the localization length diverges as one approaches the mobility edge
from the localized phase, and that it equals the diameter of the graph in the delocalized phase. See
Figure 1.3 for an illustration.
1.2.4. Eigenfunction correlator and dynamical localization. Finally, as a consequence of Theorem 1.1,
we control quantities commonly used to characterize Anderson localization (see e.g. [11, Section 1.4]).
In particular, we establish exponential decay of the eigenfunction correlator and dynamical localiza-
tion.

Corollary 1.10. Suppose (1.5). Then there is a constant µ > 0 such that for each fixed κ ∈ (0, 1),
there exist constants c, C > 0 depending only on κ such that the following holds with high probability.
Let J ⊂ [Λ(α∗(µ)) + κ,

√
d/2] be an interval with associated spectral projection ΠJ(H). For any

x ∈ [N ], any measurable function F : R→ C satisfying ‖F‖∞ 6 1, and any r > 0, we have

‖(ΠJ(H)F (H)1x)|Br(x)c‖ 6 Ce−cr . (1.16)
7We recall that the diameter of a connected graph is the length of its longest geodesic. If the graph is disconnected,

then its diameter is the maximal diameter of its connected components.
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λλmax2
0

diam(G)
`

λ

2
√
λ2−4

Figure 1.3. An illustration of the behaviour of the localization length (1.14) around the mobility edge,
established in Theorem 1.8. We plot the asymptotic localization length ` of an eigenvector with eigenvalue λ
as a function of λ. Here d

b∗ logN is a fixed number in [ 23
24 + κ, 1− κ]. The spectrum is asymptotically given by

the interval [−λmax, λmax]. We only draw a portion of the spectrum near the right edge. Below the mobility
edge 2, the localization length is diam(G) = logN

log d (1 + o(1)). Above the mobility edge 2, the localization
length is finite and diverges as one approaches the mobility edge.

In particular, denoting by wλ the normalized eigenvector of H associated with λ ∈ spec(H), the
eigenfunction correlator satisfies the estimate∑

λ∈spec(H)∩J
|〈1x ,wλ〉〈wλ ,1y〉| 6 Ce−c d(x,y) , x, y ∈ [N ] , (1.17)

and we have dynamical localization,

sup
t∈R
|〈1y ,ΠJ(H) e−itH1x〉| 6 Ce−c d(x,y) , x, y ∈ [N ] . (1.18)

Remark 1.11. By a close inspection of the proof in Appendix F (using that all error probabilities
are polynomially small in N), we note that the estimates (1.17) and (1.18) hold also in expectation,
provided one multiplies both sides by the factor ecd(x,y).

Structure of the paper. We conclude this section with a short summary of the structure of the
paper. In Section 2, we collect a few basic notations, then state the three core propositions of the
paper: Proposition 2.2, which gives exponential decay of the approximate eigenvectors, Proposition
2.3, which compares the approximate eigenvalues with the true eigenvalues, and Proposition 2.4,
which estimates the spacing between neighbouring approximate eigenvalues. After stating them,
we use them to deduce Theorem 1.1 in Section 2.2. Then, we sketch the proofs of these three
propositions in Section 2.3. Theorems 1.6, 1.7, and 1.8 are proved in the short Sections 2.4, 2.5,
and 2.6, respectively. Section 3 is devoted to preliminary results on the graph G, its spectrum, and
its Green function. Sections 4, 5 and 6 are devoted to the proofs of Propositions 2.2, 2.3, and 2.4,
respectively. In the appendices, we collect some auxiliary results and basic tools.
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2. Proof of main results

The rest of the paper is devoted to the proofs of Theorems 1.1, 1.6, 1.7, and 1.8, as well as Corollary
1.10. The former four are proved in this section, while Corollary 1.10 is proved in Appendix F.

Throughout, κ ∈ (0, 1) denotes an arbitrary positive constant.

2.1. Basic notations. We write N = {0, 1, 2, . . . }. We set [n] ..= {1, . . . , n} for any n ∈ N∗ and
[0] ..= ∅. We write |X| for the cardinality of a finite set X. For X ⊂ [N ] we write Xc ..= [N ] \X.
We use 1Ω to denote the indicator function of an event Ω.

Vectors in RN are denoted by boldface lowercase Latin letters like u, v and w. We use the
notation v = (vx)x∈[N ] ∈ RN for the entries of a vector. We denote by supp v ..= {x ∈ [N ] .. vx 6= 0}
the support of a vector v. We denote by 〈v ,w〉 = ∑

x∈[N ] vxwx the Euclidean scalar product on RN

and by ‖v‖ =
√
〈v ,v〉 the induced Euclidean norm. For X ⊂ [N ] we set v|X ..= (vx1x∈X)x∈[N ]. For

any x ∈ [N ], we define the standard basis vector 1x ..= (δxy)y∈[N ] ∈ RN , so that wx = 〈1x ,w〉. To
any subset S ⊂ [N ] we assign the vector 1S ∈ RN given by 1S ..= ∑

x∈S 1x. In particular, 1{x} = 1x.
We denote by d(x, y) the distance between the vertices x, y ∈ [N ] with respect to the graph

G, i.e. the number of edges in the shortest path connecting x and y. For r ∈ N and x ∈ [N ],
we denote by Br(x) ..= {y ∈ [N ] .. d(x, y) 6 r} the closed ball of radius r around x, and by
Sr(x) ..= {y ∈ [N ] .. d(x, y) = r} the sphere of radius r around the vertex x. For X ⊂ [N ] we denote
by G|X the subgraph on X induced by G.

For a matrix M ∈ RN×N , ‖M‖ is its operator norm induced by the Euclidean norm on RN .
For an N × N Hermitian matrix M , we denote by λ1(M) > λ2(M) > · · · > λN (M) the ordered
eigenvalues of M . For an N ×N matrix M ∈ RN×N and a subset X ⊂ [N ], we introduce the N ×N
matrices M |X ..= (Mxy1x,y∈X)x,y∈[N ] as well as M (X) ..= M |Xc with entries M (X)

xy = Mxy1x,y /∈X .

2.2. Exponential localization – proof of Theorem 1.1. In this section, after introducing
some notation and stating the core propositions of the proof, we use them to prove our main result,
Theorem 1.1. Recalling the definition of Λ from (1.4), we introduce the µ-dependent sets

V ..=
{
x ∈ [N ] .. αx > α∗(µ)

}
, (2.1)

W ..=
{
x ∈ V .. Λ(αx) > Λ(α∗(µ)) + κ/2

}
. (2.2)

By definition, W ⊂ V.
The following definition introduces the fundamental approximate eigenvalues and eigenvectors

underlying our proof.

Definition 2.1 (λ(x) and u(x)). For any x ∈ W , we abbreviate λ(x) ..= λ2(H(V\{x})). Moreover, we
denote by u(x) a normalized eigenvector of H(V\{x}) with eigenvalue λ(x) satisfying 〈1x ,u(x)〉 > 0.

As we shall see, with high probability λ(x) is a simple eigenvalue and hence u(x) is unique (see
Corollary 3.6 below).

The proof of Theorem 1.1 consists of three main steps, which are the content of the three
following propositions. The next proposition states that u(x) has the exponential decay claimed in
Theorem 1.1 for w. It is proved in Section 4 below.
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Proposition 2.2 (Exponential decay of u(x)). Suppose that (1.5) holds. Then there is a constant
c ∈ (0, 1) such that, for each fixed µ ∈ [0, 1/3), with high probability, for each x ∈ W,

〈1x ,u(x)〉 =
√

αx − 2
2(αx − 1) + o(1) , ‖u(x)|Bi(x)c‖ .

√
αx(1− c)i

for all i ∈ N satisfying 1 6 i 6 min
{1

5 −
µ
4 ,

1
3 − µ

} logN
log d − 2.

In the proof of Theorem 1.1, the next two propositions will be used to conclude that any
eigenvector of H whose associated eigenvalue satisfies (1.7) is close to u(x) for some x ∈ W . Given
Proposition 2.2, this will directly imply Theorem 1.1.

The next proposition, Proposition 2.3, states that λ(x) and u(x) are approximate eigenvalues
and eigenvectors of H, respectively, with an error bounded by an inverse power of N . Moreover, up
to such an error, each eigenvalue of H satisfying (1.7) is approximated by λ(x) for some x ∈ W. In
particular, it provides an upper bound for the tunnelling amplitude, in the sense of (1.2), for the
global approximate eigenvectors from Definition 2.1. Its proof is given in Section 5 below.

Proposition 2.3 (Approximate eigenvalues). Suppose (1.5). Fix µ ∈ [0, 1/4) and ζ ∈ [0, 1/2−3µ/2).
Then, with high probability, for each x ∈ W there exists εx ∈ R such that

spec(H) ∩ I = {λ(x) + εx
.. x ∈ W} ∩ I , I ..= [Λ(α∗) + 3κ/4,

√
d/2]

counted with multiplicity and

max
x∈W

max
{
|εx|, ‖(H − λ(x))u(x)‖

}
6 N−ζ .

The next proposition establishes a spacing of at least N−η between the approximate eigenvalues
(λ(x))x∈W , for large enough η. It is proved in Section 6 below.

Proposition 2.4 (Eigenvalue spacing). Suppose (1.5). Fix µ ∈ (0, 1/24) and η > 8µ. Then, with
high probability,

|λ(x)− λ(y)| > N−η

for all x, y ∈ W with x 6= y.

We now deduce Theorem 1.1 from Propositions 2.2, 2.3, and 2.4.

Proof of Theorem 1.1. Let λ be an eigenvalue of H satisfying (1.7), and w an associated, normalized
eigenvector. Fix ζ ∈ (8µ, 1/3) and η ∈ (8µ, ζ). As µ < 1/24, both intervals are nonempty and
ζ < 1/2− 3µ/2. Thus, Propositions 2.3 and 2.4 are applicable with these choices of ζ and η. We
shall show below that, on the intersection of the high-probability events of Propositions 2.3 and 2.4,
there exists a unique x ∈ W such that

w = u(x) +O(Nη−ζ) (2.3)

(under suitable choice of the sign of w). Thus, Theorem 1.1 follows from η < ζ and Proposition 2.2
as exp

(1
6

logN
log d log(1− c)

)
� N−ε for any ε > 0.

What remains is the proof of (2.3). This is an application of perturbation theory in the form of
Lemma D.2, whose conditions we justify now. Note first that, combining (5.24) below and the trivial
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fact λ1(EH) =
√
d(1 + o(1)) with rank-one eigenvalue interlacing (Lemma D.4), we conclude that

with high probability λ1(H) =
√
d(1 + o(1)) and λ2(H) 6

√
d/2. Hence, the eigenvalue λ satisfying

(1.7) lies in [Λ(α∗(µ)) + κ, d/2]. From Propositions 2.3 and 2.4 with η < ζ, we conclude that

dist(λ, spec(H) \ {λ}) > N−η − 2N−ζ , |λ− λ(x)| 6 N−ζ (2.4)

for a unique x ∈ W (see Figure 2.1). In particular, as η < ζ, there is ∆ � N−η such that λ
is the unique eigenvalue of H in [λ(x) − ∆, λ(x) + ∆]. Moreover, ‖(H − λ(x))u(x)‖ 6 N−ζ by
Proposition 2.3. Therefore, all conditions of Lemma D.2 are satisfied, and it implies (2.3). This
concludes the proof of Theorem 1.1.

{λ(x) .. x ∈ W}

spec(H)

N−η

2N−ζ
Λ(α∗) + κ

Figure 2.1. An illustration of the setup for the perturbation theory in the proof of Theorem 1.1. We draw
two instances of the interval [Λ(α∗) + κ,∞). On the top line, we draw each λ(x) for x ∈ W as blue dot. Each
dot is surrounded by a blue buffer of width N−η. By Proposition 2.4, these buffers do not intersect with
high probability. On the bottom line, we draw each eigenvalue of H as red dot. Each dot on the top line
gives rise to a red region on the bottom line of width 2N−ζ . Since ζ > η, the red regions are disjoint. By
Proposition 2.3, each red region contains exactly one eigenvalue of H and each eigenvalue of H is contained
in a red region. Hence, the eigenvalues of H are separated by at least N−η/2.

By choosing η in (2.4) of the proof of Theorem 1.1 sufficiently small, we conclude the following
result.

Corollary 2.5 (Eigenvalue spacing of H). Suppose (1.5). Fix µ ∈ (0, 1/24) and η > 8µ. Then,
with high probability,

dist(λ, spec(H) \ {λ}) > N−η ,

for every λ ∈ spec(H) ∩ [Λ(α∗(µ)) + κ,∞).

Remark 2.6 (Eigenvalue spacing in critical regime). In the critical regime, i.e. when d � logN ,
the lower bound on η in the conditions of Proposition 2.4 and Corollary 2.5 can be weakened to
η > 4µ. Details can be found in Remark 6.2 below.

Remark 2.7 (Eigenvector mass on vertices in V \ {x}). With high probability the following
holds. Let w be an eigenvector of H associated with the vertex x as in Theorem 1.1. Then, from
u(x)|V\{x} = 0 and (2.3), we conclude

‖w|V\{x}‖ . N−ε

16



for any small enough ε > 0.

2.3. Sketch of the proof. In this subsection we sketch the proof of Theorem 1.1. We use the
definitions and notations from Sections 2.1 and 2.2.

The basic strategy is to find an orthogonal matrix U , a diagonal n×nmatrix Θ = diag(θ1, . . . , θn),
a symmetric (N −n)× (N −n) matrix X, and a symmetric N ×N matrix E such that the following
holds. In the basis of the columns u1, . . . ,uN of U , the matrix H has the form

U∗HU =
(

Θ 0
0 X

)
+ E , (2.5)

where the matrices E and X satisfy

‖E‖ � min
{
|θi − θj | .. i 6= j

}
, (2.6a)

dist(spec(X), I) > κ ; (2.6b)

here I denotes the interval containing the eigenvalues of H that we are interested in (cf. (1.7)). We
call the first n columns u1, . . . ,un of H profile vectors.

If ‖E‖ = o(1) then, for each i ∈ [n], the vector ui is an approximate eigenvector of H with
approximate eigenvalue θi. Unlike approximate eigenvalues, in general approximate eigenvectors
have nothing to do with the actual eigenvectors. For ui to be close to an eigenvector of H, we
require the stronger estimates (2.6), which can be regarded as a version of Mott’s criterion in terms
of the profile vectors encoded by u1, . . . ,un. Localization then follows provided the ui are shown to
be localized.

In [13], it was showed that there is a one-to-one correspondence between eigenvalues of H in the
semilocalized phase [2+o(1),∞)\{λ1(H)} and vertices x of G with normalized degree αx > 2+o(1).
Subsequently, in [12,15], the eigenvectors of H in the semilocalized phase were investigated using the
decomposition (2.5). There, the profile vectors ui were supported in balls Br(x) around vertices x of
sufficiently large αx, where r � 1. We refer to such vectors as local profile vectors: they are spatially
localized (in the graph distance) and their supports are disjoint. Examples of such local profile
vectors are wr(x) and vr(x) for x ∈ W, defined in Definition 1.5 (others were defined in [12,15]).

The local profile vectors are exponentially decaying with a rate c > 0 depending on b and the
energy. The best possible error estimate for ‖(H − θi)ui‖ under the condition that ui is supported
in Br(x) is obtained by choosing ui = wr(x), the top eigenvector of H|Br(x); in that case the
error is purely a boundary term of order e−cr. If the supports of the profile vectors are separated
by more than 1 (in the graph distance) then it is easy to see that ‖E‖ 6 maxi‖(H − θi)ui‖ (see
also our formulation of Mott’s criterion (1.2)). Hence, the best possible error estimate for ‖E‖ is
e−cr. Since the diameter of G is logN

log d (1 + o(1)) with high probability, the best bound resulting
from this approach is ‖E‖ . N−c/ log d = N−o(1) for some constant c > 0. However, inside the
semilocalized phase this bound is always much larger than the typical eigenvalue spacing N−η for
some η > 0. Recalling the condition (2.6a), we conclude that any approach to prove localization in
the semilocalized phase that uses local profile vectors is doomed to fail.

The reason why any approach based on local profile vectors fails is that local profile vectors
(such as wr(x)) are supported on balls containing a comparatively small set of vertices, and the
mass of the true eigenvectors outside of such balls is not small enough to be fully negligible. This
leads us to introduce the global profile vectors u(x), x ∈ W, from Definition 2.1, with associated
approximate eigenvalues λ(x). They are defined as the second eigenvector-eigenvalue pair of the
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matrix H(V\{x}). Thus, Θ = diag((λ(x))x∈W) and the first n = |W| columns of U are given by the
orthonormalization of the family (u(x))x∈W . The global profile vector u(x) and the best possible
local profile vector wr(x) are each defined as eigenvectors of the graph after removal of a set of
vertices, |V| − 1 ∼ Nµ � N vertices for the former and |Br(x)c| ∼ N vertices for the latter. This
suggests that u(x) is a better approximation of a true eigenvector of H. The price to pay is that its
definition is less explicit, and, crucially, the family (u(x))x∈W is not orthogonal owing to the global
profile vectors having nonzero overlaps. As explained below, the need to control the overlaps of the
global profile vectors presents a serious complication.

The proof of Theorem 1.1 consists of three main steps:

(i) exponential decay for u(x) around x,

(ii) ‖E‖ 6 N−ζ and spec(X) is separated from I,

(iii) minx 6=y∈W |λ(x)− λ(y)| > N−η,

for some constants ζ > η > 0 (see also Section 2.3.4 below). These items corresponds to Propositions
2.2, 2.3, and 2.4, respectively. We outline their proofs in Sections 2.3.1, 2.3.2, and 2.3.3, respectively.
2.3.1. Exponential decay of u(x). First we explain the need to introduce the two different vertex
sets W ⊂ V . In the definition of λ(x) and u(x), all vertices in V \ {x} are removed, while the profile
vectors u(x) are only considered for x in the smaller set W. The difference between W and V is
used precisely to obtain a spectral gap for H(V\{x}) around λ(x), x ∈ W.

To show exponential decay of u(x), we use its definition, a simple computation, and a truncated
Neumann series expansion to obtain

u(x)|Vc = cx

(
1− H(V)

λ(x)

)−1
1S1(x)

= cx

n−1∑
k=0

(
H(V)

λ(x)

)k
1S1(x) + cx

(
1− H(V)

λ(x)

)−1(H(V)

λ(x)

)n
1S1(x) ,

(2.7)

where cx ..= 〈1x ,u(x)〉
λ(x)
√
d
. Each term of the sum is supported in Bn(x) and, thus, vanishes when restricting

to Bn(x)c. Hence, as |〈1x ,u(x)〉| . 1, ‖1S1(x)‖ =
√
dαx, and ‖(λ(x)−H(V))−1‖ . 1 by the spectral

gap of H(V\{x}) around λ(x) = λ2(H(V\{x})) mentioned above, we obtain ‖u(x)|Bn(x)c‖ .
√
αx q

n

with q = λ(x)−1‖H(V)|Bn+1(x)‖ < 1. This is the desired exponential decay. We remark that in (2.7)
we establish exponential decay of the Green function of H(V) evaluated at λ(x), using that λ(x)
is away from the spectrum of H(V). This is an instance of a Combes-Thomas estimate, and we
translate it to an exponential decay for the eigenvector u(x). Furthermore, we show that λ(x) is
isolated in the spectrum of H(V\{x}) and, thus, perturbation theory implies that u(x) = wr(x)+o(1).

The rate obtained from the above argument is far from optimal, but an extension of this argument
does yield the optimal rate of decay for ‖u(x)|Bi(x)c‖ for small enough µ. To that end, we choose
n = Ci for a large constant C > 0 in (2.7), which makes the remainder term in (2.7) with n = Ci
subleading. It remains to estimate the terms (H(V))k1S1(x) for k = i, . . . , Ci, since they vanish for
k < i when restricted to Bi(x)c. For k > i, we relate (H(V))k1S1(x) to the number of a family of
walks on the graph G. We obtain optimal bounds on this number by a path counting argument,
exploiting the tree structure of G|Br(x), a precise bound on the degrees in Br(x) \ {x} and the
concentration of the sphere sizes |Si(x)| for i 6 r.
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2.3.2. Approximate eigenvalues. We now sketch how (ii) is proved. In contrast to the case of local
profile vectors discussed above, the proof of ‖E‖ . maxx∈W‖(H−λ(x))u(x)‖ requires also a control
of the nonzero overlaps 〈u(x) , Hu(y)〉 for x 6= y. By exponential decay of u(x), it is easy to see
that these overlaps are N−o(1), but, as explained above, a polynomial bound N−c is required to
prove localization. The construction of u(x) and λ(x) and a simple computation reveal that

(H − λ(x))u(x) =
∑

y∈V\{x}
εy(x)1y , εy(x) ..= 1√

d

∑
t∈S1(y)

〈1t,u(x)〉 . (2.8)

Then the main idea to estimate εy(x) is the following elementary bound. Let T be a finite set. For
any (ut)t∈T ∈ CT and any random T ⊂ T we have

E
[∑
t∈T
|ut|2

]
=
∑
t∈T

E[1t∈T ]|ut|2 6 max
t∈T

P(t ∈ T )
∑
t∈T
|ut|2 . (2.9)

Heuristically, by the independence of the edges in the Erdős-Rényi graph, the edges between V \ {x}
and (V \{x})c are sampled independently of the subgraphs G|(V\{x})c and G|V\{x} and are, therefore,
independent of u(x). Hence, (2.8), (2.9) and |S1(y)| . logN yield

E
[
|εy(x)|2

∣∣A(y)] 6 1
d
E
[
|S1(y)|

∑
t∈S1(y)

〈1t,u(x)〉2
∣∣∣∣A(y)

]
.

(logN)2

Nd
‖u(x)‖2 = N−1+o(1) .

From |V| = Nµ+o(1) and Chebyshev’s inequality, we therefore conclude ‖(H − λ(x))u(x)‖2 6
N2µ−1+o(1) with high probability.

Since (u(x))x∈W is not an orthogonal family, we choose the first columns of U in (2.5) as the
Gram-Schmidt orthonormalization (u⊥(x))x∈W of (u(x))x∈W (with respect to a fixed order on W),
i.e.

u⊥(x) ..= u(x)−Π<xu(x)
‖u(x)−Π<xu(x)‖ , (2.10)

where Π<x denotes the orthogonal projection onto span{u(y) : y ∈ W, y < x}. It remains to show
that, for any x ∈ W , ‖(H−λ(x))u⊥(x)‖ is also bounded by an inverse power of N . The denominator
in (2.10) is & 1 since 〈1x ,u(x)〉 & 1 and 〈1y ,u(x)〉 = 0 for all y 6= x. Moreover, H −λ(x) applied to
the numerator of (2.10) is bounded by a negative power of N , since ‖(H−λ(x))u(x)‖ 6 Nµ−1/2+o(1)

as shown above, and ‖Π<xHΠ<x‖ 6 Nµ−1/2+o(1) where Π<x
..= 1−Π<x. The latter bound is proved

using the above estimate on ‖(H − λ(x))u(x)‖. Given this construction and the bounds explained
above, we extend (u⊥(x))x∈W to an orthonormal basis and choose these vectors as columns of U .
In particular, the first n = |W| columns of U are given by (u⊥(x))x∈W .

What remains is to show that spec(X) is separated from I. To that end, we decompose its
domain of definition into the span of w1, the eigenvector of H associated with its largest eigenvalue,
and its orthogonal complement. This largest eigenvalue and the overlaps between w1 and u⊥(x) for
all x ∈ W can be controlled relatively precisely, and we omit w1 from the remaining explanations
below. It suffices to show that λ1(X) 6 Λ(α∗) + o(1), by the definitions of V and W. This upper
bound on λ1(X) is equivalent to

λ1(ΠWHΠW) 6 Λ(α∗) + o(1) , (2.11)

where ΠW ..= 1 − ΠW and ΠW is the orthogonal projection onto span{u⊥(x) : x ∈ W}. An
estimate of the form (2.11) was first derived in [12], except that there the projection was defined
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in terms local profile vectors. Since we are using the global profile vectors u⊥(x), in our case this
estimate is considerably more involved. The rough strategy is to make a link between (2.11) and a
corresponding estimate for local profile vectors, which was already established in [12] using bounds
on the non-backtracking matrix of H, an Ihara-Bass type identity, and a local delocalization result
for approximate eigenvectors.

To that end, let Q be the orthogonal projection onto the complement of ⋃y∈V\W B2r?−1(y),
where r? �

√
logN is chosen as in [12, eq. (1.8)]. In particular, the local profile vectors v(x)

from [12] satisfy supp v(x) ⊂ Br?(x) for every x ∈ V. We denote by ΠQ the projection onto
span{Qu⊥(x) : x ∈ W}. If we obtain a small enough upper bound on ‖ΠW −ΠQ‖ then it suffices
to show λ1(ΠQHΠQ) 6 Λ(α∗) + o(1), where ΠQ

..= 1 − ΠQ. To get a sufficient estimate for
‖ΠW −ΠQ‖, we need that u⊥(x)|Br(y) is polynomially small in N for x 6= y as a summation over
x, y ∈ W is required. This is achieved through an argument motivated by (2.9). Let Πv be the
orthogonal projection onto span{v(x) : x ∈ V \ W}. By definition of Q and supp v(x) ⊂ Br?(x),
ΠQ and Πv commute. Thus, λ1(ΠQHΠQ) 6 max{λ1(ΠvHΠv), λ1(ΠQΠvHΠvΠQ)}+ o(1), where
Πv ..= 1− Πv. By [12], λ1(ΠvHΠv) 6 Λ(α∗) + o(1). For eigenvectors of H which are orthogonal to
the local profile vectors v(x) and whose associated eigenvalues are large enough, we obtain a weak
delocalization estimate by following an argument in [12]. This weak delocalization estimate shows
that λ1(ΠQΠvHΠvΠQ) 6 Λ(α∗) + o(1) if λ1(ΠWH(V\W)ΠW) 6 Λ(α∗) + o(1). The last bound is
finally obtained by a careful analysis of the spectrum of H(V\W), which is based on viewing it as a
perturbation of ΠWH(V\W)ΠW + ΠWH(V\W)ΠW and analysing H(V\W) on ran ΠW in detail.
2.3.3. Eigenvalue spacing. We now sketch how to prove (iii). To that end, we fix a 6= b ∈ W. To
prove that λ(a) and λ(b) are not too close to each other, we choose an appropriate radius r on the
scale logN

log d of the diameter of G. Then we fix the two subgraphs G|Br(b) and G|Br(b)c and show that
resampling the edges between Sr(b) and Br(b)c results in a substantial change of λ(b) while λ(a)
remains almost unchanged: we establish simultaneous anticoncentration for λ(b) and concentration
for λ(b), which yields anticoncentration for their difference. The edges between Sr(b) and Br(b)c
form an independent family of Bernoulli random variables by definition of the Erdős-Rényi graph.

On a more formal level, we work conditionally on F ..= σ(Br(b), A|Br(b), A|Br(b)c) and prove the
following two statements in order to obtain a lower bound on |λ(a)− λ(b)|.

(a) λ(a) fluctuates little under resampling of the edges between Sr(b) and Br(b)c, i.e. the concen-
tration estimate

P(|λ(a)− z| � N−η|F) > 1−N−η/2+o(1)

holds if z is the second largest eigenvalue of H(V∪Br(b)\{a}), which is F-measurable.

(b) λ(b) fluctuates a lot under resampling of the edges between Sr(b) and Br(b)c, i.e. the anticon-
centration estimate

P(|λ(b)− z| > N−η|F) > 1−N−η/2+o(1)

holds for any F-measurable spectral parameter z in I (see the definition of I after (2.6b)).

We justify (a) by replacing u(a) with an F-measurable version. This allows for a use of (2.9) in
a similar fashion as in the first part of Section 2.3.2 and reveals that, conditionally on F , λ(a) is
concentrated around the second largest eigenvalue of H(V∪Br(b)\{a}) since |Br(b)| is not too large
due to our choice of r.
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The proof of (b) is much more elaborate. We start by noting that λ(b) is characterized by the
equation

λ(b) + 1
d

∑
x,y∈S1(b)

(H(V) − λ(b))−1
xy = 0 , (2.12)

as follows from Schur’s complement formula. The main strategy is to derive a recursive family of
equations for the Green function, starting from (2.12) and extending to increasingly large spheres
around b, to which Kesten’s self-improving anticoncentration result can be applied. To quantify
anticoncentration, we use Lévy’s concentration function

Q(X,L) ..= sup
t∈R

P(X ∈ [t− L, t+ L]) , (2.13)

where X is a random variable and L > 0 is deterministic.

Proposition 2.8 (Theorem 2 of [59]). There exists a universal constant K such that for any
independent random variables X1, . . . , Xn satisfying Q(Xi, L) 6 1/2 we have

Q

( ∑
i∈[n]

Xi, L

)
6

K√
n

max
i∈[n]

Q(Xi, L) . (2.14)

This result is an improvement due to Kesten [59] of a classical anticoncentration result of
Doeblin, Lévy, Kolmogorov, and Rogozin. Kesten’s insight was that such an estimate can be made
self-improving, as manifested by the factor maxi∈[n]Q(Xi, L) on the right-hand side. This factor is
crucial for our argument, as it allows us to successively improve the upper bound on Q.

We now explain more precisely how the expression of λ(b) in terms of a large number of Green
function entries is obtained. We shall tacitly use that G|Br(b) is a tree, which can be easily shown to
be true with high probability. Applying Schur’s complement formula at x ∈ Si(b), using standard
resolvent identities, and arguing similarly as in (2.9) to control errors yields

1
Gxx(i− 1, z) = −z − 1

d

∑
y∈S+

1 (x)

Gyy(i, z) + o(1) , (2.15)

where Gxx(i, z) ..= (H(Bi(b)∪V) − z)−1
xx and S+

1 (x) = S1(x) ∩ Si+1(b) is the set of children of x in the
tree G|Br(x) rooted at b. The error o(1) is polynomially small in N ; it comprises error terms arising
from removing vertices from H and neglecting all off-diagonal Green function entries.

Setting the error term in (2.15) to zero, we obtain a recursive equation for the idealized Green
function entries (gx(z))x∈Br(b)\{b}, given by

1
gx(z)

..=

−z −
1
d

∑
y∈S+

1 (x)Gyy(r, z) if x ∈ Sr(b)
−z − 1

d

∑
y∈S+

1 (x) gy(z) if x ∈ Br−1(b) \ {b} ,
(2.16)

which is an approximate version of the recursion (2.15) for the actual Green function entries. The
recursion begins at the boundary of the ball Br(b) and propagates inwards. We note that, for any
1 6 i 6 r, conditioned on F , the family (gx(z))x∈Si(b) is independent if G|Br(b) is a tree and z is
F-measurable. From (2.15), (2.16) and r � logN

log d , it is not hard to conclude by induction that, for
large enough η > 0, with high probability, gx(z) = Gxx(0, z) + o(N−η) = (H(V) − z)−1

xx + o(N−η) for
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all x ∈ S1(b). Hence, if we can prove that Q(gx(z), N−η) 6 N−c for all x ∈ S1(b) and some constant
c > 0, then a union bound over a 6= b ∈ W, |W| � Nµ, the smallness of the off-diagonal entries of
(H(V) − λ(b))−1 as argued after (2.15), and (2.12) imply anticoncentration for λ(b)− z. This is (b),
which together with (a) implies that mina6=b∈W |λ(a)− λ(b)| > N−η with high probability, i.e. (iii).

Therefore, to complete the sketch of (iii), what remains is to prove Q(gx(z), N−η) 6 N−c for all
x ∈ S1(b), whose proof we sketch now. Throughout the entire argument we condition on F and use
that G|Br(x) is a tree. To begin the recursion, we first show that Q(gx, d−1) 6 1/2 for any x ∈ Sr(b).
This follows from the first case of (2.16), using a weak lower bound on the entries Gyy(r, z) and
anticoncentration from the fact that the size of S+

1 (x) is a binomial random variable conditioned on
F .

Next, let x ∈ Si(b) for 1 6 i 6 r − 1. By using the second case in (2.16) and Proposition 2.8,
we iteratively refine the resolution, i.e. decrease the second argument of Q, and decrease the upper
bound on Q, which are d−1 and 1/2, respectively, at the starting point. Indeed, conditioning on
A|Bi(b), the second case in (2.16) and rescaling the second argument of Q yield

Q
(
gx(z), (T 2d)−r+i

)
6 Q

( ∑
y∈S+

1 (x)

gy(z), (T 2d)−r+i+1
)

6
K√
|S+

1 (x)|
max

y∈S+
1 (x)

Q
(
gy(z), (T 2d)−r+i+1) , (2.17)

where we applied Proposition 2.8 using the independence of (gy(z))y∈S+
1 (x) in the second step. Here,

we also used that Q(f(X), L) 6 Q(X,T−2L) if f(t) ..= 1
t and X ∈ [T−1, T ] since the derivative of f

is bounded from below by T−2 on this interval, and that, with high probability, g lies in [T−1, T ]
for T �

√
logN
d .

The estimate (2.17) yields the desired self-improvement provided that |S+
1 (x)| is large enough.

However, |S+
1 (x)| is not large enough for all vertices x in Br(b) (and in fact consistently applying

(2.17) at all vertices yields an anticoncentration bound at the root b that is far from optimal and too
weak to conclude localization). Sometimes, a better bound than (2.17) can be obtained by replacing
Kesten’s estimate (2.14) with the trivial estimate

Q

( ∑
i∈[n]

Xi, L

)
6 min

i∈[n]
Q(Xi, L) , (2.18)

which follows immediately from the independence of the random variables Xi. Although this
estimate lacks the factor K/

√
n from (2.14), it replaces the maximum with a minimum. Thus, an

important ingredient in our recursive self-improving anticoncentration argument is an algorithm
that determines which of (2.14) or (2.18) is to be used at any given vertex x ∈ Br(b). It relies on
the notion of robust vertices.

Recursively, a vertex x ∈ Br(b) is called robust if x ∈ Sr(b) or S+
1 (x) contains at least d/2 robust

vertices. We denote the set of robust vertices by R. An important auxiliary result is that the root
b is robust with high probability, which in particular implies that Si(b) ∩R is large for any i 6 r.
Therefore, we can restrict to x ∈ Si(b) ∩R and proceed similarly as in (2.17) to obtain

Q(gx(z), (T 2d)−r+i) 6 Q

( ∑
y∈S+

1 (x)∩R

gy(z), (T 2d)−r+i+1
)
6
K
√

2√
d

max
y∈S+

1 (x)∩R
Q
(
gy(z), (T 2d)−r+i+1) ,
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where in the first step we used (2.18). Thus, we obtain Q(gx(z), (T 2d)−r) 6 (K
√

2d−1)r−1 for all
x ∈ S1(b) and, therefore, by choosing r such that (T 2d)r+1 = Nη, we arrive at Q(gx(z), N−η) 6
N−η/2+o(1) for all x ∈ S1(b). This is the desired anticoncentration bound, (b), which, as explained
above, implies (iii).
2.3.4. The three main exponents of N . Throughout this paper we use the three exponents µ, ζ,
η > 0 to control three central quantities of the argument. We summarize their roles here for easy
reference.

• Nµ is the typical size of the vertex sets V and W (cf. Proposition 3.2 (i)), as the parameter
µ is introduced to control α∗ (see (1.6)). Consequently, Nµ is also the typical number of
eigenvalues of H satisfying (1.7). Therefore, the factor Nµ emerges from union bounds when
a property is required for all x ∈ V or x ∈ W.

• N−ζ is the upper bound on the eigenvalue approximation that we establish in Proposition 2.3,
i.e. on the distance between λ(x) and the eigenvalues of H or, more precisely, the upper bound
on ‖(H − λ(x))u(x)‖. Proposition 2.3 requires the condition ζ < 1/2− 3µ/2.

• N−η is the lower bound on the eigenvalue spacing, or correspondingly minx 6=y∈W |λ(x)− λ(y)|,
that we prove in Proposition 2.4. Since the typical eigenvalue spacing is N−µ in the interval
we consider, we clearly need µ < η. In fact, our proof of Proposition 2.4 requires the stronger
condition 8µ < η for technical reasons as well as µ < 1/24.

To apply perturbation theory in the proof of Theorem 1.1, we need that the error in the eigenvalue
approximation N−ζ be smaller than the eigenvalue spacing N−η. This means that η < ζ.

2.4. Localization profile – proof of Theorem 1.6. Theorem 1.6 is an immediate consequence
of the following result.

Proposition 2.9 (Local approximation for u(x)). Let µ ∈ [0, 1/3). Then, with high probability, the
following holds for all x ∈ W. If r ∈ N satisfies

log d� r 6 min
{1

6
logN
log d ,min

{1
5 −

µ

4 ,
1
3 − µ

} logN
log d − 2

}
, (2.19)

then

(i) u(x) = vr(x) + o(1),

(ii) u(x) = wr(x) + o(1).

Part (i) is proved in Section 3.2 below. Part (ii) follows from Corollary 4.2 below, since Λ(αx) > 2.

Proof of Theorem 1.6. From (2.3) in the proof of Theorem 1.1, we know that w = u(x)+O(N−ε) for
a unique x ∈ W and some small enough ε > 0. Therefore, Theorem 1.6 follows from Proposition 2.9.

2.5. Mobility edge – proof of Theorem 1.7. Part (i) follows from Theorem 1.1, since inf{α >
0 .. P(α1 > α) 6 N−23/24} 6 2 if d > 23

24b∗ logN , by Lemma D.1 below. Part (ii) was proved
in [14, Theorem 1.1 (ii)].
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2.6. Localization length – proof of Theorem 1.8. For any eigenvector w we introduce the
function

q(u) ..=
∑
y

d(u, y)〈1y ,w〉2 ,

so that `(w) = minu q(u).
For the localized phase, suppose that λ is an eigenvalue satisfying |λ| > 2 + κ with associated

eigenvector w. Denote by x the unique vertex associated with w from Theorems 1.1 and 1.6. Then
the following estimates hold on the intersection of the high-probability events of these two theorems.
By Theorem 1.1, there exists a constant R ≡ Rκ such that

q(u) > d(u, x)〈1x ,w〉2 > R
αx − 2

2(αx − 1) + o(1) > αx
αx − 2 for all u ∈ BR(x)c , (2.20)

where the third inequality holds for large enough constant R. Moreover, for any ε > 0 there exists a
constant R′ ∈ N such that for u ∈ BR(x) we have

q(u) =
∑

y∈BR′ (x)
d(u, y)〈1y ,w〉2 +

∑
y∈BR′ (x)c

d(u, y)〈1y ,w〉2

=
∑

y∈BR′ (x)
d(u, y)〈1y ,w〉2 +O(ε)

=
∑

y∈BR′ (x)
d(u, y)〈1y ,vr(x)〉2 +O(ε) + o(1) , (2.21)

where the second step follows from the estimate d(u, y) 6 R + d(x, y) and the exponential decay
from Theorem 1.1, and the third step from Theorem 1.6 with some log d� r � logN

log d .
To analyse the sum, we abbreviate k ..= d(x, u) and introduce the set Ti(u, x) ..= Si(x) ∩ Si+k(u)

for 0 6 i 6 r, which is the set of vertices in Si(x) whose geodesic to x does not pass through u. By
Proposition 3.2 (ii) below, the graph G|Br(x) is a tree, which implies

d(u, y) =
{
k + i if y ∈ Ti(u, x)
|k − i| if y ∈ Si(x) \ Ti(u, x) .

(2.22)

Next, we estimate |Si(x) \ Ti(u, x)|. For 1 6 i 6 k, the set Si(x) \ Ti(u, x) consists of the unique
vertex on the geodesic from x to u at distance i from x. For i > k, we have Si(x) \ Ti(u, x) =
Si(x) ∩ Si−k(u). Here we used the tree structure of G|Br(x). Hence, we conclude that for i > k we
have |Si(x) \ Ti(u, x)| 6 |Si−k(u)| . (logN)di−k−1, by Proposition 3.1.

Next, by [12, Lemma 5.4], with high probability we have |Si(x)| = |S1(x)|di−1(1 + o(1)) for
1 6 i 6 r. Since |S1(x)| > α∗d > 2d, we conclude that |Si(x)| > di for i 6 r. Putting all of these
estimates together, we conclude for all 1 6 i 6 r that

|Si(x) \ Ti(u, x)|
|Si(x)| .

{
d−i if 1 6 i 6 k

(logN)d−k−1 if k < i 6 r .

Since Ti(u, x) = Si(x) for k = 0 or i = 0, using the condition (1.5) we conclude that

|Si(x) \ Ti(u, x)|
|Si(x)| = o(1) (2.23)
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for all u ∈ BR(x) and 0 6 i 6 r.
Next, using (2.22) and recalling the definition (1.11), we write the above sum as

∑
y∈BR′ (x)

d(u, y)〈1y ,vr(x)〉2 =
R′∑
i=0

( ∑
y∈Ti(u,x)

(k + i)〈1y ,vr(x)〉2 +
∑

y∈Si(x)\Ti(u,x)
|k − i|〈1y ,vr(x)〉2

)

=
R′∑
i=0

(
(k + i)ui(αx)2 |Ti(u, x)|

|Si(x)| + |k − i|ui(αx)2 |Si(x) \ Ti(u, x)|
|Si(x)|

)

=
R′∑
i=0

(k + i)ui(αx)2 + o(1) ,

where in the last step we used (2.23), the fact that R′ is constant, and ∑r−1
i=0 ui(αx)2 = 1. The latter

sum is clearly minimized for k = 0. Recalling (2.21), we therefore conclude that for any u ∈ BR(x)
we have

q(u) > q(x) +O(ε) + o(1) , q(x) =
∞∑
i=1

iui(αx)2 +O(ε) + o(1)

for large enough R′ depending on ε. Since ε > 0 was arbitrary, and recalling (2.20), by taking the
minimum over u ∈ [N ], it therefore suffices to show that

∞∑
i=1

iui(αx)2 = αx
2(αx − 2) + o(1) = |λ|

2
√
λ2 − 4

+ o(1) . (2.24)

The first equality of (2.24) is an elementary computation using the definition (1.10), recalling the
normalization ∑r−1

i=0 ui(α)2 = 1 and that r � 1. The second equality of (2.24) follows from the
estimate |λ| = Λ(αx)+o(1) by Remark 1.2, which can be inverted to obtain 1

αx
= 1

2
(
1−
√
λ2−4
|λ|

)
+o(1).

For the delocalized phase, suppose that λ is an eigenvalue satisfying |λ| 6 2− κ with associated
eigenvector w. We use [14, Theorem 1.1 (ii)] to deduce that with probability 1−O(N−10) we have
‖w‖2∞ 6 N−1+o(1). Hence, with probability 1−O(N−9) we have, for any x ∈ [N ] and r > 0,

q(x) >
∑

y∈Br(x)
d(x, y) 〈1y ,w〉2 + r

∑
y∈Br(x)c

〈1y ,w〉2

> r

(
1−

∑
y∈Br(x)

〈1y ,w〉2
)
> r

(
1−N−1+o(1)|Br(x)|

)
.

Next, we deduce from [34, Lemma 1] that for any constant ε > 0 there is a constant δ > 0 such
that, with high probability, if r 6 (1 − ε) logN

log d then |Br(x)| 6 N1−δ for all x ∈ [N ]. Choosing
r ..= b(1− ε) logN

log d c, we conclude that, for any ε > 0, with high probability, for all eigenvectors w
with eigenvalue λ satisfying |λ| 6 2 − κ, we have `(w) > (1 − ε + o(1)) logN

log d . Since ε > 0 was an
arbitrary constant, we conclude the stronger lower bound `(w) > (1−o(1)) logN

log d = diam(G)(1+o(1)),
where the last step follows from [34]. The complementary upper bound `(w) 6 diam(G) follows
by definition of diam(G), since d(x, y) 6 diam(G) for all x, y ∈ [N ] (here we used that under our
assumption on d, the graph G is with high probability connected). This concludes the proof.
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3. Preliminaries

The rest of this paper is devoted to the proofs of Propositions 2.2, 2.3 and 2.4. We begin with a
short section that collects some basic properties of the graph G and its spectrum.

3.1. Properties of the graph. In this subsection, we collect some basic local properties of the
Erdős-Rényi graph G around vertices in V.

Proposition 3.1. Suppose that
√

logN � d 6 3 logN . With high probability, the following holds.

(i) maxx∈[N ] |S1(x)| 6 10 logN .

(ii) |Bi(x)| . max{|S1(x)|, d}di−1 for all x ∈ [N ] and all i ∈ N with i 6 1
3

logN
log d .

Item (i) is a simple application of Bennett’s inequality and (ii) follows from [12,13]; a detailed
proof is given in Section E below. In particular, by the assumption d �

√
logN , we get from

Proposition 3.1 (i) that

Λ(αx) . √αx .

√
logN
d
�
√
d (3.1)

for all x ∈ [N ] on the high-probability event from Proposition 3.1.

Proposition 3.2. Let µ ∈ [0, 1/3) be a constant. Suppose that
√

logN � d 6 3 logN . With high
probability, for any r ∈ N satisfying

1 6 r 6 min
{1

5 −
µ

4 ,
1
3 − µ

} logN
log d , (3.2)

the following holds.

(i) |V| 6 Nµ+o(1).

(ii) G|Br(x) is a tree for all x ∈ V.

(iii) Br(x) ∩Br(y) = ∅ for all x, y ∈ V satisfying x 6= y.

(iv) Let ν ∈ [0, 1]. If 1− µ− ν − r log d
logN & 1 then |S1(y)| 6 α∗(ν)d for all y ∈

⋃
x∈V(Br(x) \ {x}).

These statements are all consequences of [13, 15]; we explain the details of the proof of Proposi-
tion 3.2 in Section E below.

3.2. Properties of the spectrum. In this subsection we collect basic spectral properties of H
and some of its submatrices.

Definition 3.3. Let w1 be a normalized eigenvector of H with nonnegative entries associated with
the largest eigenvalue λ1(H) of H.

Note that, with high probability, w1 is unique and coincides with the Perron-Frobenius eigenvector
of the giant component of G.

Proposition 3.4. Suppose (1.5). With high probability the following holds.
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(i) For any µ ∈ [0, 1] we have max{λ2(H(V)),−λN (H(V))} 6 Λ(α∗) + o(1).

(ii) Fix µ ∈ [0, 1/3). If X ⊂
⋃
x∈V Br(x) with r ∈ N as in (3.2), then λ1(H(X)) and the corre-

sponding eigenvector w of H(X) satisfy

λ1(H(X)) =
√
d(1 + o(1)) ,

∥∥∥∥w− 1Xc

|Xc|1/2

∥∥∥∥ = o(1) .

(iii) Fix µ ∈ [0, 1). If x ∈ V, r ∈ N satisfies log d� r 6 1
6

logN
log d and X ⊂ [N ] satisfies X∩Br(x) = ∅,

then
‖(H(X) − Λ(αx))vr(x)‖ = o(1) ,

where vr(x) was defined in (1.11).

(iv) Fix µ ∈ [0, 4/5). For any r ∈ N satisfying r � d
log logN , there is a normalized vector q with

supp q ⊂
(⋃

x∈V Br+1(x)
)c such that

‖(H −
√
d)q‖ . d−1/2 , ‖w1 − q‖ . d−1 , ‖q −N−1/21[N ]‖ . d−1/2 .

These results follow essentially from [12, 13, 15]; the detailed proof is presented in Section C
below.

Definition 3.5. We denote by Ω the intersection of the high-probability events of Propositions 3.1,
3.2 and 3.4.

In particular, on Ω the estimate (3.1) holds.

Corollary 3.6. Fix µ ∈ [0, 1/3). On Ω, the following holds for all x ∈ W and all X ⊂ [N ].
If X ∩ Br(x) = ∅ and V \ {x} ⊂ X ⊂

⋃
y∈V Br(y) for some r ∈ N satisfying log d � r 6

min
{1

6 ,
1
5 −

µ
4 ,

1
3 − µ

} logN
log d then

λ1(H(X)) =
√
d(1 + o(1)) , λ2(H(X)) = Λ(αx) + o(1) , λ3(H(X)) 6 Λ(α∗) + o(1) .

Corollary 3.6 with X = V \ {x} directly implies that, on Ω,

λ(x) = λ2(H(V\{x})) = Λ(αx) + o(1) . (3.3)

Proof of Corollary 3.6. The statement about λ1(H(X)) is identical to Proposition 3.4 (ii). By
eigenvalue interlacing (Lemma D.3), we have

λ3(H(X)) 6 λ3(H(V\{x})) 6 λ2(H(V)) 6 Λ(α∗) + o(1) ,

where for the last inequality we used Proposition 3.4 (i). Finally, Proposition 3.4 (iii) implies
that there exists an eigenvalue of H(X) at distance o(1) from Λ(αx). Because of the estimates on
λ1(H(X)) and λ3(H(X)) just proven, and because Λ(αx) > Λ(α∗) + κ/2 for x ∈ W (recall (2.2)) as
well as Λ(αx)�

√
d by (3.1), this eigenvalue has to be λ2(H(X)).
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Proof of Proposition 2.9 (i). We show that the conclusion of Proposition 2.9 (i) holds on Ω. The
proof uses a spectral gap of H(V\{x}) around λ(x) = λ2(H(V\{x})), that vr(x) is an approximate
eigenvector of H(V\{x}) by Proposition 3.4 (iii), and perturbation theory. Indeed, from Corollary 3.6
with X = V \ {x}, recalling the definition of W (see (2.2)), we obtain that λ2(H(V\{x})) is separated
from the other eigenvalues of H(V\{x}) by a positive constant. Owing to (3.3), Proposition 3.4 (iii)
with X = V \ {x} and Lemma D.2 below imply ‖u(x)− vr(x)‖ = o(1), i.e. Proposition 2.9 (i).

We conclude the following corollary from Proposition 2.9 (i) and its proof.

Corollary 3.7. Fix µ ∈ [0, 1/3). On Ω we have 〈1x ,u(x)〉 =
√

αx−2
2(αx−1) + o(1) & 1 for all x ∈ W.

Proof. We first note that for any r →∞ as N →∞, we have u0(αx) =
√

αx−2
2(αx−1) + o(1) by (1.10).

By Proposition 2.9 (i) and its proof, 〈1x ,u(x)〉 = 〈1x ,vr(x)〉 + o(1) = u0(αx) + o(1) & 1 on Ω,
where in second step we used the definition (1.11), and in the last step we used that αx > 2 + κ, so
that the sequence (ui(αx))i from (1.10) is exponentially decaying in i, uniformly in r.

3.3. Properties of the Green function. In this subsection, we fix µ ∈ [0, 1/3). Define

J = [Λ(α∗) + κ/4,
√
d/2] .

We shall use that whenever z ∈ J , all Green functions appearing in our proof are bounded, which
is the content of the following result.

Lemma 3.8. Suppose (1.5) and (3.2). On Ω, for z, z′ ∈ J and X ⊂ [N ] satisfying V ⊂ X ⊂⋃
x∈V Br(x), we have

‖(H(X) − z)−1‖ 6 8/κ , (3.4)
‖(H(X) − z)−1 − (H(X) − z′)−1‖ 6 (8/κ)2 |z − z′| . (3.5)

Proof of Lemma 3.8. Eigenvalue interlacing (Lemma D.3) and Proposition 3.4 (i) and (ii) imply

λ2(H(X)) 6 λ2(H(V)) 6 Λ(α∗) + κ/8 and λ1(H(X)) =
√
d(1 + o(1)) >

√
d/2 + κ/8 .

Therefore, dist(z,Spec(H(X))) > κ/8 for any z ∈ J , which proves (3.4). The Lipschitz bound (3.5)
follows from (3.4) and the resolvent identity.

Lemma 3.9. Suppose (1.5) and (3.2). On Ω, for any V ⊂ X ⊂
⋃
x∈V Br(x), z ∈ J , and y /∈ X,

we have
−(H(X) − z)−1

yy > (3z)−1 .

Proof of Lemma 3.9. Denoting by λ1 > λ2 > . . . and w1,w2, . . . the eigenvalues and eigenvectors
of H(X), respectively, we have

− (H(X) − z)−1
yy = 〈1y ,w1〉2

z − λ1
+

∑
26i6N

〈1y ,wi〉2

z − λi
>

1
z − λN

(1− 〈1y ,w1〉2)−
∣∣∣∣∣〈1y ,w1〉2

λ1 − z

∣∣∣∣∣ , (3.6)

where in the second step we used z − λN > z − λi > 0 for all i > 2, which follows from eigenvalue
interlacing (Lemma D.3), Proposition 3.4 (i), and the condition z ∈ J .
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To estimate the right-hand side of (3.6), we use Proposition 3.2 (i) and Proposition 3.1 (ii)
as well as (3.2) to estimate |X| 6 ∑

x∈V |Br(x)| 6 N1/3+o(1) on Ω. From Proposition 3.4 (ii) we
therefore deduce that

〈1y ,w1〉2 = |Xc|−1/2 + o(1) = o(1) . (3.7)

We conclude that the first term on the right-hand side of (3.6) is bounded from below by ((2 +
o(1))z)−1, as z − λN 6 2z from Proposition 3.4 (i). The second term on the right-hand side of (3.6)
is estimated using (3.7) as well as |λ1 − z| &

√
d > z by Proposition 3.4 (ii) and z ∈ J .

4. Exponential decay of u(x) and proof of Proposition 2.2

In this section we establish the exponential decay of u(x) around the vertex x. In particular,
Proposition 2.2 is a direct consequence of Proposition 4.1 below. Moreover, we prove in Corollary 4.2
below that u(x) is well approximated by wr(x), the eigenvector of H|Br(x) corresponding to its
largest eigenvalue. This implies Proposition 2.9 (ii).

Throughout this section we use the high-probability event Ω from Definition 3.5.

4.1. Simple exponential decay of u(x). In this subsection we establish exponential decay at
some positive but not optimal rate.

Proposition 4.1. Suppose that (1.5) holds. Then there is a constant c ∈ (0, 1) such that, for each
fixed µ ∈ [0, 1/3), on Ω, for each x ∈ W there exists qx > 0 such that

‖u(x)|Bi(x)c‖ .
√
αx q

i
x , qx = Λ(α∗(1/2)) + o(1)

λ(x) 6 1− c , (4.1)

for all i ∈ N satisfying 1 6 i 6 min
{1

5 −
µ
4 ,

1
3 − µ

} logN
log d − 2.

Proof. We note that supp u(x) ⊂ ([N ] \ V) ∪ {x} and decompose u(x) = 〈1x ,u(x)〉1x + Qu(x),
where Q ..= ∑

y∈[N ]\V〈1y , · 〉1y is the orthogonal projection on the coordinates in [N ] \ V . We apply
the projection Q to the eigenvalue-eigenvector relation

λ(x)u(x) = H(V\{x})u(x) = 〈1x ,u(x)〉1S1(x)/
√
d+H(V\{x})Qu(x) ,

solve for Qu(x), and obtain

Qu(x) = 〈1x ,u(x)〉√
d

(
λ(x)−H(V))−11S1(x) , (4.2)

where we used that H(V\{x})1x = 1S1(x)/
√
d and QH(V\{x})Q = H(V). We also used that λ(x)−H(V)

is invertible, which can be seen as follows. From Proposition 3.4 (ii) with X = V and r = 0, we
conclude λ1(H(V)) =

√
d(1 + o(1)) and, hence, (3.3) and Proposition 3.4 (i) yield that λ(x) is not

an eigenvalue of H(V) and
dist(λ(x), specH(V)) & 1 . (4.3)

Let
Qi ..=

∑
y∈[N ]\(V∪Bi(x))

〈1y , · 〉1y
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the projection onto the coordinates in [N ] \ (V ∪ Bi(x)). As supp u(x) ⊂ ([N ] \ V) ∪ {x} and
QiQ = Qi, we conclude from (4.2) that

u(x)|Bi(x)c = Qiu(x) = QiQu(x) = 〈1x ,u(x)〉
λ(x)
√
d
Qi

(
1− H(V)

λ(x)

)−1
1S1(x) . (4.4)

For any n ∈ N we have(
1− H(V)

λ(x)

)−1
=

n∑
k=0

(
H(V)

λ(x)

)k
+
(

1− H(V)

λ(x)

)−1(H(V)

λ(x)

)n+1
. (4.5)

Since H(V) is a local operator, we conclude that Qi(H(V))k1S1(x) = 0 if k + 1 6 i. Hence, fixing
i > 1 and applying (4.5) with n = i− 1 to (4.4), we get

u(x)|Bi(x)c = 〈1x ,u(x)〉√
d

Qi
(
λ(x)−H(V))−1

(
H(V)

λ(x)

)i
1S1(x) = O

(‖(H(V))i1S1(x)‖√
dλ(x)i

)
. (4.6)

Here, in the last step, we employed |〈1x ,u(x)〉| 6 1, ‖Qi‖ 6 1, ‖(λ(x)−H(V))−1‖ . 1 by (4.3).
Let r ∈ N be the largest integer satisfying (3.2). We now claim that, on Ω,

‖H(V)v‖ 6 (Λ(α∗(1/2)) + o(1))‖v‖ (4.7)

for any v such that supp v ⊂ Br(x). Before proving (4.7), we use it conclude the proof of (4.1).
For i 6 r − 2 we have supp(H(V))i1S1(x) ⊂ Br(x), so that iterative applications of (4.7) yield

‖(H(V))i1S1(x)‖ . (Λ(α∗(1/2)) + o(1))i√αx
√
d . (4.8)

Hence, the first bound in (4.1) follows from (4.6). We now show the second bound in (4.1). If
logN
d > T for a sufficiently large constant T then qx 6 1 − c for some constant c > 0 by using

Corollary A.3 with ν = 1/2, λ(x) > Λ(α∗(µ)), µ 6 1/3 and possibly increasing its T . If logN
d < T . 1

then αx . 1 by Proposition 3.1 (i) and the estimate qx 6 1 − c for some constant c > 0 follows
from Λ(αx) 6 2√αx . 1 and λ(x) = Λ(αx) + o(1) > Λ(α∗) + κ/4 > Λ(α∗(1/2)) + κ/4, which is a
consequence of (3.3) and the definition of W . This completes the proof of the second bound in (4.1).

What remains is the proof of (4.7). For any v ∈ R[N ], the Cauchy-Schwarz inequality implies
‖(EH)(V)v‖ 6

√
d|supp v|

N ‖v‖. By Proposition 3.1 (ii) and (3.2), if supp v ⊂ Br(x) then |supp v| 6
N1/5+o(1). Therefore,

‖H(V)v‖ 6 ‖(H − EH)(V)v‖+ o(‖v‖)
6 ‖(H − EH)({y :αy>α∗(1/2)})v‖+ o(‖v‖) 6 (Λ(α∗(1/2)) + o(1))‖v‖ ,

where in the second step, we used Vc ∩Br(x) ⊂ {y .. αy > α∗(1/2)}c by Proposition 3.2 (iv) and, in
the third step, ‖(H − EH)({y :αy>α∗(1/2)})‖ 6 Λ(α∗(1/2)) + o(1) by Lemma C.18. This concludes
the proof of (4.7).

8Note that Lemma C.1 holds on Ω, since Lemma C.1 is used to prove Proposition 3.4 (i).
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4.2. Approximating u(x) by wr(x). From Proposition 4.1 and its proof, we deduce the following
result, which compares u(x) and wr(x) from Definition 1.5.
Corollary 4.2. Suppose that (1.5) holds and fix µ ∈ [0, 1/3). Then, on Ω, for all x ∈ W and r ∈ N
satisfying (2.19),

u(x) = wr(x) +O
(
αxq

r
xΛ(αx)−1) = wr(x) + o

(
Λ(αx)−1) ,

where qx is the same as in Proposition 4.1.

Proof. We shall apply Lemma D.2 with M = H|Br(x), λ̂ = λ(x) and v = u(x). First, we check its
conditions by studying the spectral gap of H|Br(x) around its largest eigenvalue. As r 6 1

6
logN
log d , we

conclude from Proposition 3.4 (iii) with X = Br(x)c that H|Br(x) = H(Br(x)c) has an eigenvalue
Λ(αx) + o(1). The bound (4.7) implies that ‖H|Br(x)\{x}‖ 6 ‖H(V)‖ 6 Λ(α∗(1/2)) + o(1), where in
the first step we used Proposition 3.2 (iii). By eigenvalue interlacing (Lemma D.3), we therefore
deduce that

λ1(H|Br(x)) = Λ(αx) + o(1) , λ2(H|Br(x)) 6 λ1(H|Br(x)\{x}) 6 Λ(α∗(1/2)) + o(1) .

Thus, the definition of W in (2.2) implies

λ1(H|Br(x))− λ2(H|Br(x)) & Λ(αx)
(
1− Λ(α∗(1/2))

Λ(α∗(µ)) + κ/2
)
& Λ(αx) ,

where the last inequality follows from Corollary A.3 if logN
d > T for some large enough constant T ,

and from Λ(α∗(1/2)) + κ/2 6 Λ(α∗(µ)) + κ/2 6 Λ(αx) . 1 (see (3.1)) otherwise. Hence, owing to
(3.3), there is ∆ & Λ(αx) such that H|Br(x) has precisely one eigenvalue in [λ(x)−∆, λ(x) + ∆].

Let Pr be the orthogonal projection onto the coordinates in Br(x). The eigenvalue-eigenvector
relation (H(V\{x}) − λ(x))u(x) = 0 and PrH(V\{x})Pr = H|Br(x) imply

(H|Br(x) − λ(x))u(x) = −PrH(V\{x})(1− Pr)u(x)− λ(x)(1− Pr)u(x) .

Therefore, since (1− Pr)u(x) = u(x)|Br(x)c , we get

‖(H|Br(x) − λ(x))u(x)‖ 6 λ(x)‖u(x)|Br(x)c‖+ ‖PrH(V\{x})(u(x)|Br(x)c)‖ . αxq
r
x . (4.9)

In the last step, we used λ(x) . α
1/2
x and Proposition 4.1 to estimate the first term. For the second

term, we used that PrH(V\{x})(u(x)|Br(x)c) = PrH
(V\{x})(u(x)|Sr+1(x)) by the locality of H(V\{x})

as well as the identity H(V\{x})(u(x)|Sr+1(x)) = H(V)(u(x)|Sr+1(x)), which yield

‖H(V\{x})(u(x)|Sr+1(x))‖ . Λ(α∗(1/2))‖u(x)|Sr+1(x)‖ . α1/2
x ‖u(x)|Br(x)c‖ . αxq

r
x

due to (4.7) as r + 1 6 min
{1

5 −
µ
4 ,

1
3 − µ

} logN
log d , Λ(α∗(1/2))2 6 Λ(α∗)2 . αx, and Proposition 4.1.

Since αx . logN
d by Proposition 3.1 (i), qx 6 1− c for some constant c > 0 by Proposition 4.1,

r � log d & log
(10 logN

d

)
by (1.5) and αx > 2, we obtain

αxq
r
x � 1 . α1/2

x . (4.10)

Therefore, owing to (4.9) and α1/2
x � Λ(αx) . ∆, we can now apply Lemma D.2 with M = H|Br(x),

λ̂ = λ(x) and v = u(x) to conclude u(x) = wr(x) +O(αxqrxΛ(αx)−1) from (4.9) and ∆ & Λ(αx) as
well as 〈1x ,u(x)〉 > 0 and 〈1x ,wr(x)〉 > 0. This proves the first equality in Corollary 4.2.

Since αxqrx � 1 by (4.10), the last equality in Corollary 4.2 follows immediately.
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4.3. Optimal exponential decay of u(x). In this subsection we establish an explicit rate of
exponential decay of u(x). It holds only for a smaller set of eigenvectors near the spectral edge,
requiring µ to be small enough. As pointed out in Remark 1.4, up to the error O(ε), this rate is
optimal.

Proposition 4.3. Suppose (1.5). Then the following holds.

(i) (Subcritical regime) There are constants T > 1 and c > 0 such that if logN
d > T then, on Ω,

for any small enough constant ε > 0 and each µ ∈ [0, ε],

‖u(x)|Bi(x)c‖ .
√
αx

(1 +O(ε)√
αx − 1

)i+1

for all x ∈ W and i 6 c logN
(log d) log 10 logN

d

.

(ii) (Critical regime) There is a constant c > 0 such that, for any constants T > 1 and ε > 0 with
ε 6 cκ, if logN

d 6 T and µ ∈ [0, cT−1ε2] then, with high probability,

‖u(x)|Bi(x)c‖ .
√
αx

(1 +O(ε)√
αx − 1

)i+1

for all x ∈ W and i 6 cε2

T
logN
log d .

Proof. Let x ∈ W. For any i, n ∈ N, we conclude from (4.4) and (4.5) (see also (4.6)) that

‖u(x)|Bi(x)c‖ .
1

λ(x)
√
d

∥∥∥∥Qi n∑
k=0

(
H(V)

λ(x)

)k
1S1(x)

∥∥∥∥+
‖(H(V))n+11S1(x)‖√

dλ(x)n+1

since |〈1x ,u(x)〉| . 1, ‖Qi‖ 6 1 and ‖(λ(x) −H(V))−1‖ . 1 by (4.3). We denote the right-hand
side of (3.2) by r. In the following, we always assume that n + 1 6 r and tacitly use the graph
properties listed in Proposition 3.2. As in the proof of Proposition 4.1 (see (4.8) and use qx 6 1− ε
by (4.1)), we find some constant ε > 0 such that if n+ 1 6 r then

‖(H(V))n+11S1(x)‖√
dλ(x)n+1

.
√
αx(1− ε)n+1 . (4.11)

We shall use the following result, whose proof is given at the end of this subsection.

Claim 4.4. Suppose that all vertices in Br−1(x)\{x} have degree at most τd, where 2 6 2
√
τ < λ(x).

Then for all n 6 r − 1 and i ∈ N we have on Ω

1
λ(x)
√
d

∥∥∥∥Qi n∑
k=0

(
H(V)

λ(x)

)k
1S1(x)

∥∥∥∥ . √αx( 2
λ(x) +

√
λ(x)2 − 4τ

)i+1
. (4.12)

We now explain how we choose τ and n in the subcritical and the critical regimes in order to
deduce Proposition 4.3 from Claim 4.4. In the subcritical regime, i.e. for the proof of (i), we choose
τ ..= α∗(1− 3ε) and n 6 ε logN

log d for some small enough constant ε > 0. By arguing similarly as in
the proof of Corollary A.3 below, we find a constant T > 1 such that

4τ
λ(x)2 6

4α∗(1− ε)(1 + o(1))
Λ(α∗(µ))2 = O(ε) < 1 (4.13)
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by (3.3) and (2.2) if logN
d > T . Here, the last inequality holds if ε is sufficiently small. Hence, the

assumption on τ in Claim 4.4 holds. Moreover, with our choice of τ , the degrees in Bn(x) \ {x} are
bounded by τd due to Proposition 3.2 (iv) and our assumption on n. Hence, the assumptions of Claim
4.4 hold. As λ(x) .

√
logN
d by (3.3) and Proposition 3.1 (i), the right-hand side of (4.11) is bounded

by the right-hand side of (4.12) if n = iC log
(10 logN

d

)
for some sufficiently large constant C. Since

we need that n+1 6 r, this yields the upper bound on i in (i). From (4.13) and (3.3), we deduce that
λ(x) +

√
λ(x)2 − 4τ = λ(x)

(
1 +

√
1− 4τ

λ(x)2
)

= Λ(αx)(1 + o(1))(2 +O(ε)) > 2
√
αx − 1(1 +O(ε))−1,

which completes the proof of (i).
For the proof of (ii), we note that µ 6 cε2T−1 < 1/3 for a sufficiently small constant c > 0

since T > 1, ε 6 cκ and κ 6 1. We choose τ = 1 + ε for some constant ε > 0. As λ(x)2 − 4τ =
(λ(x)2 − 4)(1 − 4ε

λ(x)2−4) > 0 due to (3.3) and (2.2) if ε 6 cκ with a small enough constant c > 0.
This establishes the first condition for (4.12). We set R ..= cε2

T
logN
log d and conclude from Bennett’s

inequality (Lemma D.1 below) and Proposition 3.2 that

P
(
αy 6 τ for all x ∈ W and for all y ∈ BR(x) \ {x}

)
6 exp

((
µ+R

log d
logN −

d

logN h(ε)
)

logN
)
,

where h(ε) ..= (1 + ε) log(1 + ε) − ε. Since h(ε) > 3cε2 for some small enough constant c > 0,
the upper bound on µ imposed in the statement, the definition of R and d

logN > 1
T imply that

the factor in front of logN is negative. Therefore, with high probability, we can apply (4.12)
simultaneously for all x ∈ W. We choose n = C(i+ 1) and deduce that if C > 0 is a large enough
constant then the error in (4.11) is dominated by the right-hand side of (4.12) as λ(x) . 1 for
logN
d 6 T . We recall that r denotes the right-hand side of (3.2) and note that the condition of

(4.11), n+ 1 = C(i+ 1) + 1 6 r, can be satisfied by possibly decreasing the constant c > 0. Finally,
we obtain λ(x) +

√
λ(x)2 − 4τ = λ(x) +

√
λ(x)2 − 4τ + O( ε√

λ(x)2−4
) = 2

√
αx − 1(1 + O(ε))−1

similarly as argued above and in the proof of (i) using ε 6 cκ and κ 6 1. This proves (ii) and, thus,
Proposition 4.3.

Proof of Claim 4.4. For y ∈ S1(x) we denote by B+
n (y) the ball of radius n around y in the graph

G|[N ]\{x}, and we write S+
n (y) ..= B+

n (y) \B+
n−1(y). Since G|Bn+1(x)\V is a forest on Ω and for each

y ∈ S1(x), G|B+
n (y) is a tree, we obtain

(A(V))k1S1(x) =
∑

y∈S1(x)

k+1∑
j=1

∑
z∈S+

j−1(y)

1zNk(y, z) ,

where Nk(y, z) denotes the number of walks on G|B+
n (y) of length k between y and z.

Thus, for i > 0, we conclude

Qi

n∑
k=0

1
λ(x)kdk/2

(A(V))k1S1(x) = Qi
∑

y∈S1(x)

n+1∑
j=1

∑
z∈S+

j−1(y)

n∑
k=j−1

1z
Nk(y, z)
λ(x)kdk/2

=
∑

y∈S1(x)

n+1∑
j=i+1

∑
z∈S+

j−1(y)

1z
( n∑
k=j−1

Nk(y, z)
λ(x)kdk/2

)
,
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where the second step follows from the definition of Qi. Since the sets {B+
n (y) .. y ∈ S1(x)}, are

disjoint, we conclude that∥∥∥∥Qi n∑
k=0

(
H(V)

λ(x)

)k
1S1(x)

∥∥∥∥2
=

∑
y∈S1(x)

n+1∑
j=i+1

∑
z∈S+

j−1(y)

( n∑
k=j−1

Nk(y, z)
λ(x)kdk/2

)2
. (4.14)

Next, let z ∈ S+
j−1(y) for some y ∈ S1(x). We note that Nk(y, z) = 0 if k − (j − 1) is odd due to

the bipartite structure of a tree. If this difference is even, then we now show that

Nk(y, z) 6 (Mk)1j(τd)(k−(j−1))/2 , (4.15)

where M is the adjacency matrix of N∗ (regarded as a graph where consecutive numbers are
adjacent), see (D.2) below for a precise definition, under the assumption that the degree of each
vertex in G|B+

n (y) is bounded by τd.
For the proof of (4.15), we introduce the set of walks on N∗

Wk(j) ..= {walks γ on N∗ of length k such that γ(0) = 1 and γ(k) = j} ,

and for each γ ∈Wk(j) we introduce the set of walks on G|B+
n (y) that project down to γ,

Wk(y, z; γ) ..= {walks Γ on G|B+
n (y) of length k such that Γ(0) = y,Γ(k) = z and d(x,Γ( · )) = γ} .

By definition, any walk Γ ∈Wk(y, z; γ) projects down to a walk γ ∈Wk(j), which implies

Nk(y, z) 6
∑

γ∈Wk(j)
|Wk(y, z; γ)| . (4.16)

In order to prove (4.15), we fix γ ∈Wk(j) and estimate |Wk(y, z; γ)|. For i ∈ [j], let Ti ..= max{t ∈
{0, . . . , k} .. γ(t) = i}, i.e. Ti is the last time when γ hits i. Clearly, T1 < T2 < . . . < Tj−1 < Tj = k.
See Figure 4.1 for an illustration of the walks γ and Γ. At each time Ti with i ∈ [j − 1], the
walk γ takes a step to the right, and by definition of the times Ti, any walk Γ ∈Wk(y, z; γ) takes
a step outwards on the geodesic from y to z. This means that j − 1 of the k steps of Γ are
fixed. Of the remaining k − (j − 1) steps, half correspond to steps to the left of γ, which again
correspond to a uniquely determined step of Γ along the unique path back towards y. Hence, only
(k − (j − 1))/2 of the k steps of Γ are free to choose. Since the degrees in G|B+

n (y) are bounded by
τd, we obtain |Wk(y, z; γ)| 6 (τd)(k−(j−1))/2. Plugging this estimate into (4.16) implies (4.15), since
|Wk(j)| = (Mk)1j by definition of M .
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x

y

z

1
0 T1 T2

2

j

T3 T4 T5 T6 = k t

γ(t)

Figure 4.1. An illustration of two walks γ ∈Wk(j) (bottom) and Γ ∈Wk(y, z; γ) (top). Here k = 21 and
j = 6. By definition of Wk(y, z; γ), for each t ∈ {0, . . . , k} we have γ(t) = d(x,Γ(t)). The time Ti is the last
time when γ hits i. We draw an edge {Γ(t),Γ(t+ 1)} in red if the choice of the vertex Γ(t+ 1) is uniquely
determined by γ and in blue otherwise. In the latter case, there are at most τd possible choices for Γ(t+ 1).
Red edges arise in two ways: (i) a step to the right in γ following a time Ti (j − 1 in total, in Γ corresponding
to a step towards z along the geodesic from y to z); (ii) a step to the left in γ ((k − (j − 1))/2 in total, in Γ
corresponding to a step towards y).

Next, applying (4.15) to (4.14), we obtain∥∥∥∥Qi n∑
k=0

(
H(V)

λ(x)

)k
1S1(x)

∥∥∥∥2
6

n+1∑
j=i+1

|Sj(x)|
( n∑
k=j−1

(Mk)1j(τd)(k−(j−1))/2

λ(x)kdk/2
)2

6
n+1∑
j=i+1

|Sj(x)| 1
(τd)j−1

( n∑
k=j−1

(Mk)1jτ
k/2

λ(x)k
)2

.
n+1∑
j=i+1

|S1(x)| 1
τ j−1

( ∞∑
k=0

(Mk)1jτ
k/2

λ(x)k
)2

=
n+1∑
j=i+1

|S1(x)| 1
τ j−1

((
1−

√
τ

λ(x)M
)−1

1j

)2

=
n+1∑
j=i+1

|S1(x)|λ(x)2
( 2
λ(x) +

√
λ(x)2 − 4τ

)2j

. |S1(x)|λ(x)2
( 2
λ(x) +

√
λ(x)2 − 4τ

)2(i+1)
.
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Here, in the third step, we used that |Sj(x)| . |S1(x)|dj−1 by Proposition 3.1 (ii) and that (Mk)1j > 0
for all k ∈ N. The fourth step follows from the condition 2

√
τ/λ(x) < 1, the invertibility and the

Neumann series representation of M in Lemma D.5 below with t = λ(x)/
√
τ . The fifth step is a

consequence of the representation of (1−
√
τ

λ(x)M)−1
1j in Lemma D.5 below. In the last step, we used

that λ(x) = Λ(αx) + o(1) > 2 + κ/4 to sum up the geometric series and conclude that the series is
. 1. This completes the proof of (4.12) and, thus, the one of Claim 4.4.

5. Approximate eigenvalues – proof of Proposition 2.3

In this section we prove Proposition 2.3, by showing that in the interval I there is a one-to-one
correspondence between eigenvalues of H and the points λ(x) for x ∈ W, up to a polynomially
small error term.

5.1. Proof of Proposition 2.3. We recall w1 from Definition 3.3.

Definition 5.1. Let Π be the orthogonal projection onto span
(
{w1} ∪ {u(x) .. x ∈ W}

)
and

Π ..= 1−Π.

Note that the set {w1} ∪ {u(x) .. x ∈ W} in the definition of Π is not orthogonal. Throughout
the proof, we regard H as a block matrix associated with the orthogonal sum decomposition
ran Π⊕ (ran Π)⊥.

Proposition 5.2. Suppose (1.5). Fix µ ∈ [0, 1/3) and ζ ∈ [0, 1/2− µ). With high probability, the
following holds.

(i) ‖(H − λ(x))u(x)‖ 6 N−ζ for all x ∈ W.

(ii) If ζ < 1/2− 3µ/2 then

spec(ΠHΠ) \ {0} = {λ1(H)} ∪ {λ(x) + εx
.. x ∈ W}

counted with multiplicity, where |εx| 6 N−ζ for all x ∈ W and λ1(H) =
√
d(1 + o(1)).

(iii) If ζ < 1/2− 3µ/2 then ‖ΠHΠ‖ 6 N−ζ .

(iv) If µ < 1/4 then λ1(ΠHΠ) 6 Λ(α∗) + κ/2 + o(1).

Proof of Proposition 2.3. Owing to the block decomposition H = ΠHΠ + ΠHΠ + ΠHΠ + ΠHΠ,
Proposition 5.2 (iii) yields

spec(H) \ {0} =
{
λ+ ελ

.. λ ∈ (spec(ΠHΠ) ∪ spec(ΠHΠ))
}
\ {0}

counted with multiplicities, where |ελ| 6 2‖ΠHΠ‖ 6 N−ζ for all λ. Therefore, Proposition 2.3
follows from the definition of I as well as Proposition 5.2 (ii), (iv), and (i).

The rest of this section is devoted to the proof of Proposition 5.2. We assume the condition
(1.5) throughout. We recall the definition of the high probability event Ω from Definition 3.5. For
any event A and random variable X we write

PΩ(A) ..= P(Ω ∩A) , EΩ[X] ..= E[X1Ω] . (5.1)
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5.2. Proof of Proposition 5.2 (i). The proof of Proposition 5.2 (i) relies on the following result,
whose proof is given at the end of this subsection.

Proposition 5.3. Let µ ∈ [0, 1/3). For any x ∈ W, we have the decomposition

(H − λ(x))u(x) =
∑

y∈V\{x}
εy(x)1y . (5.2)

Moreover, for any x, y ∈ [N ], we have the estimate

EΩ[1x∈W1y∈V\{x} εy(x)2] 6 d−1(10 logN)2N2µ−3 .

From Proposition 5.3, for any x ∈ [N ], we obtain

EΩ
[
1x∈W‖(H − λ(x))u(x)‖2

]
6 d−1(10 logN)2N2µ−2 . (5.3)

Proof of Proposition 5.2 (i). From (5.3), a union bound, and Chebyshev’s inequality, we conclude
that

P
(
∃x ∈ W, ‖(H − λ(x))u(x)‖ > N−ζ

)
6 P(Ωc) +N2ζ+2µ−1+o(1)

for any ζ > 0. This proves Proposition 5.2 (i) since ζ < 1/2− µ by assumption, and P(Ωc) = o(1)
by Propositions 3.1, 3.2 and 3.4.

We shall need modifications of the sets V and W defined in (2.1) and (2.2), respectively. For
X ⊂ [N ] we define

V(X) ..=
{
y ∈ [N ] \X .. |S1(x) \X|

d
> α∗(µ)

}
, (5.4)

W(X) ..=
{
y ∈ V(X) .. Λ

( |S1(x) \X|
d

)
> Λ(α∗(µ)) + κ/2

}
. (5.5)

The point of these definitions is that V(X) and W(X) depend only on the edges in G|Xc . The
following remark states that on the event Ω the effect of the upper index in these definitions amounts
simply to excluding vertices.

Remark 5.4. On Ω ∩ {y ∈ V}, owing to Proposition 3.2 (iii), we have V(y) = V \ {y} and
W(y) =W \ {y}.

Proof of Proposition 5.3. Note thatH−H(V\{x}) is d−1/2 times the adjacency matrix of the subgraph
of G containing the edges incident to V \ {x}. Hence, because (H(V\{x}) − λ(x))u(x) = 0 and
supp u(x) ⊂ (V \ {x})c, we find

(H−λ(x))u(x) = (H−H(V\{x}))u(x) =
∑

y∈V\{x}
εy(x)1y , εy(x) ..= 1√

d

∑
t∈S1(y)

〈1t ,u(x)〉 . (5.6)

See Figure 5.1 for an illustration. The Cauchy-Schwarz inequality implies

εy(x)2 6
|S1(y)|
d

∑
t∈S1(y)

〈1t ,u(x)〉2 6
10 logN

d

∑
t∈S1(y)

〈1t ,u(x)〉2 (5.7)
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V \ {x}

(V \ {x})c

Figure 5.1. An illustration of the identity (5.6). The set V \ {x} is drawn in green and its complement
(V \ {x})c in blue. The blue neighbours of the green vertices are drawn explicitly, and the remaining blue
vertices are represented by the shaded blue region. The edges of incident to V \ {x} are drawn in red. The
adjacency matrix of these red edges is A−A(V\{x}). The vector u(x) is supported on the blue vertices, and
hence the vector (A−A(V\{x}))u(x) is supported on the green vertices. Its value at a green vertex y equals
the sum of the entries of u(x) at the blue vertices adjacent to y.

on Ω due to Proposition 3.1 (i). From now on we fix x, y ∈ [N ]. Moreover, let ũ(x) be the eigenvector
of H(V(y)∪{y}\{x}) associated with its second largest eigenvalue λ2(H(V(y)∪{y}\{x})) and satisfying
〈1x , ũ(x)〉 > 0. On Ω∩ {y ∈ V}, we have V = V(y) ∪ {y} by Remark 5.4 and, thus, u(x) = ũ(x). As
x 6= y, on Ω ∩ {y ∈ V}, the events {x ∈ W} and {x ∈ W(y)} coincide by Remark 5.4. Therefore,
since W(y) and ũ(x) are σ(A(y))-measurable, we obtain

EΩ

[
1x∈W1y∈V\{x}

∑
t∈S1(y)

〈1t ,u(x)〉2
]

6 E
[
1x∈W(y)

∑
t∈[N ]
〈1t , ũ(x)〉2 E

[
1α∗(µ)d6|S1(y)|610 logN1t∈S1(y)

∣∣A(y)]]
6 P(x ∈ W(y)) max

t∈[N ]
P
(
t ∈ S1(y), α∗(µ)d 6 |S1(y)| 6 10 logN

)
6 P(x ∈ W(y))

∑
α∗(µ)d6k610 logN

P(|S1(y)| = k) k
N

6 P(x ∈ V)P(y ∈ V)10 logN
N

. (5.8)

Here, in the first step, in addition, we spelled out the condition y ∈ V as |S1(y)| > α∗(µ)d, used that
|S1(y)| 6 10 logN on Ω by Proposition 3.1 (i) and then dropped the indicator function 1Ω. The
second step follows from the independence of the event {α∗(µ)d 6 |S1(y)| 6 10 logN, t ∈ S1(y)}
from σ(A(y)) and ∑t∈[N ]〈1t , ũ(x)〉2 = ‖ũ(x)‖2 = 1. (For these two steps, see also (2.9).) For
the third step, we conditioned on |S1(y)| and used that if |S1(x)| = k then t lies in a uniformly
distributed subset of [N ] \ {y} with k elements. For the last step, we used that W(y) ⊂ W ⊂ V.

Finally, applying (5.8) to (5.7) and using the estimate P(x ∈ V) 6 Nµ−1 (by the definitions (2.1)
and (1.6)) concludes the proof of Proposition 5.3.

38



5.3. Proof of Proposition 5.2 (ii), (iii). In this section, we conclude Proposition 5.2 (ii) and
(iii) from the following result, which is also proved in this section.

Definition 5.5. Order the elements of W in some arbitrary fashion, and denote by (u⊥(x))x∈W
the Gram-Schmidt orthonormalization of (u(x))x∈W .

Proposition 5.6. Let µ ∈ [0, 1/3). Then the following holds with high probability. For any x ∈ W,
we have

‖(H − λ(x))u⊥(x)‖ . Nµ−1/2+o(1) . (5.9)

More generally, denoting D = ∑
x∈W λ(x)u⊥(x)(u⊥(x))∗ we have

‖(H −D)u‖ . N3µ/2−1/2+o(1)‖u‖ (5.10)

for all u ∈ span{u(x) .. x ∈ W}.

Proof of Proposition 5.2 (ii). By Definition 5.1, w1 is an eigenvector of ΠHΠ with eigenvalue λ1(H).
Let ζ < 1/2 − 3µ/2. From (5.10), we conclude that, for each x ∈ W, there is εx ∈ [−N−ζ , N−ζ ]
such that {λ(x) + εx

.. x ∈ W} ⊂ spec(ΠHΠ) \ {0} counted with multiplicity. By Proposition 3.4
(ii), λ1(H) =

√
d(1 + o(1)). Hence, by (3.1) and (3.3),

λ1(H)� Λ(αx) + o(1) = λ(x) (5.11)

for any x ∈ W. Therefore, we have found 1 + |W| non-zero eigenvalues of ΠHΠ (counted with
multiplicity). Since the dimension of ran Π is at most 1 + |W|, this completes the proof of
Proposition 5.2 (ii).

Proof of Proposition 5.2 (iii). In order to estimate ‖ΠHΠ‖, let v ∈ ran Π. We decompose v =
αw1 + u from some α ∈ R and u ∈ span{u(x) .. x ∈ W}. Let ζ < 1/2 − 3µ/2. From (5.10), we
obtain that

ΠHv = Παλ1(H)w1 + ΠDu + o(N−ζ‖u‖) = o(N−ζ‖u‖) , (5.12)

where the last steps follows from w1 ∈ ran Π and ranD ⊂ ran Π due to the definitions of D and Π.
It remains to show that ‖u‖ . ‖v‖. From (5.10), we also conclude

λ1(H)〈w1 ,u〉 = 〈w1 , Hu〉 = 〈w1 ,Du〉+ o(N−ζ‖u‖) . (5.13)

Since ‖D‖ 6 maxx∈W λ(x) � λ1(H) by (5.11), we obtain from (5.13) that |〈w1 ,u〉| � ‖u‖ and,
thus, 2|α||〈w1 ,u〉| 6 α2 + |〈w1 ,u〉|2 = α2 + o(‖u‖2). Therefore,

‖v‖2 = α2 + ‖u‖2 + 2α〈w1 ,u〉 > α2 + ‖u‖2 − 2|α||〈w1 ,u〉| > α2/2 + (1− o(1))‖u‖2 . (5.14)

Hence, ‖u‖ 6 (1− o(1))‖v‖ which completes the proof of Proposition 5.2 (iii) due to (5.12).

The main ingredient in the proof of Proposition 5.6 is the following result. It uses the following
orthogonal projection.

Definition 5.7 (ΠX ). For any X ⊂ W , we denote by ΠX the orthogonal projection onto span{u(x) ..
x ∈ X} and we define ΠX ..= I −ΠX .
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Proposition 5.8. If µ ∈ [0, 1/3) then

EΩ

[
max
X⊂W

‖ΠXHΠX ‖2
]
. d−1(logN)2N2µ−1 .

Before proving Proposition 5.8 we deduce Proposition 5.6 from it.

Proof of Proposition 5.6. Recall from Definition 5.5 that the elements of W are ordered in an
arbitrary fashion. For x ∈ W , let Π<x be the orthogonal projection onto span{u(y) .. y ∈ W, y < x}
and Π<x

..= 1−Π<x. Then for any x ∈ W we have

u⊥(x) = u(x)−Π<xu(x)
‖u(x)−Π<xu(x)‖ = Π<xu(x)

‖Π<xu(x)‖
. (5.15)

In order to estimate (H − λ(x))Π<xu(x), we conclude from the definitions of Π<x and Π<x that

HΠ<x = Π<xHΠ<x + Π<xHΠ<x = Π<xH −Π<xHΠ<x + Π<xHΠ<x ,

which then yields

(H − λ(x))Π<xu(x) = Π<x(H − λ(x))u(x) + Π<xHΠ<xu(x)−Π<xHΠ<xu(x) .

Hence,
‖(H − λ(x))Π<xu(x))‖ 6 ‖(H − λ(x))u(x)‖+ 2‖Π<xHΠ<x‖ .

From (5.3) combined with a union bound over x, Proposition 5.8, and Chebyshev’s inequality, we
deduce that with high probability

max
x∈W
‖(H − λ(x))Π<xu(x))‖ 6 Nµ−1/2+o(1) .

Moreover, since 〈1x ,u(y)〉 = 0 for x, y ∈ W satisfying y < x, we find that with high probability, for
all x ∈ W,

‖Π<xu(x)‖2 = ‖u(x)−Π<xu(x)‖2 > 〈1x ,u(x)−Π<xu(x)〉2 = 〈1x ,u(x)〉2 & 1 ,

where the last step follows from Corollary 3.7 and the fact that P(Ω) = 1− o(1). Plugging these
two estimates into (5.15) yields (5.9).

For the proof of (5.10), we write u = ∑
x∈W axu⊥(x) and apply (5.9) and Cauchy-Schwarz,

‖(H −D)u‖ =
∥∥∥∥∑
x∈W

ax(H − λ(x))u⊥(x)
∥∥∥∥ 6 Nµ−1/2+o(1)|W|1/2

( ∑
x∈W

a2
x

)1/2
.

Hence, (5.10) follows from W ⊂ V and Proposition 3.2 (i).
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Proof of Proposition 5.8. Let v ∈ ran ΠX . We write v = ∑
x∈X axu(x) with ax ∈ R, use (5.2) and

ΠXu(x) = 0 for each x ∈ X to obtain

‖ΠXHv‖2 =
∥∥∥∥∑
x∈X

axΠX
(
λ(x)u(x) +

∑
y∈V\{x}

εy(x)1y
)∥∥∥∥2

=
∥∥∥∥ΠX ∑

x∈X ,y∈V\{x}
εy(x)ax1y

∥∥∥∥2

6
∑
y∈V

( ∑
x∈X\{y}

εy(x)ax
)2

6
( ∑
x∈X

a2
x

)( ∑
x∈W, y∈V\{x}

εy(x)2
)
.

Moreover, since 〈1y ,u(x)〉 = 0 for any y ∈ V \ {x}, on Ω we have

‖v‖2 >
∑
x∈X
|〈1x ,v〉|2 =

∑
x∈X

a2
x|〈1x ,u(x)〉|2 > c

∑
x∈X

a2
x

for some constant c > 0 by Corollary 3.7. Therefore, on Ω we have

‖ΠXHv‖2 6
1
c

( ∑
x∈W, y∈V\{x}

εy(x)2
)
‖v‖2

and, in particular, ‖ΠXHΠX ‖2 6 1
c

(∑
x∈W, y∈V\{x} εy(x)2

)
for any X ⊂ W . By Proposition 5.3, we

therefore conclude

EΩ

 ∑
x∈W, y∈V\{x}

εy(x)2

 =
∑

x,y∈[N ]
EΩ
[
1x∈W1y∈V\{x} εy(x)2] . d−1(logN)2N2µ−1 ,

as claimed.

5.4. Proof of Proposition 5.2 (iv). For the proof of Proposition 5.2 (iv), we shall need several
notions from the works [12,13]. As in [12, eq. (1.8)], we set

r? = bc
√

logNc (5.16)

for the constant c > 0 from [12]. Following [12, eq. (1.9)], we define

ξ ..=
√

logN
d

log d , ξu ..=
√

logN
d

1
u

(5.17)

for u > 0. For any τ ∈ [1 + ξ1/2, 2], we denote by Gτ the pruned graph introduced in [12,
Proposition 3.1]. We denote the balls and spheres in Gτ around a vertex x ∈ [N ] by Bτ

i (x) and
Sτi (x), respectively. The pruned graph Gτ is a subgraph of G, which possesses a number of useful
properties listed in [12, Proposition 3.1]. In particular, the balls Bτ

2r?(x) and Bτ
2r?(y) in Gτ are

disjoint if x, y ∈ [N ] satisfy x 6= y and min{αx, αy} > τ .
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Recalling the definition of ui(α) from (1.10), for any x ∈ [N ] with αx > 2 + ξ1/4 and σ = ±, as
in [12, eq. (3.5)], we define

vτσ(x) ..=
r?∑
i=0

σiui(αx)
1Sτi (x)

‖1Sτi (x)‖
, (5.18)

where, for the last coefficient ur?(αx) we make the special choice ur?(αx) ..= ur?−1(αx)/√αx, and
u0(αx) > 0 is chosen such that vτσ(x) is normalized, i.e. ∑r?

i=0 u
2
i (αx) = 1.

Remark 5.9. The family (vτσ(x) .. x ∈ [N ], αx > 2 + ξ1/4, σ = ±) is orthonormal. See [12,
Remark 3.3]

As in [12, Definition 3.6], we denote the adjacency matrix of Gτ by Aτ and define the matrix

Hτ ..= (Aτ − χτ (EA)χτ )/
√
d , (5.19)

where χτ is the orthogonal projection onto span{1y .. y /∈
⋃
x..αx>τ Bτ

2r?(x)}. Moreover, we recall [12,
Definition 3.10].

Definition 5.10 (Πτ , Ĥτ ). Define the orthogonal projections (see Remark 5.9)

Πτ ..=
∑

x :αx>2+ξ1/4

∑
σ=±

vτσ(x)vτσ(x)∗ , Πτ ..= 1−Πτ

and the associated block matrix (recall (5.19))

Ĥτ ..=
∑

x :αx>2+ξ1/4

∑
σ=±

σΛ(αx)vτσ(x)vτσ(x)∗ + ΠτHτΠτ . (5.20)

We note that, for any τ ∈ [1 + ξ1/2, 2], by (1.5) we have

ξ = o(1) , ξτ−1 = o(1) . (5.21)

For any τ ∈ [1 + ξ1/2, 2], the definition of Ĥτ in (5.20) and [12, Proposition 3.12] yield that, with
high probability,

‖Ĥτ‖ 6 max
{

max
x..αx>2+ξ1/4

Λ(αx), 2τ + Cξ

}
.

√
logN
d
�
√
d , (5.22)

where we used (3.1), (5.21) and (1.5) in the last two steps.
Owing to (5.21), [12, Lemmas 3.8, 3.11]9, with high probability, we have

‖H − EH − Ĥτ‖ = o(1) . (5.23)

From (5.23) and (5.22), we conclude that, with high probability,

‖H − EH‖ �
√
d . (5.24)

After these preparations, we can start the proof of Proposition 5.2 (iv). We begin with the
following definition.

9We stress that the definition of H in [12] differs from that in the current paper by EH; see [12, Definition 3.6].
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Definition 5.11 (Qr). For r ∈ N, denote by Qr the orthogonal projection defined by restriction to
the set (⋃y∈V\W Br(y))c.

Definition 5.12 (Q, ΠQ). Let r? be as in (5.16). Set Q ..= Q2r?−1 and define ΠQ as the orthogonal
projection onto span({Qu⊥(x) .. x ∈ W} ∪ {Qw1}), and write ΠQ

..= 1−ΠQ.

Then

λ1(ΠHΠ) 6 λ1(Π(H − EH)Π) + ‖Π(EH)Π‖
6 λ1(ΠQĤ

τΠQ) + 2‖H − EH‖‖Π−ΠQ‖+ ‖H − EH − Ĥτ‖+ ‖Π(EH)Π‖
6 λ1(ΠQĤ

τΠQ) + 2‖H − EH‖‖Π−ΠQ‖+ o(1) , (5.25)

whose last step follows from (5.23) and ‖Π(EH)Π‖ = o(1). The latter bound is a consequence of

‖Π(EH)Π‖ =
√
d‖Π(ee∗ − 1/N)Π‖ =

√
d‖Π(e−w1)(e∗ −w∗1)Π‖+ o(d−1/2) . d−1/2 , (5.26)

where we introduced e ..= N−1/21[N ], used Πw1 = w1 in the second step, and in the last step we
used Proposition 3.4 (iv) to estimate ‖e−w1‖ 6 ‖w1 − q‖+ ‖q − e‖ . d−1/2.

Fix µ ∈ [0, 1/4). We then claim that with high probability

‖Π−ΠQ‖ . d−1 (5.27)

and
λ1(ΠQĤ

τΠQ) 6 Λ(α∗) + κ/2 . (5.28)

Using (5.27) and (5.28), Proposition 5.2 (iv) follows immediately from (5.25) and (5.24). What
remains to prove Proposition 5.2 (iv), therefore, is the proof of (5.27) and (5.28).

5.5. Proof of (5.27). Clearly,

‖Π−ΠQ‖ = ‖ΠΠQ −ΠΠQ‖ 6 ‖ΠΠQ‖+ ‖ΠΠQ‖ = ‖ΠQΠ‖+ ‖ΠΠQ‖ , (5.29)

where in the last step we used that (ΠΠQ)∗ = ΠQΠ. In order to estimate the terms on the right-hand
side, we continue with

‖ΠQΠ‖2 = sup
v∈ran Π
‖v‖=1

‖ΠQv‖2 6 sup
v∈ran Π
‖v‖=1

inf
u∈ran ΠQ
‖u‖=1

‖v− u‖2 . (5.30)

We now apply the next lemma, whose proof is given in Section 5.7 below.

Lemma 5.13. Fix µ ∈ [0, 1/3). With high probability, for all x ∈ W, y ∈ V \ W and r ∈ N
satisfying r � logN

log d , we have
‖u⊥(x)|Br(y)‖ . N−1/2+µ+o(1) .

Owing to Lemma 5.13 as well as parts (iii) and (i) of Proposition 3.2, we obtain

‖u⊥(x)−Qu⊥(x)‖ =
( ∑
y∈V\W

‖u⊥(x)|B2r?−1(y)‖2
)1/2

6 N−1/2+3µ/2+o(1) . (5.31)
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Let q be as in Proposition 3.4 (iv) with r = 2r? − 2 � d
log logN by (1.5). Since supp q ⊂(⋃

x∈V Br+1(x)
)c =

(⋃
x∈V B2r?−1(x)

)c, we conclude from Proposition 3.4 (iv) and the definition of
Q that

‖w1 −Qw1‖ = ‖(1−Q)(w1 − q)‖ 6 ‖w1 − q‖ . d−1 . (5.32)

For γ1, γx ∈ R for x ∈ W write

v ..= γ1w1 +
∑
x∈W

γxu⊥(x) ∈ ran Π , u ..= γ1Qw1 +
∑
x∈W

γxQu⊥(x) ∈ ran ΠQ . (5.33)

Then

‖v− u‖ . d−1|γ1|+N−1/2+3µ/2+o(1) ∑
x∈W
|γx| . d−1|γ1|+N−1/2+2µ+o(1)

( ∑
x∈W
|γx|2

)1/2
. d−1‖v‖ .

Here, we used in (5.32) and (5.31) in the first step, Proposition 3.2 (i) in the second step and,
in the fourth step, µ < 1/4 as well as ‖v‖2 � |γ1|2 + ∑

x∈W |γx|2 (the inequality & follows from
(5.14) and the orthogonality of (u⊥(x))x∈W ; the inequality . is trivial). Hence, if ‖v‖ = 1 then
‖u‖ = 1 +O(d−1) and, thus, ‖v− u

‖u‖‖ . d−1. Therefore, ‖ΠQΠ‖ . d−1 by (5.30).
Finally, similarly to (5.30), we have

‖ΠΠQ‖2 6 sup
u∈ran ΠQ
‖u‖=1

inf
v∈ran Π
‖v‖=1

‖v− u‖2 ,

and the same argument as above, with the representation (5.33), implies that the right-hand side is
O(d−1). By (5.29), we therefore conclude (5.27).

5.6. Proof of (5.28). We begin by introducing another orthogonal projection.

Definition 5.14 (Πv). Let Πv be the orthogonal projection onto span{vτ+(z) .. z ∈ V \W}.

For any z ∈ V \ W, we have supp vτ±(z) ⊂ Br?(z) and, thus, by definition of Q, supp vτ±(z) ∩
suppQu⊥(x) = ∅ for any x ∈ W and supp vτ±(z) ∩ suppQw1 = ∅. Therefore, vτ±(z) is orthogonal
to ran ΠQ, i.e. ΠQvτ±(x) = 0. That implies ΠvΠQ = 0 = ΠQΠv and, in particular, Πv and ΠQ

commute. Since Πv and Ĥτ commute and Πv and ΠQ commute, we obtain

λ1(ΠQĤ
τΠQ) = λ1(ΠQΠvĤ

τΠvΠQ + ΠQΠvĤ
τΠvΠQ)

= max{λ1(ΠQΠvĤ
τΠvΠQ), λ1(ΠQΠvĤ

τΠvΠQ)} .
(5.34)

By the definition of Ĥτ in (5.20), we have

λ1(ΠvĤ
τΠv) = max

x∈V\W
Λ(αx) 6 Λ(α∗) + κ/2 . (5.35)

What remains, therefore, is to estimate λ1(ΠQΠvĤ
τΠvΠQ).

Suppose that w is a normalized eigenvector of ΠQΠvĤ
τΠvΠQ such that the associated eigenvalue

λ satisfies λ > Λ(α∗) + κ/2. We now check that the next lemma, whose proof is given in Section 5.7
below, is applicable to w and λ for any x ∈ V \W.
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Lemma 5.15. Let r? ∈ N be as in (5.16). In particular, r? �
√

logN . Suppose τ ∈ [1 + ξ1/2, 2].
There is a constant C > 0 such that the following holds with high probability10. Let x ∈ [N ],

λ > 2τ + Cξ and w satisfy
(Ĥτw)|Bτ2r?−1(x) = λw|Bτ2r?−1(x) . (5.36)

If αx > 2 + ξ1/4 and vτ−(x) ⊥ w ⊥ vτ+(x) or 2 + ξ1/4 > αx > τ then

|〈1x ,w〉|
‖w|Bτ2r? (x)‖

.
λ2

(λ− 2τ − Cξ)2

(2τ + Cξ

λ

)r?
. (5.37)

An analogous result holds if λ < −2τ − Cξ.

Choosing τ = 1 + ξ1/2 and taking x ∈ V \ W, we now verify the conditions of Lemma 5.15
for w and λ. Owing to (5.21), there is a constant c ≡ cκ > 0 such that 2τ+Cξ

λ 6 1 − c as
λ > Λ(α∗) + κ/2 > 2 + 2c due to the definition of α∗(µ) in (1.6). In particular, λ > 2τ + Cξ.
From ΠQΠvĤ

τΠvΠQw = λw we conclude that ΠQw = w and Πvw = w. Thus, as Πv and Ĥτ

commute, we get ΠQĤ
τw = λw. Restricting both sides in the last identity to Bτ

2r?−1(x) yields
(Ĥτw)|Bτ2r?−1(x) = λw|Bτ2r?−1(x) as Q is the restriction to

(⋃
y∈V\W B2r?−1(y)

)c and Bτ
2r?−1(x) ⊂

B2r?−1(x) by [12, Proposition 3.1 (iv)]. This proves (5.36). Note that αx > 2 + ξ1/4. From
Πvw = w, we conclude w ⊥ vτ+(x). Since (vτσ(y) .. αy > 2 + ξ1/4, σ = ±) is an orthonormal family
by Remark 5.9, the definition of Πv implies Πvvτ−(y) = 0 for all y ∈ V. Therefore, as moreover
ΠQvτ−(x) = 0, we have ΠQΠvĤ

τΠvΠQvτ−(x) = −Λ(αx)vτ−(x). Hence, w ⊥ vτ−(x). Therefore, we
have verified all assumptions of Lemma 5.15 with τ = 1 + ξ1/2 for w, λ, and any x ∈ V \W.

Since 2τ+Cξ
λ 6 1− c as shown above, for the right-hand side of (5.37), we get

λ2

(λ− 2τ − Cξ)2

(2τ + Cξ

λ

)r?
=
(

1− 2τ + Cξ

λ

)−2(2τ + Cξ

λ

)r?
6 c−2(1− c)r? � d−1/2

as r? �
√

logN . Therefore, Lemma 5.15, the disjointness of the balls (Bτ
2r?(x))x∈V\W (see the

paragraph after (5.17) as well as [12, Proposition 3.1 (i)]) and ‖w‖2 = 1 imply

‖w|V\W‖2 =
∑

x∈V\W
〈1x ,w〉2 � d−1 ∑

x∈V\W
‖w|Bτ2r? (x)‖2 6 d−1 . (5.38)

We recall from Definition 5.11 that Q0 denotes the orthogonal projection defined by restriction
to the set (V \W)c. Since w = w|V\W +Q0w, we obtain from (5.38), Q0Ĥ

τQ0 = (Ĥτ )(V\W), and
‖Ĥτ‖ �

√
d by (5.22) that

λ = 〈w , Ĥτw〉 = 〈w , (Ĥτ )(V\W)w〉+ o(1)
= 〈w ,ΠQ(Ĥτ )(V\W)ΠQw〉+ o(1)
6 λ1(ΠQ(Ĥτ )(V\W)ΠQ) + o(1)
6 λ1(Π(Ĥτ + (EH))(V\W)Π) + o(1)
6 λ1(ΠH(V\W)Π) + o(1) . (5.39)

10We note that the statement actually holds with very high probability, meaning that for each ν > 0, there is a
constant C ≡ Cν > 0 such that (5.37) holds with probability at least 1−N−ν for all sufficiently large N .
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Here, the third step is a consequence of ΠQw = w. In the fifth step, we used (5.26) and (5.27) and
the sixth step follows from (5.23) and ‖M (V\W)‖ 6 ‖M‖ for any matrix M .

We now apply the next result, whose proof is given in Section 5.7 below.

Lemma 5.16. Fix µ ∈ [0, 1/3). With high probability, λ1(ΠH(V\W)Π) 6 Λ(α∗) + o(1).

From Lemma 5.16 and (5.39), we deduce that λ 6 Λ(α∗) + o(1), in contradiction with the
assumption λ > Λ(α∗) + κ/2. We conclude that λ1(ΠQΠvĤ

τΠvΠQ) 6 Λ(α∗) + κ/2. Owing to
(5.34) and (5.35), this proves (5.28).

5.7. Proofs of auxiliary results. In this final subsection we prove Lemmas 5.13, 5.15, and 5.16.

Proof of Lemma 5.13. For fixed y ∈ [N ], on the event Ω∩{y ∈ V\W}, if x ∈ W(y), let u(y)(x) be the
eigenvector of H((V(y)∪{y})\{x}) with eigenvalue λ2(H((V(y)∪{y})\{x})) and satisfying 〈1x ,u(y)(x)〉 > 0.
See Corollaries 3.6 and 3.7 for the existence and uniqueness of u(y)(x).

In analogy to Definition 5.5, let ((u(y))⊥(x))x∈W(y) be the Gram-Schmidt orthonormalization
of (u(y)(x))x∈W(y) . On Ω ∩ {y ∈ V \ W}, we have V(y) ∪ {y} = V and W(y) = W by Remark 5.4.
Therefore, u(y)(x) = u(x) and, thus, (u(y))⊥(x) = u⊥(x) for all x ∈ W(y) =W on Ω ∩ {y ∈ V \W}.
Hence, for fixed x, y ∈ [N ] with x 6= y, we estimate

EΩ

[
1x∈W, y∈V\W‖u⊥(x)|Br(y)‖2

]
= EΩ

[
1x∈W(y)

∑
a∈[N ]\{y}

〈1a , (u(y))⊥(x)〉21a∈Br(y)1y∈V\W

]

6 E
[
1x∈W(y)1Ω(y)

r

∑
a∈[N ]\{y}

〈1a , (u(y))⊥(x)〉2
∑

b∈B(y)
r−1(a)

E
[
1b∈S1(y)1α∗(µ)d6|S1(y)|610 logN

∣∣∣A(y)
]]

6 E
[
1x∈W(y)1Ω(y)

r

∑
a∈[N ]\{y}

〈1a , (u(y))⊥(x)〉2|B(y)
r−1(a)|

]
× max
b∈[N ]\{y}

P(b ∈ S1(y), α∗(µ)d 6 |S1(y)| 6 10 logN)

. (logN)dr−1P(x ∈ W(y)) max
b∈[N ]\{y}

P(b ∈ S1(y), α∗(µ)d 6 |S1(y)| 6 10 logN)

.
(logN)2dr−1

N
P(x ∈ V)P(y ∈ V)

6 N−3+2µ+o(1) .

Here, in the first step, we also used that 〈1y , (u(y))⊥(x)〉 = 0 for all y ∈ V \W and x ∈ W(y). In
the second step, we conditioned on A(y), employed the notations

B
(y)
i (a) ..= ball of radius i around a in the graph G|[N ]\{y}

Ω(y)
r

..= {|B(y)
r (z)| . (logN)dr−1 for all z ∈ [N ] \ {y}}

and used that W(y), (u(y))⊥(x), and B(y)
r−1(a) are A(y)-measurable, that Ω ⊂ Ω(y)

r by Proposition 3.1,
as r � logN

log d , and that a ∈ Br(y) is equivalent to b ∈ S1(y) for some b ∈ B(y)
r−1(a). The third step

follows from the independence of b ∈ S1(y) and |S1(y)| from A(y). The normalization of (u(y))⊥(x)
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and the definition of Ω(y)
r imply the fourth step. In the fifth step, we argued as in the last steps of

(5.8) and, finally, we used r � logN
log d as well as the definitions of V in (2.1) and of α∗ in (1.6).

Therefore, a union bound over x, y ∈ [N ] with x 6= y and Chebyshev’s inequality complete the
proof of Lemma 5.13.

Proof of Lemma 5.15. In order to prove Lemma 5.15, we follow [12, Proof of Proposition 3.14 (i)]11,
whose assumptions are all satisfied apart from the eigenvalue-eigenvector relation Ĥw = λw.

We now explain the necessary, minor, modifications. We start with the case αx > 2 + ξ1/4 and
w ⊥ vτ±(x) which corresponds to the case x ∈ V in [12, Proposition 3.14]. The eigenvalue-eigenvector
relation is used in [12, Proof of Proposition 3.14 (i)] only in [12, eq. (3.55)]. Using (5.36) instead
of the eigenvalue-eigenvector relation and the notation of [12, Proof of Proposition 3.14 (i)], we
now verify the first two steps in [12, eq. (3.55)]. We write P2r?−1 for the orthogonal defined by
restriction to the set Bτ

2r?−1(x). For any i < r?, since supp gi ⊂ Bτ
2r?−1(x) by [12, eq. (3.52)], we

have P2r?−1gi = gi. Therefore, for any i < r?, we obtain

λui = 〈gi , λP2r?−1w〉 = 〈(Ĥτ − Λ(αx)vτ+(x)vτ+(x) + Λ(αx)vτ−(x)vτ−(x))gi ,w〉 = 〈Ĥτ,xgi ,w〉 .

Here, we used (5.36) and w ⊥ vτ±(x) in the second step and supp gi ⊂ Bτ
2r?−1(x) as well as the

definition of Ĥτ,x from [12, eq. (3.48)] in the third step.
The remaining steps in [12, eq. (3.55)] and the remainder of [12, Proof of Proposition 3.14 (i)]

including the case 2 + ξ1/4 > αx > τ , which corresponds to the case x ∈ Vτ \ V in [12], are obtained
in the same way as in [12].

Proof of Lemma 5.16. We write H(V\W) in the block decomposition

H(V\W) = ΠH(V\W)Π + ΠH(V\W)Π + ΠH(V\W)Π + ΠH(V\W)Π .

The nonzero eigenvalues of the block diagonal arise as the eigenvalues of the individual diagonal
blocks, i.e.

spec(ΠH(V\W)Π + ΠH(V\W)Π) \ {0} =
(

spec(ΠH(V\W)Π) ∪ spec(ΠH(V\W)Π)
)
\ {0} ,

counted with multiplicity. Therefore, for any 1 6 i, j 6 N there are at least i+ j eigenvalues of the
block diagonal larger than min{λi(ΠH(V\W)Π), λj(ΠH(V\W)Π)} provided this number is positive.
Hence, we conclude

min{λ1(ΠH(V\W)Π), λ1+|W|(ΠH(V\W)Π)} 6 λ2+|W|(H(V\W)) + 2‖ΠH(V\W)Π‖ . (5.40)

Moreover, using eigenvalue interlacing (Lemma D.3) and Proposition 3.4 (i), we obtain

λ2+|W|(H(V\W)) 6 λ2(H(V)) 6 Λ(α∗) + o(1) . (5.41)

Lemma 5.16 follows from (5.40) and (5.41) provided that we show that there is a constant c > 0
such that

λ1+|W|(ΠH(V\W)Π) > Λ(α∗) + c , (5.42)
11Note that Vτ = {x ∈ [N ] .. αx > τ} and V = V2+ξ1/4 in [12], see [12, eq. (3.3)], which differs from the definition of
V in the present paper, see (2.1).
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and
‖ΠH(V\W)Π‖ = o(1) . (5.43)

For the proof of (5.42), we recall the projections ΠW from Definition 5.7 and Q0 from Definition
5.11. By the definition of u(x) for x ∈ W, we have ΠW = Q0ΠW . Hence, (5.10) implies (H −
D)Q0ΠW = o(1). Applying Q0 to the last relation yields

H(V\W)ΠW = DΠW + o(1) (5.44)

as Q0HQ0 = H(V\W) and Q0DQ0 = D. Since ran ΠW ⊂ ran Π and ΠWDΠW = D, the definition
of D and (5.44) imply that ΠH(V\W)Π has at least |W| many eigenvalues in [minx∈W λ(x) −
o(1),maxx∈W λ(x) + o(1)]. Note that minx∈W λ(x) > Λ(α∗) + c for some constant c > 0 by (3.3)
and (2.2).

Furthermore, let q be as in Proposition 3.4 (iv) with r = 1. From ‖H(V\W)‖ 6 ‖H‖ .
√
d by

(5.24) and ‖EH‖ .
√
d, Proposition 3.4 (iv) and H(V\W)q = Hq, we deduce

H(V\W)w1 = H(V\W)q + o(1) = Hq + o(1) = Hw1 + o(1) = λ1(H)w1 + o(1) . (5.45)

Hence, ΠH(V\W)Π has an eigenvalue at λ1(H) + o(1) =
√
d(1 + o(1)) &

√
d� maxx∈W λ(x) + o(1)

by Proposition 3.4 (ii), (3.1) and (3.3). Therefore, ΠH(V\W)Π has 1 + |W| many eigenvalues larger
or equal to Λ(α∗) + c for some constant c > 0. This proves (5.42).

Finally, (5.43) follows from (5.44), ranD ⊂ ran ΠW ⊂ ran Π and (5.45). This completes the
proof of Lemma 5.16.

6. Eigenvalue spacing – proof of Proposition 2.4

We recall the definition of the high-probability event Ω from Definition 3.5. In this section we use
the notation from (5.1), as well as the conditional versions

PΩ(A | F) ..= P(Ω ∩A | F) , EΩ[X | F ] ..= E[X1Ω | F ] .

Throughout this section, we assume that d satisfies (1.5), µ ∈ (0, 1/3) and that η satisfies

0 < η

2 < min
{1

6 ,
1
5 −

µ

4 ,
1
3 − µ

}
. (6.1)

Proposition 2.4 follows directly from the following result.

Proposition 6.1. For any a 6= b ∈ [N ], we have

PΩ(a, b ∈ W, |λ(a)− λ(b)| 6 N−η) 6 N−2+2µ−η/4+o(1) . (6.2)

Remark 6.2. If we restrict ourselves to the critical regime d � logN , then Proposition 6.1 can be
improved by replacing the factor N−η inside the probability in (6.2) by N−η/2. See Remark 6.27
below for more details.
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Proof of Proposition 2.4. The condition (6.1) holds by assumptions on µ and η. A union bound
and Proposition 6.1 yield

P(∃x 6= y ∈ W .. |λ(x)− λ(y)| 6 N−η) 6 P(Ωc) +
(
N

2

)
sup

a6=b∈[N ]
PΩ
(
a, b ∈ W, |λ(a)− λ(b)| 6 N−η

)
6 o(1) +N2µ−η/4+o(1) ,

where we used that P(Ωc) = o(1) by definition of Ω (recall Definition 3.5). As η > 8µ, we conclude
that the right-hand side is o(1).

6.1. Key tools of the proof of Proposition 6.1. The rest of this section is devoted to the
proof of Proposition 6.1. Throughout, we fix deterministic vertices a 6= b ∈ [N ] and suppose that η
satisfies (6.1). We use the following definitions. Let

r ..=
⌊
η

2
logN
log d

⌋
− 1 . (6.3)

In particular, dr+1 6 Nη/2 < dr+2. Note that r from (6.3) satisfies the condition of Proposition 3.1
(ii) and (3.2), i.e. the condition of Proposition 3.2.

Bi(b)c

Bi(b)

b

Figure 6.1. An illustration of the σ-algebra Fi. Here i = 3, and the vertex b is drawn in green. Conditioning
on Fi means that the graph is fixed in the ball Bi(b) and its complement, drawn in grey. The only randomness
is the choice of the edges from Si(b) to Bi(b)c, drawn in blue. By Lemma 6.4, these edges are chosen
independently with probability d/N .

Definition 6.3. We define the σ-algebra

Fi ..= σ(Bi(b), A|Bi(b), A|Bi(b)c)

for 0 6 i 6 r, and we abbreviate F ≡ Fr.
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More explicitly, we define Fi inductively through the filtration G1 ⊂ G2 ⊂ · · · ⊂ Gi, where
G1 = σ(A|{b}) and Gk+1 = σ(Gk, A|Sk(b)), since by construction Sk(b) is Gk-measurable. Then we
set Fi = σ(Gi, A|Bi(b)c), using that Bi(b), and hence Bi(b)c, is Gi-measurable. See Figure 6.1 for an
illustration of Fi. The following lemma is an immediate consequence of the definition of Fi and the
independence of the family (Axy).

Lemma 6.4. Conditionally on Fi, the random variables (Axy .. x ∈ Si(b), y ∈ Bi(b)c) are independent
Bernoulli random variables with mean d/N .

Definition 6.5. For 0 6 i 6 r define H(i) ..= H(Bi(b)∪V(Bi(b))) and G(i, z) ..= (H(i)− z)−1.

By definition, H(i) is Fi-measurable. We shall need the following regularization of the function
t 7→ t−1.

Definition 6.6. Define ι : R→ R through

ι(t) ..=
{
t−1 if t ∈ [T−1, T ]
−t+ T + T−1 otherwise ,

(6.4)

with T ..= 10 max{
√
d−1 logN,κ−1}.

Remark 6.7. The function ι is an involution on R with Lipschitz constant T 2.

Definition 6.8. For x ∈ Si(b) we define S+
1 (x) ..= S1(x) ∩ Si+1(b).

Definition 6.9. For each z ∈ R, we define the family (gx(z))x∈Br(b)\{b} recursively throughgx(z) = −ι
(
z + 1

d

∑
y∈S+

1 (x)\V(Br(b)) Gyy(r, z)
)

if x ∈ Sr(b)

gx(z) = −ι
(
z + 1

d

∑
y∈S+

1 (x) gy(z)
)

if x ∈ Br−1(b) \ {b} .
(6.5)

The following remark contains a crucial independence property of the family (gx(z))x.

Remark 6.10. Conditioned on F , if G|Br(b) is a tree and z is F -measurable, then for any 1 6 i 6 r
the family (gx(z))x∈Si(b) is independent. To see this, we first note that (gx(z))x∈Sr(b) is independent
conditioned on F because of Lemma 6.4. For i 6 r − 1, the statement follows inductively by using
the tree structure of G|Br(b).

Remark 6.11. The function ι : R→ R is a regularized version of the function t 7→ t−1 as a function
R+ → R+. The regularization acts on both small values of t (for t < T−1) and large values of t (for
t > T ). The former regularization is needed to ensure the Lipschitz continuity of the function ι,
which is used in the proof of Proposition 6.15 to ensure the stability of gx(z) under change of the
argument z. The latter regularization is needed to ensure the Lipschitz continuity of the function
ι−1, which is used in the proof of Proposition 6.26 below to ensure that anticoncentration of a
random variable is preserved, up to a factor T 2, by applying ι. In the proof of Proposition 6.15
below, we show and use that with high probability the argument of ι is always contained in the
interval [T−1, T ] where ι coincides with t 7→ t−1. Moreover, we choose the lower and upper bounds,
T−1 and T , to be each other’s inverses for convenience, since in that case ι is an involution. Actually,
an inspection of our proof shows that the lower bound T−1 could be replaced with the larger value
κ/10. Finally, we note that in the critical regime d � logN , the parameter T is of order one. This
observation can be used to improve Proposition 6.1 somewhat in that regime; see Remarks 6.2
and 6.27.
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We now state the three key propositions that underlie the proof of Proposition 6.1 – Propositions
6.12, 6.14, and 6.15. Their proofs are postponed to Sections 6.5, 6.3, and 6.4, respectively.

Using the independence from Remark 6.10, we obtain the following anticoncentration estimate
for the family (gx(z))x∈Br(b)\{b}.

Proposition 6.12 (Anticoncentration of gx). Let z ∈ J be F-measurable and (gx(z))x be defined
as in Definition 6.9. Then for any a, b ∈ [N ] we have

PΩ

(
a, b ∈ W,

∣∣∣∣1d ∑
x∈S1(b)

gx(z) + z

∣∣∣∣ 6 N−η
)
6 N−2+2µ−η/4+o(1) . (6.6)

For each 0 6 i 6 r we shall need the following Fi-measurable approximation of λ(a).

Definition 6.13. For i ∈ [r] we abbbreviate λ(a, i) ..= λ2(H((V(Bi(b))∪Bi(b))\{a})).

By definition, λ(a, i) is Fi-measurable. The next results states that λ(a, i) is with high probability
close to λ(a).

Proposition 6.14 (Comparison of λ(a) and λ(a, i)). For any small enough ε > 0, we have

PΩ
(
a, b ∈ W, ∃i ∈ [r], |λ(a)− λ(a, i)| > ε

)
6 ε−2N−3+2µ+η/2+o(1) .

The next result states that, when choosing the spectral parameter z = λ(a, r), the Green function
entries of H(V) on S1(b) are well approximated by the family (gx) from Definition 6.9.

Proposition 6.15 (Approximation of Green function by gx). Let (gx(z))x be defined as in Defini-
tion 6.9 with z ..= λ(a, r). For any constant c > 0 and any ε 6 N−c, we have

PΩ
(
a, b ∈ W, ∃x, y ∈ S1(b), |(H(V) − z)−1

xy − gx(z)1x=y| > ε
)
6 ε−2N−3+2µ+2η+o(1) .

6.2. Proof of Proposition 6.1. In this subsection we prove Proposition 6.1. We begin by
introducing the following events that we use throughout this section. Recall the definitions of the
sets V(X) and W(X) from (5.4) and (5.5).

Definition 6.16. We define
Ξ ..= {a, b ∈ W} ,

and, 1 6 i 6 r,
Ξi ..= {a ∈ W(Bi(b)), b ∈ W} .

Remark 6.17. We record the following straightforward properties of Ξ and Ξi.

(i) Ξi is Fi-measurable.

(ii) Ξi ⊂ Ξ (by definition of W(Bi(b))).

(iii) On Ω, for any b ∈ W and 1 6 i 6 r we have V(Bi(b)) = V \ {b} and W(Bi(b)) = W \ {b} (see
Proposition 3.2 (iii)). In particular, Ω ∩ Ξi = Ω ∩ Ξ for all 1 6 i 6 r.

Next, we state a basic result that, together with Lemma 3.8, is used throughout this section to
establish the boundedness of the Green function for certain spectral parameters.
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Lemma 6.18. On Ω ∩ Ξ we have λ(a, i) = Λ(αa) + o(1) and λ(a, i) ∈ J for all 1 6 i 6 r.

Proof. By Remark 6.17 (iii), on Ω the assumptions of Corollary 3.6 are satisfied for x = a and
X = (V(Bi(b)) ∪ Bi(b)) \ {a}. Therefore, λ(a, i) = Λ(αa) + o(1), from which we conclude that
λ(a, i) > Λ(α∗) + κ/4 by the definition (2.2) of W as well as λ(a, i)�

√
d by (3.1).

Proof of Proposition 6.1. By spectral decomposition of H(V\{b}), we have Im(H(V\{b}) − λ(b) −
it)−1

bb > 〈1b ,u(b)〉2/t for any t > 0. By Corollary 3.7, on Ω we have 〈1b ,u(b)〉 6= 0, which implies

lim
t↓0

1
(H(V\{b}) − λ(b)− it)−1

bb

= 0 ,

and hence Schur’s complement formula yields

λ(b) + 1
d

∑
x,y∈S1(b)

(H(V) − λ(b))−1
xy = 0 .

Therefore, with z = λ(a, r), we obtain from the definition of the family (gx(λ(a, r)))x in Definition 6.9
that∣∣∣∣λ(a, r) + 1

d

∑
x∈S1(b)

gx(λ(a, r))
∣∣∣∣ 6 |λ(a, r)− λ(b)|+ 1

d

∑
x,y∈S1(b)

∣∣(H(V) − λ(a, r))−1
xy − (H(V) − λ(b))−1

xy

∣∣
+ 1
d

∑
x,y∈S1(b)

|gx(λ(a, r))1x=y − (H(V) − λ(a, r))−1
xy |

6 Cκ−2(logN)2(|λ(a)− λ(b)|+ |λ(a, r)− λ(a)|)

+ 1
d

∑
x,y∈S1(b)

|gx(λ(a, r))1x=y − (H(V) − λ(a, r))−1
xy |

on the event Ω, where we used (3.5) and Proposition 3.2 (i) for the second inequality. Here C is
some positive constant. Thus, for any γ > 0, we obtain

PΩ∩Ξ(Cκ−2(logN)2|λ(b)− λ(a)| 6 γ)

6 PΩ∩Ξ

(∣∣∣∣1d ∑
x∈S1(b)

gx(λ(a, r)) + λ(a, r)
∣∣∣∣ 6 3γ

)
+ PΩ∩Ξ

(
Cκ−2(logN)2|λ(a)− λ(a, r)| > γ

)
+ PΩ∩Ξ

(1
d

∑
x,y∈S1(b)

∣∣∣(H(V) − λ(a, r))−1
xy − gx(λ(a, r))1x=y

∣∣∣ > γ

)
.

Now Proposition 6.1 follows with the choice γ ..= N−η/3, applying Proposition 6.12 to the first line,
Proposition 6.14 to the second line, and Proposition 6.15 combined with Proposition 3.2 (i) on Ω to
the third line. Here we used Lemma 6.18 to ensure that λ(a, i) ∈ J .

6.3. Proof of Proposition 6.14. In this subsection we prove Proposition 6.14.
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Proof of Proposition 6.14. We follow the proof of Proposition 5.3. Let u(a, i) be a normalized
eigenvector of H((V(Bi(b))∪Bi(b))\{a}) associated with the eigenvalue λ(a, i). Then, as supp u(a, i) ⊂
(V(Bi(b)) ∪Bi(b))c ∪ {a}, on the event Ω ∩ {a, b ∈ W}, using Remark 6.17 (iii) we obtain

(H(V\{a}) − λ(a, i))u(a, i) = (H(V\{a}) −H((V(Bi(b))∪Bi(b))\{a}))u(a, i) =
∑

y∈Si(b)
εay(i)1y , (6.7)

where εay(i) ..= 1√
d

∑
v∈S+

1 (y)〈1v ,u(a, i)〉. From Lemma 6.4 we conclude, using Cauchy-Schwarz,

EΩ

[ ∑
y∈Si(b)

(εay(i))2
∣∣∣∣Fi

]
.

∑
y∈Si(b)

logN
d

∑
v∈Bi(b)c

E
[
1v∈S+

1 (y)〈1v ,u(a, i)〉2
∣∣Fi]

=
∑

y∈Si(b)

logN
d

∑
v∈Bi(b)c

P(v ∈ S+
1 (y) | Fi) 〈1v ,u(a, i)〉2

6
logN
N
|Si(b)| , (6.8)

where we used that on Ω we have |S+
1 (y)| . logN , that u(a, i) is Fi-measurable, and that by Lemma

6.4 we have P(v ∈ S+
1 (y) | Fi) = d

N for any y ∈ Si(b) and v /∈ Bi(b).
By the definition (2.2) of W, we have Λ(αa) > Λ(α∗) + κ/2, and on Ω we have Λ(αa) �

√
d

(recall (3.1)). Hence, by Corollary 3.6, for any small enough ε > 0, if there are a scalar λ̂ and a
normalized vector û such that, for some a ∈ W, ‖(H(V\{a}) − λ̂)û‖ 6 ε and λ̂ = Λ(αa) + o(1), then
|λ(a)− λ̂| 6 ε (as λ(a) = λ2(H(V\{a}))).

We apply this observation to the choices λ̂ = λ(a, i) and û = u(a, i), for which Lemma 6.18
yields λ(a, i) = Λ(αa) + o(1). Hence, for any small enough ε > 0, we have |λ(a) − λ(a, i)| 6 ε
provided that ‖(H(V\{a}) − λ(a, i))u(a, i)‖ 6 ε. We can then estimate

PΩ(a, b ∈ W, |λ(a)− λ(a, i)| > ε) 6 PΩ
(
Ξi ∩

{∥∥(H(V\{a}) − λ(a, i))u(a, i)
∥∥2
> ε2

})
6 ε−2 E

[
1Ξi1|Si(b)|6Nη/2+o(1)EΩ

[ ∑
y∈Si(b)

(εay(i))2
∣∣∣∣Fi

]]

6 ε−2 P(Ξi)
logN
N

Nη/2+o(1)

6 ε−2N2µ+η/2−3+o(1) ,

where in the first step we used Remark 6.17 (iii), in the second step (6.7), Remark 6.17 (i), and the
estimate |Si(b)| 6 Nη/2+o(1) on Ω by Proposition 3.2 (ii) and (6.3), in the third step (6.8), and the
fourth step Remark 6.17 (ii) and Lemma 6.19 below. Now Proposition 6.14 follows from a union
bound over i ∈ [r] with r . logN .

The following result is used throughout the rest of this section.

Lemma 6.19. For any a 6= b ∈ [N ] we have P(a, b ∈ W) 6 N−2+2µ.
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Proof. Since 0 6 Λ′(α) = α−2
2(α−1)3/2 6 1

2 for all α > 2, we have

P (a, b ∈ W) 6 P
(

min{|S1(a)|, |S1(b)|} > (α∗ + κ)d
)

= E
[
P
(

min{|S1(a)|, |S1(b)|} > (α∗ + κ)d
∣∣∣Aab)]

6 P
(
|S1(a)| > (α∗ + κ)d− 1

)2
6 P

(
|S1(a)| > α∗d

)2
6 N−2+2µ ,

where we used in the third step that conditionally on Aab, S1(a) and S1(b) are independent and in
the last step the definition of α∗.

6.4. Proof of Proposition 6.15. This subsection is devoted to the proof of Proposition 6.4. We
begin with the following result, which contains two estimates. The first one is an approximate version
of Schur’s complement formula, where G(i− 1, z) is related to G(i, z) at the cost of an error term;
this amounts to removing not just the vertex x ∈ Si(b) at which the Green function is evaluated,
but the entire ball Bi(b). The second estimate provides an upper bound on the off-diagonal entries
of the Green function.

Lemma 6.20. (i) For 1 6 i 6 r let zi ∈ J be Fi-measurable and x ∈ Si(b). Then

− 1
Gxx(i− 1, zi)

= zi + 1
d

∑
y∈S+

1 (x)

Gyy(i, zi) + Ei(x) (6.9)

where the error term Ei(x) satisfies, for any ε > 0,

PΩ(|Ei(x)| > ε | Fi)1b∈W . d2κ−4(logN)2|Si(b)|2N−1ε−2 . (6.10)

(ii) Let z ∈ J be F1-measurable. For any x 6= y ∈ [N ] and ε > 0, we have

PΩ
(
|(H(V) − z)−1

xy | > ε | F1
)
1b∈W1x,y∈S1(b) . κ−4(logN)N−1ε−2 . (6.11)

Proof of Proposition 6.15. We choose zi ..= λ(a, i), which is Fi-measurable, and set z = zr. For
ε > 0 we introduce the event Θ ..= Θ1 ∩Θ2 ∩Θ3 given by

Θ1 ..= {∀i 6 r, ∀x ∈ Si(b), |Ei(x)| 6 ε} ,
Θ2 ..= {∀i 6 r, |z − zi| 6 ε} ,
Θ3 ..= {∀x 6= y ∈ S1(b), |(H(V) − z1)−1

xy | 6 ε} ,

with Ei(x) defined as in Lemma 6.20. We estimate the probability of Θc
1 using Ξi ∈ Fi, Lemmas

6.20 (i) and 6.19, Proposition 3.2 (ii), we well as Remark 6.17 as

PΩ∩Ξi(∃x ∈ Si(b), |Ei(x)| > ε) 6 PΩ(Ξ)N−1+3η/2+o(1)ε−2 6 N−3+2µ+3η/2+o(1)ε−2 .

Similarly, we find using Lemma 6.20 (ii) that

PΩ∩Ξ1(Θc
3) 6 PΩ(Ξ)N−1+η+o(1)ε−2 6 N−3+2µ+η/2+o(1)ε−2 .
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Hence, using Remark 6.17 and Proposition 6.14, we have

PΩ(Θc ∩ Ξ) 6
r∑
i=1

(
PΩ∩Ξi(∃x ∈ Si(b), |Ei(x)| > ε) + PΩ∩Ξ(|z − zi| > ε)

)
+ PΩ∩Ξ1

(
Θc

3
)

6 N−3+2µ+2η+o(1)ε−2 . (6.12)

We shall show below that there is a constant C > 0 such that on the event Ω ∩Θ ∩ Ξ we have

|gx(z)−Gxx(i− 1, z)| 6 Cε
r−i+1∑
j=0

(Cκ−4d−1)j |S+
j (x)| 6 No(1)ε (6.13)

for all 1 6 i 6 r and all x ∈ Si(b). The second inequality in (6.13) follows from r � logN and
d−j |S+

j (x)| 6 d−j |Bj(x)| . logN for all x ∈ [N ] by Proposition 3.2 (ii).
Before proving (6.13), we conclude Proposition 6.15 from (6.13) (after renaming ε 7→ N−o(1)ε)

with i = 1, the definition of Θ3 and (6.12), where we used that G(0, z) = (H(V)−z)−1 on Ω∩{b ∈ W}
as V(Bi(b)) = V \ {b}.

What remains, therefore, is the proof of (6.13). We prove it by inductively decreasing i starting
from i = r + 1. By convention, for any x ∈ Sr+1(b) we denote gx(z) ..= Gxx(r, z), so that (6.13)
trivially holds for i = r+ 1. Therefore, we can assume throughout the following argument that gx(z)
is defined by the second case in Definition 6.9 for all x ∈ Br(b) \ {b} (note that on the event Ω ∩ Ξ
we have S+

1 (x) \ V(Br(b)) = S+
1 (x) for any x ∈ Sr(b), by Proposition 3.2 (iii)).

To verify the induction step, we assume that (6.13) holds on Sj(b) for all i+ 1 6 j 6 r + 1 and
consider x ∈ Si(b). We first show that on Ω ∩ Ξ ∩Θ

gx(z) = −
(
z + 1

d

∑
y∈S+

1 (x)

gy(z)
)−1

. (6.14)

To that end, we conclude from the induction hypothesis, (3.5), the definition of Θ2 and Proposition 3.2
(i) that∣∣∣∣1d ∑

y∈S+
1 (x)

Gyy(i, zi)−
1
d

∑
y∈S+

1 (x)

gy(z)
∣∣∣∣ 6 1

d

∑
y∈S+

1 (x)

(|Gyy(i, z)− gy(z)|+ |Gyy(i, zi)−Gyy(i, z)|)

6 d−1|S1(x)|
(

max
y∈S+

1 (x)
|Gyy(i, z)− gy(z)|+ (8/κ)2|z − zi|

)
6 No(1)ε . (6.15)

By Lemma 6.18, on Ω ∩ Ξ we have zi ∈ J . We recall from Lemma 3.9 that all Green function
entries Gxx(i − 1, zi) and Gyy(i, zi) are negative for zi ∈ J . We use the upper bound (3.4) for
−Gxx(i− 1, zi) as well as (6.9) to obtain, on Ω ∩ Ξ ∩Θ1 ∩Θ2,

10
9T 6

κ

9 6 − 1
Gxx(i− 1, zi)

− Ei(x) = zi + 1
d

∑
y∈S+

1 (x)

Gyy(i, zi) 6 Λ(αa) + o(1) 6
√

2αa + o(1) 6 T

2 .

(6.16)
Here, we also used Corollary 3.6, which is applicable as V(Bi(b)) = V \ {b} on Ω ∩ {b ∈ W} by
Proposition 3.2 (iii), αa 6 10d−1 logN on Ω by Proposition 3.2 (i), and the definitions of Λ and T .
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Then, by the assumption ε 6 N−c, we find that (6.16) and (6.15) imply T−1 6 z+ 1
d

∑
y∈S+

1 (x) gy(z) 6
T , which yields (6.14) by the definitions of ι and gx(z) in (6.4) and Definition 6.9, respectively. This
concludes the proof of (6.14).

Finally, we find on Ω ∩ Ξ ∩Θ

|gx(z)−Gxx(i− 1, z)|

6 gx(z)Gxx(i− 1, zi)
∣∣∣gx(z)−1 −Gxx(i− 1, zi)−1

∣∣∣+ (8/κ)2|z − zi|

6 (8/κ)2
(∣∣∣∣1d ∑

y∈S+
1 (x)

Gyy(i, zi)−
1
d

∑
y∈S+

1 (x)

gy(z)
∣∣∣∣+ |z − zi|+ |Ei(x)|

)

6 (8/κ)2
(1
d

∑
y∈S+

1 (x)

r−i∑
j=0

(Cκ−4d−1)j |S+
j (y)|Cε+ ((8/κ)2d−1|S+

1 (x)|+ 1)|z − zi|+ |Ei(x)|
)

6 C−1
(

64
r−i+1∑
j=1

(Cκ−4d−1)j |S+
j (x)|+ 642κ−4(d−1|S+

1 (x)|+ 2)
)
Cε .

Here we used (3.5) in the first inequality, (6.9) and (6.14) in the second, (3.4) and the iteration
hypothesis in the third and that |S+

j+1(x)| = ∑
y∈S+

1 (x) |S
+
j (y)| and the definitions of Θ1 and Θ2 in

the last one. We conclude (6.13) for large enough C.

What remains is the proof of Lemma 6.20.

Proof of Lemma 6.20. We begin with (i). Throughout the proof, we fix i and we condition on Fi.
We always assume that b ∈ W, which is an Fi-measurable event since i > 1.

We start by observing that the event

Γi ..= {V(Bi−1(b)) = V(Bi(b))} ∩ {A|Si(b) = 0}

satisfies Ω ⊂ Γi, by Proposition 3.2 (ii), (iii). See Figure 6.2 for an illustration of Γi.
For the proof we abbreviate

Ti ..= Bi−1(b) ∪ V(Bi(b)) , (6.17)

so that on the event Γi we have H(i− 1) = H(Ti). From Schur’s complement formula we get on the
event Γi

− 1
Gxx(i− 1, zi)

= zi + 1
d

∑
u,v∈S+

1 (x)

(H(Ti∪{x}) − zi)−1
uv , (6.18)

where we used that x has no neighbours in Si(b) by definition of Γi.
We now decompose the error term Ei(x) from (6.9) into several summands estimated separately.

To that end, let {x, y1, . . . , y|Si(b)|−1} = Si(b) be an enumeration of Si(b). We set y0 ..= x and

E(0)
i

..= 1
d

∑
u,v∈S+

1 (x), u 6=v

(
H(Ti∪{x}) − zi

)−1
uv
,

E(j)
i

..= 1
d

∑
u∈S+

1 (x)

((
H(Ti∪{y0,...,yj}) − zi

)−1
uu
−
(
H(Ti∪{y0,...,yj−1}) − zi

)−1
uu

)
.
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Bi(b)c

Bi(b)

b

Figure 6.2. An illustration of the event Γi for i = 3. The vertices of V are drawn in green. By definition of
Γi, the red edges are forbidden.

for j = 1, . . . , |Si(b)| − 1. Then, from (6.18) we conclude that (6.9) holds with

Ei(x) = E(0)
i −

|Si(b)|−1∑
j=1

E(j)
i .

Chebyshev’s and the Cauchy-Schwarz inequalities yield

PΩ(|Ei(x)| > ε | Fi) 6 ε−2 |Si(b)|
(
EΩ[|E(0)

i |
2 | Fi] +

|Si(b)|−1∑
j=1

EΩ[|E(j)
i |

2 | Fi]
)
. (6.19)

Therefore, it remains to estimate EΩ[|E(j)
i |2 | Fi] for all j = 0, . . . , |Si(b)| − 1. To that end, we

introduce a σ-algebra refining Fi from Definition 6.3. For any subset X ⊂ Si(b) we define the
σ-algebra12

Fi(X) ..= σ
(
Fi, (S+

1 (y))y∈Si(b)\X
)
,

using that Si(b) is Fi-measurable. See Figure 6.3 for an illustration of Fi(X). Moreover, for
X ⊂ Si(b) we define the event

∆i(X) ..=
{∥∥(H(Ti∪X) − zi)−1∥∥ 6 8κ−1

}
.

We note that for any X ⊂ Si(b), the event ∆i(X) lies in Fi(X), since H(Ti∪X) is Fi(X)-measurable
(see the definition (6.17) and Figure 6.3). Furthermore, by Lemma 3.8 for zi ∈ J we have

Ω ⊂
⋂

X⊂Si(b)
∆i(X) . (6.20)

12Somewhat more carefully (since the set X is random), the precise definition of Fi(X) is as follows. As the
underlying probability space is finite, any σ-algebra, in particular Fi, is atomic. Conditioning on Fi means that we
restrict ourselves to a single atom A of Fi. On this atom Si(b) and X are deterministic. Then Fi(X) is by definition
the smallest σ-algebra on A such that S+

1 (y) is measurable for all y ∈ Si(b) \X.
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Bi(b)c

Bi(b)

b

Figure 6.3. An illustration of the σ-algebra Fi(X). Here i = 3, the vertex b is drawn in green, and the set
X ⊂ Si(b) is drawn in blue. Conditioning on Fi(X) means that we fix all edges within Bi(b), within Bi(b)c,
and connecting Si(b) \X with Bi(b)c. The only randomness is the choice of the edges from X to Bi(b)c,
drawn in blue. After removal of the vertices in Ti ∪X (see (6.17)), only black edges and edges within Bi(b)c
remain, which shows that H(Ti∪X) is Fi(X)-measurable. Note that for X = Si(b) we have Fi(X) = Fi, and
we recover the illustration from Figure 6.1.

For the estimate of E(0)
i , we introduce the sets Q ..= {(u, v) ∈ (Bi(b)c)2 .. u 6= v} and Q ..=

Q∩ (S+
1 (x))2 and the family (Zq)q∈Q defined by Z(u,v)

..= (H(Ti∪{x}) − zi)−1
uv . We first note that, for

any q = (u, v) ∈ Q, we have

P(q ∈ Q | Fi({x})) = P(u ∈ S+
1 (x), v ∈ S+

1 (x) | Fi) = d2

N2 . (6.21)

In the last step we used that, by Lemma 6.4, for any X ⊂ Si(b), conditionally on Fi(X), the random
variables (Axy .. x ∈ X, y ∈ Bi(b)c) are independent Bernoulli- dN random variables. Moreover, we get∑

q∈Q
|Zq|21∆i({x}) 6 Tr((H(Ti∪{x}) − zi)−2)1∆i({x}) . Nκ−2 . (6.22)

Since E(0)
i = 1

d

∑
q∈Q Zq, the inclusion Ω ⊂ Γi ∩∆i({x}) and the Cauchy-Schwarz inequality imply

EΩ
[
|E(0)
i |

2∣∣Fi({x})] 6 1
d2EΩ

[
|Q|

∑
q∈Q
|Zq|2

∣∣∣∣Fi({x})]

.
(logN)2

d2 E
[∑
q∈Q
|Zq|21∆i({x})

∣∣∣∣Fi({x})]

.
(logN)2

d2 max
q∈Q

P(q ∈ Q | Fi({x}))
∑
q∈Q
|Zq|21∆i({x})

.
(logN)2

κ2N
,

(6.23)

58



where we used that |S1(x)| . logN on Ω, by Proposition 3.2 (i), as well as the Fi({x})-measurability
of |Zq|21∆i({x}). The last step follows from (6.21) and (6.22).

To bound E(j)
i for a fixed j ∈ {1, . . . , |Si(b)| − 1}, we conclude on the event Γi from the resolvent

identity that

E(j)
i = 1

d3/2

∑
u∈S+

1 (x)

(
H(Ti∪{y0,...,yj−1}) − zi

)−1
uyj

∑
v∈S+

1 (yj)

(
H(Ti∪{y0,...,yj}) − zi

)−1
vu
.

Therefore, by applying the Cauchy-Schwarz inequality twice and using (6.20) with X = {y0, . . . , yj},
we obtain

|E(j)
i |

2
1Ω 6 1Ω

|S+
1 (x)|
d3

∑
u∈S+

1 (x)

|(H(Ti∪{y0,...,yj−1}) − zi)−1
uyj |

2
∣∣∣∣ ∑
v∈S+

1 (yj)

(H(Ti∪{y0,...,yj}) − zi)−1
vu

∣∣∣∣2

. 1Ω
|S+

1 (x)||S+
1 (yj)|

d3κ2

∑
u∈S+

1 (x)

|(H(Ti∪{y0,...,yj−1}) − zi)−1
uyj |

2

. 1Ω
(logN)2

d3κ2

∑
u∈S+

1 (x)

|(H(Ti∪{y0,...,yj−1}) − zi)−1
uyj |

2 , (6.24)

where in the last step we used |S1(x)|+ |S1(yj)| . logN from Proposition 3.2 (i) on Ω.
We now set Yu ..= (H(Ti∪{y0,...,yj−1}) − zi)−1

uyj for u ∈ Bi(b)c, U ..= S+
1 (x) and U ..= Bi(b)c. We

apply E[ · | Fi({y0, . . . , yj−1})] to (6.24) and, similarly as in (6.23), obtain

EΩ[|E(j)
i |

2 | Fi({y0, . . . , yj−1})] .
(logN)2

d3κ2 max
u∈U

P(u ∈ U | Fi({y0, . . . , yj−1}))
∑
u∈U
|Yu|21∆i({y0,...,yj−1})

.
(logN)2

d2κ4N
, (6.25)

where we used that (Yu)u∈U is Fi({y0, . . . , yj−1})-measurable, and that ∑u∈U |Yu|21∆i({y0,...,yj−1}) =
‖(Yu)u∈Bi(b)c‖21∆i({y0,...,yj−1}) . κ−2. We also used the remark following (6.21).

Finally, using the estimates (6.23) and (6.25) in (6.19) together with the tower property of the
conditional expectation complete the proof of (6.9) and (6.10). This concludes the proof of (i).

Next, we prove (ii). For the proof of (6.11), we fix x, y ∈ S1(b) and conclude from the resolvent
identity [24, eq. (3.5)] that

(H(V) − z)−1
xy = −(H(V) − z)−1

xx

∑
u/∈V∪{x}

Hxu(H(V∪{x}) − z)−1
uy

= − 1√
d

(H(V) − z)−1
xx

∑
u/∈V∪{x}

1u∈S+
1 (x)(H

(V∪{x}) − z)−1
uy .

Therefore, the Cauchy-Schwarz inequality and Lemma 3.8 imply

|(H(V) − z)−1
xy |21Ω . 1Ω

|S+
1 (x)|
κ2d

∑
u/∈T1∪{x}

1u∈S+
1 (x)|(H

(T1∪{x}) − z)−1
uy |2 ,
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where we also used that V = {b} ∪ V(B1(b)) = T1 on Ω by Proposition 3.2 (iii). Hence, since
|S1(x)| . logN on Ω by Proposition 3.2 (i), Ω ⊂ ∆1({x}) and ∆1({x}) ∈ F1({x}), we obtain

E
[
|(H(V) − z)−1

xy |21Ω | F1({x})
]

.
logN
κ2d

max
u/∈T1∪{x}

P(u ∈ S+
1 (x) | F1({x}))

∑
u/∈T1∪{x}

|(H(T1∪{x}) − z)−1
uy |21∆1({x}) .

logN
κ4N

.

Here, in the last step, we used P(u ∈ S+
1 (x) | F1({x})) 6 d/N and ∑

u/∈T1∪{x}|(H
(T1∪{x}) −

z)−1
uy |21∆1({x}) . κ−2. Thus, Chebyshev’s inequality and the tower property of the conditional

expectation complete the proof of (6.11) and, therefore, the one of Lemma 6.20.

6.5. Proof of Proposition 6.12. This subsection is devoted to the proof of Proposition 6.12.
We start by introducing the notion of a robust vertex.

b

Br(b)

Figure 6.4. An illustration of the set R ≡ Rr(G, b) of robust vertices. Here r = 3 and d = 4. We draw the
ball Br(b) around the root b. The robust vertices are drawn in blue and the non-robust vertices in white. In
this example, the root b is robust.

Definition 6.21. Let b ∈ [N ] and r ∈ N∗. We call a vertex y ∈ Br(b) robust if

(a) y ∈ Sr(b) or

(b) y ∈ Br−1(b) and at least d/2 vertices in S+
1 (y) are robust.

We denote by R ≡ Rr(G, b) ⊂ Br(b) the set of robust vertices.

Note that R is an F -measurable random set. See Figure 6.4 for an illustration of Definition 6.21.
The following result states that with high probability the root b is robust, conditioned on S1(a) and
S1(b).

Proposition 6.22 (The root is robust). Suppose that
√

logN � d . logN and that r satisfies
(3.2). Then PΩ(b /∈ R |S1(a), S1(b)) . N−1/2 whenever a, b ∈ W.
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The proof of Proposition 6.22 is given at the end of this subsection. From now on, we choose r
as in (6.3).

Definition 6.23. Let z ∈ J be an F-measurable real random variable. We introduce the event Υ
on which the following conditions hold.

(A) G|Br(b) is a tree.

(B) b ∈ R.

(C) −Gyy(r, z) > (3z)−1 for all y ∈ (Br(b) ∪ V(Br(b)))c.

(D) |Br(b) ∪ V(Br(b))| 6 N1/2.

Lemma 6.24. We have Υ ∈ F and PΩ(Υc |S1(a), S1(b)) = O(N−1/2) whenever a, b ∈ W.

Proof. That Υ ∈ F follows from the Definitions 6.5 and 6.21. The estimate follows from Proposition
6.22 and the facts that on Ω the conditions (A), (C), and (D) hold surely. That (C) holds surely on
Ω follows from Lemma 3.9 and the observation that V = V(Br(b)) on Ω (see Proposition 3.2 (iii)).
That (D) holds surely on Ω follows from the statements (i), (i), (ii) of Proposition 3.2 (recall the
choice (6.3)).

We recall the definition of Lévy’s concentration function Q(X,L) from (2.13).

Remark 6.25. The concentration function has the following obvious properties.

(i) For any u > 0 we have Q(uX, uL) = Q(X,L). More generally, if f is a continuous bijection
on R such that f−1 is K-Lipschitz, then Q(f(X), L) 6 Q(X,KL).

(ii) If X and Y are independent then Q(X + Y, L) 6 min{Q(X,L), Q(Y,L)}.

Property (ii) is in general not sharp, and in some situations it can be improved considerably; see
Proposition 2.8. Nevertheless, in some situations (ii) gives a better bound than Proposition 2.8; this
is due to the minimum in (ii) as opposed to the maximum in Proposition 2.8. An important theme
in the proof of Proposition 6.12 is a judicious mix of (ii) and Proposition 2.8. How to do this mix is
encoded by the set of robust vertices from Definition 6.21.

We denote by QF Lévy’s concentration function with respect to the probability measure P( · | F).
The main tool behind the proof of Proposition 6.12 is the following anticoncentration estimate for
gx(z).

Proposition 6.26. Let z ∈ J be a F-measurable real random variable. There exists a constant
χ > 0 such that, on the event Υ, for any 1 6 i 6 r and x ∈ Si(b) ∩R we have

QF
(
gx(z), 1

8z(T 2d)r−i+1

)
6

1
2(χd)(r−i)/2 .

Before proving Proposition 6.26, we use it to conclude the proof of Proposition 6.12.
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Proof of Proposition 6.12. We estimate

PΩ

(
a, b ∈ W,

∣∣∣∣1d ∑
x∈S1(b)

gx(z) + z

∣∣∣∣ 6 N−η
)

6 PΩ

(
Ξr ∩Υ ∩

{∣∣∣∣1d ∑
x∈S1(b)

gx(z) + z

∣∣∣∣ 6 N−η
})

+ PΩ(Ξ ∩Υc)

= E
[
1Ξr 1Υ P

(∣∣∣∣1d ∑
x∈S1(b)

gx(z) + z

∣∣∣∣ 6 N−η
∣∣∣∣F)]+ PΩ(Ξ ∩Υc) , (6.26)

where we used Remark 6.17 (i) and (iii) as well as Υ ∈ F by Lemma 6.24. The second term on the
right-hand side of (6.26) is estimated as

PΩ(Ξ ∩Υc) = E[1a∈W 1b∈W PΩ(Υc |S1(a), S1(b))] . N−1/2 P(a, b ∈ W) ,

by Lemma 6.24.
To estimate the first term on the right-hand side of (6.26), we use Proposition 6.26 with i = 1

and the estimate
8zd(T 2d)r 6 d2r+3/2 6 Nη (6.27)

where we used the definitions of r and T from (6.3) and Definition 6.6, as well as d�
√

logN . On Υ
we have b ∈ R and hence, by Definition 6.21, there exists x∗ ∈ S1(b) ∩R. Using that (gx(z))x∈S1(b)
is an independent family, on the event Υ conditionally on F , this yields, on the event Υ,

P
(∣∣∣∣1d ∑

x∈S1(b)
gx(z) + z

∣∣∣∣ 6 N−η
∣∣∣∣F) 6 QF

(1
d

∑
x∈S1(b)

gx(z) , 1
8zd(T 2d)r

)

6 QF
(1
d
gx∗(z) ,

1
8zd(T 2d)r

)
= QF

(
gx∗(z) ,

1
8z(T 2d)r

)
,

where in the second step we used Remark 6.25 (ii) and in the last step Remark 6.25 (i). From
Proposition 6.26 we therefore conclude that the first term on the right-hand side of (6.26) is bounded
by

1
2(χd)(r−i)/2 P(Ξr) 6 N−η/4+o(1) P(a, b ∈ W) ,

where we used the definition 6.3 and Remark 6.17 (ii). The claim now follows from Lemma 6.19.

Remark 6.27. If we restrict ourselves to the critical regime d � logN , then the factor N−η inside
the probability in (6.6) can be improved to N−η/2. To see this, we note that in this regime the
parameter T from Definition 6.6 satisfies T = 10κ−1 since, in the critical regime, the estimate (6.16)
with small enough κ remains valid for this smaller choice of T . Thus, the estimate (6.27) in the
proof of Proposition 6.12 can be replaced with 8zd(T 2d)r 6 (Cd)r, which is bounded by Nη/2+o(1).

The key tool behind the proof of Proposition 6.26 is Proposition 2.8 due to Kesten.
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Proof of Proposition 6.26. Throughout the proof, the argument z of gx(z) for any x ∈ Br(b) will
always be the random variable z from Definition 6.23. Therefore, we omit this argument from our
notation and write gx ≡ gx(z).

For i ∈ [r] we define

Li ..= 1
8zT 2d

( 1
T 2d

)r−i
, Pi ..= 1

2

(√2K
d1/2

)r−i
.

where K is the universal constant from Proposition 2.8. We prove Proposition 6.26 by showing that,
for all i ∈ [r] and x ∈ Si(b) ∩R we have

QF
(
gx, Li

)
6 Pi . (6.28)

We show (6.28) by induction on i = r, r − 1, . . . , 1.
We start the induction at i = r. Abbreviate X ..= (Br(b) ∪ V(Br(b)))c, which is an F -measurable

set. For x ∈ Sr(b), conditioned on F , (1y∈S+
1 (x))y∈X are i.i.d. Bernoulli random variables. Hence,

conditioned on F we have
∑

y∈S+
1 (x)\V(Br(b))

Gyy(r, z)
d=
|X |∑
k=0

1|S+
1 (x)∩X|=k

k∑
i=1

Gσ(i)σ(i)(r, z) , (6.29)

where σ is a uniform random enumeration of X (i.e. a bijection [|X |]→ X ) that is independent of
|S+

1 (x) ∩ X |. Because of the condition (C) in Definition 6.23, for any k 6= l, |∑l
i=1Gσ(i)σ(i)(r, z)−∑k

i=1Gσ(i)σ(i)(r, z)| > (3z)−1. Therefore, for any t ∈ R we get on Υ

P
(∣∣∣∣∣
|X |∑
k=0

1|S+
1 (x)∩X|=k

k∑
i=1

Gσ(i)σ(i)(r, z)− t
∣∣∣∣∣ 6 1

8z

∣∣∣∣σ,F
)

6 max
06k6|X |

P(|S+
1 (x) ∩ X | = k | F) 6 1

2 ,

where in the last step we used that |S+
1 (x) ∩ X | d= Binom(|X |, d/N) conditioned on F , that

|X | > N −N1/2 by the condition (D) in Definition 6.23, and that d� 1. From (6.29) we therefore
conclude that

QF
( ∑
y∈S+

1 (x)\V(Br(b))

Gyy(r, z),
1
8z

)
6

1
2 .

Hence, Remarks 6.7 and 6.25 (i) imply

QF
(
gx,

1
8zT 2d

)
6

1
2 ,

which is (6.28) for i = r.
For the induction step, we let i < r, choose x ∈ Si(b) ∩R, and assume that

QF (gy, Li+1) 6 Pi+1

for all y ∈ Si+1(b) ∩R. Note that S+
1 (x) and R are F -measurable, and that the family (gy)y∈S1+(x)

is independent on Υ conditioned on F , by Remark 6.10 and Definition 6.23 (A). Hence, we can
apply Proposition 2.8 to the concentration function QF to obtain

QF
( ∑
y∈S+

1 (x)∩R

gy, Li+1

)
6

K√
|S+

1 (x) ∩R|
Pi+1 6

K
√

2Pi+1
d1/2 , (6.30)
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where the last inequality follows from |S+
1 (x) ∩ R| > d/2, by Definition 6.21. Moreover, the

conditional independence of the sums ∑y∈S+
1 (x)∩R gy and ∑y∈S+

1 (x)\R gy combined with Remark
6.25 (i) and (ii) yields

QF
(

1
d

∑
y∈S+

1 (x)

gy,
Li+1
d

)
= QF

( ∑
y∈S+

1 (x)

gy, Li+1

)

= QF
( ∑
y∈S+

1 (x)∩R

gy +
∑

y∈S+
1 (x)\R

gy, Li+1

)

6 QF
( ∑
y∈S+

1 (x)∩R

gy, Li+1

)
.

Hence, by Remark 6.7, Remark 6.25 (i), Definition 6.9, and (6.30), we obtain

QF
(
gx,

Li+1
T 2d

)
6
K
√

2Pi+1
d1/2 ,

which is (6.28). This completes the proof of (6.28) and, hence, the one of Proposition 6.26.

Proof of Proposition 6.22. The proof proceeds in two steps: first by establishing the claim for the
root of a Galton-Watson branching process with Poisson offspring distribution with mean d, and
then concluding by a comparison argument.

Denote by Ps a Poisson random variable with expectation s. Let W denote the Galton-Watson
branching process with Poisson offspring distribution Pd, which we regard as a random rooted
ordered tree13 whose root we call o. We use the graph-theoretic notations (such as Si(x)) from
Section 2.1 also on rooted ordered trees. Moreover, we extend Definition 6.21 to a rooted ordered
tree T in the obvious fashion, and when needed we use the notation R ≡ Rr(T, o) to indicate the
radius r, the tree T , and the root o explicitly.

We define the parameter δ ..= P(P3d/4 6 d
2). By Bennett’s inequality (see Lemma D.1 below),

we find that δ 6 e−cd for some universal constant c > 0. We shall show by induction on i that

P(o /∈ Ri(W, o)) 6 δ (6.31)

for all i > 0. For i = 0 we have P(o /∈ Ri(W, o)) = 0 since o ∈ R0(W, o) by (the analogue of)
Definition 6.21, and (6.31) is trivial.

To advance the induction, we suppose that (6.31) holds for some i > 0. By Definition 6.21,

P(o /∈ Ri+1(W, o)) = P
( ∑
x∈S1(o)

1x∈Ri+1(W,o) <
d

2

)
.

By definition of the branching processW , conditioned on S1(o), the random variables (1x∈Ri+1(W,o))x∈S1(o)
are independent Bernoulli random variables with expectation

P(x ∈ Ri+1(W, o)|S1(o)) = P(o ∈ Ri(W, o)) =.. 1− ζi ,
13A rooted ordered tree (also called plane tree) is a rooted tree in which an ordering is specified among the children

of each vertex.
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where x ∈ S1(o). We conclude that ∑x∈S1(o) 1x∈Ri+1(W,o)
d= Pd(1−ζi). Using the induction assump-

tion ζi 6 δ from (6.31) and the bound δ 6 e−cd < 1/4 for large enough d, we therefore conclude
that

P(o /∈ Ri+1(W )) = P
(
Pd(1−P(o/∈Ri(W,o))) <

d

2

)
6 P

(
P3d/4 6

d

2

)
= δ .

This concludes the proof of (6.31) for all i > 0.
Hence, denoting by Bn,p a random variable with law Binom(n, p), we conclude that if |S1(o)| > d

then

P(o /∈ Rr(W, o) |S1(o)) = P
( ∑
x∈S1(o)

1x∈Rr−1(W,o) <
d

2

∣∣∣∣S1(o)
)

= P
(
B|S1(o)|,1−ζr−1 <

d

2

∣∣∣∣S1(o)
)

6 P
(
Bd,1−δ <

d

2

)
= P

(
Bd,δ >

d

2

)
6 e−cdδ

1
2δ log 1

2δ 6 e−cd2
6 N−1 (6.32)

for some universal constant c > 0, where in the third step we used that |S1(o)| > d and ζr−1 6 δ
by (6.31), in the fifth step Bennett’s inequality (see Lemma D.1 below), in the sixth step that
δ 6 e−cd, and in the last step the assumption d �

√
logN . This concludes the estimate for the

Galton-Watson process W .
Next, we analyse PΩ(b /∈ Rr(G, b) |S1(a), S1(b)). We note first that we can assume that

|B1(a)| 6 1 + 10 logN and that B1(a) and B1(b) are disjoint, for otherwise the above probability
vanishes by definition of Ω and Proposition 3.2.

We observe that a rooted ordered tree can be regarded as an equivalence class of (labelled)
rooted trees up to a relabelling of the vertices that preserves the ordering of the children of each
vertex. We denote by [T, x] the equivalence class of the labelled rooted tree (T, x), where x is the
root. By convention, if T is not a tree (i.e. if it contains a cycle) then its equivalence class is the
empty tree. We denote by Tr the set of rooted ordered trees of depth r. Moreover, we denote by
T∗r ⊂ Tr the subset of rooted ordered trees with at most N1/5 vertices and whose root is a robust
vertex with |S1(b)| children. Abbreviating ∆ ..= {Br(b) ⊂ [N ] \B1(a)}, we can write

PΩ(b /∈ Rr(G, b) |S1(a), S1(b)) = PΩ([G|Br(b), b] /∈ T∗r |S1(a), S1(b))
6 P({[G|Br(b), b] /∈ T∗r} ∩∆ |S1(a), S1(b)) , (6.33)

where we used that, since a, b ∈ W ⊂ V, Proposition 3.2 implies that on the event Ω the graph
G|Br(b) is a tree with at most N1/5 vertices, and that Ω ⊂ ∆.

For the following, let T ∈ T∗r and denote by o its root. For 1 6 i 6 r we introduce the event

Θi
..= {[G|Bi(b), b] = T |Bi(o)} ∩ {Bi(b) ⊂ [N ] \B1(a)} .

In particular, P(Θ1 |S1(a), S1(b)) = 1 because of the assumed disjointness of S1(a) and S1(b). We
now estimate

P({[G|Br(b), b] = T} ∩∆ |S1(a), S1(b)) = P(Θr |S1(a), S1(b)) (6.34)
recursively, for 1 6 i 6 r − 1, using the expression

P(Θi+1|S1(a), S1(b))
P(Θi|S1(a), S1(b))

= (N ′ − |Bi(o)|)!
(N ′ − |Bi+1(o)|)!∏x∈Si(o)|S

+
1 (x)|!

∏
x∈Si(o)

(
d

N

)|S+
1 (x)|(

1− d

N

)N−|Bi(o)|−|S+
1 (x)|

,
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where N ′ ..= N − |B1(a)|, and the graph-theoretic quantities on the left-hand side are in terms
of G and on the right-hand side in terms of the deterministic rooted ordered tree T . Here, the
multinomial factor in front arises from a choice of the |Si(o)| disjoint subsets representing the
children of the vertices in Si(o) from N ′ − |Bi(o)| available vertices, and the remaining product
follows by independence of the edges in G. We deduce that

P(Θi+1|S1(a), S1(b))
P(Θi|S1(a), S1(b)) = (1 +O(N−3/4)) (N ′ − |Bi(o)|)!

(N ′ − |Bi+1(o)|)!N |Si+1(o)|

∏
x∈Si(o)

d|S
+
1 (x)|

|S+
1 (x)|!

e−d

= (1 +O(N−3/5))
∏

x∈Si(o)

d|S
+
1 (x)|

|S+
1 (x)|!

e−d ,

where we used that N −N ′ 6 1 + 10 logN and |Br(o)| 6 N1/5. By induction on i and comparison
with the Galton-Watson tree W , using that

P(W |Bi+1(o) = T |Bi+1(o) |S1(o))
P(W |Bi(o) = T |Bi(o) |S1(o)) =

∏
x∈Si(o)

d|S
+
1 (x)|

|S+
1 (x)|!

e−d ,

as well as P(Θ1|S1(a), S1(b)) = 1, we therefore conclude from (6.34) that if |S1(b)| = |S1(o)| then

P({[G|Br(b), b] = T} ∩∆ |S1(a), S1(b)) = (1 +O(N−1/2))P(W |Br(o) = T |S1(o))

for all T ∈ T∗r . Thus,

P({[G|Br(b), b] /∈ T∗r} ∩∆ |S1(a), S1(b)) 6 1−
∑
T∈T∗r

P({[G|Br(b), b] = T} ∩∆ |S1(a), S1(b))

= 1−
∑
T∈T∗r

P(W |Br(o) = T |S1(o)) +O(N−1/2)

= P(o /∈ Rr(W, o) |S1(o)) +O(N−1/2) .

The claim now follows from (6.32) and (6.33), noting that if b ∈ W then |S1(b)| = |S1(o)| > d.

A. Quantitative behaviour of α∗

We recall the definition of α∗(µ) from (1.6) and remark that, besides µ, it depends on N and
d. Our analysis of α∗(µ) is based on quantitatively approximating the distribution of α1 by a
Poisson distribution. Owing to the Poisson approximation of binomial random variables (see
e.g. [12, Lemma A.6]) and the Stirling approximation of factorials, we have

P(dα1 = k) = dk

k! e−d
(

1 +O

(
k2

N2 + d2

N

))
= exp(−fd(k/d) +O(k−1)) (A.1)

for k 6
√
N , where fd(α) ..= d(α logα− α+ 1) + 1

2 log(2παd) for α > 0.

Lemma A.1. If µ ∈ [0, 1− ε] for some constant ε ∈ (0, 1) then there is a constant T > 2 such that
if d > 1 and t ..= logN

d > T then

α∗(µ) = (1− µ)t
log t

(
1 +O

( log log t
log t

))
. (A.2)
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Lemma A.1 is proved at the end of this appendix. We use it to derive two simple consequences.

Lemma A.2. Let 1 6 d 6 3 logN and µ ∈ [0, 1− ε] for some constant ε ∈ (0, 1). If x ∈ V then

αx &
logN

d log
(10 logN

d

) .
Proof. Let T be as in Lemma A.1. If logN

d > T then Lemma A.2 follows directly from Lemma A.1
and the definition of V in (2.1). If logN

d < T . 1 then αx > α∗(µ) > 2 + κ directly implies the
lemma as logN

d log
(

10 logN
d

) � 1.

Corollary A.3. Let µ, ν ∈ [0, 1−ε] for some constant ε > 0. Then there is a constant T ≡ T (ε) > 2
such that if t ..= logN

d > T then

Λ(α∗(ν))
Λ(α∗(µ)) =

√
1− ν
1− µ

(
1 +O

( log log t
log t

))
.

Proof. Choose T as in Lemma A.1, which then yields that α∗(ν)
α∗(µ) = 1−ν

1−µ
(
1 + O

( log log t
log t

))
. Hence,

using min{α∗(ν), α∗(µ)} & t
log t , we get

Λ(α∗(ν))
Λ(α∗(µ)) =

√
α∗(ν)
α∗(µ)

(
1 +O

( 1
α∗(ν) + 1

α∗(µ)

))
=
√

1− ν
1− µ

(
1 +O

( log log t
log t

))
.

Proof of Lemma A.1. Fix µ ∈ [0, 1 − ε] for some constant ε ∈ (0, 1). Throughout the proof we
abbreviate α∗ ≡ α∗(µ). A simple application of Bennett’s inequality (see Lemma D.1 below) shows
that α∗ . (logN)/d.

If Z is a random variable with law Binom(n, d/n) then there is a constant C > 0 such that

P(Z > k) = P(Z = k)
(

1 +O

(
d

k

))
for any k ∈ N with 2d 6 k 6

√
n/C (see e.g. [22, eq. (3.4)]). Therefore, for any α satisfying

2d 6 αd . logN , we obtain

P(α1 > α) = P(α1 = α)(1 +O(α−1))
= exp(−fd(α) +O((αd)−1))(1 +O(α−1)) = exp(−fd(α) +O(α−1)) , (A.3)

where we used (A.1) in the second step and incorporated the error term into the argument of the
exponential in the last step. As α∗ ∈ N/d, the definition of α∗ in (1.6) implies

P(α1 > α∗) 6 Nµ−1 6 P(α1 > α∗ − d−1) . (A.4)

Since fd(α∗ − d−1) = fd(α∗) + O((logα∗)−1) we conclude from (A.3) and (A.4) that fd(α∗) =
(1− µ) logN +O

(
(logα∗)−1) which yields

α∗ = (1− µ)t
−1 + logα∗ +O

(
(logα∗)−1) (A.5)
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with t ..= logN
d . We replace α∗ in the first term on the right-hand side of (A.5) by the entire

right-hand side of (A.5) and choose T > 2 a sufficiently large constant to arrive at

α∗ = (1− µ)t
log t+ log(1− µ)− log(logα∗ − 1) +O((α∗ logα∗)−1)− 1 +O((logα∗)−1) . (A.6)

By possibly increasing the constant T , we see that α∗ & t
log t . Using this lower bound to replace α∗

in the error terms of (A.6) by t yields (A.2) and, thus, completes the proof of Lemma A.1.

B. Qualitative behaviour of degree sequence and of α∗

In this appendix we describe the qualitative behaviour of the normalized degree sequence (αx)x∈[N ]
and apply it to α∗(µ) from (1.6). For definiteness, we focus on the critical regime, where d = b logN
for some constant b, and consider the limit N → ∞ with κ = o(1). For detailed proofs, we refer
to [12, Appendix A.4].

For b > 0 and α > 2 define

θb(α) ..= 1− b(α logα− α+ 1) . (B.1)

For any b 6 b∗, it is easy to see that for any µ ∈
[
0, 1− b

b∗

]
the equation µ = θb(α) has a unique

solution α > 2, which we denote by α∗(µ). By Poisson approximation from (A.1), we deduce that,
with high probability, for any α > 0 we have

|{x ∈ [N ] .. αx > α}| = N θb(α)+o(1) + o(1) . (B.2)

Recalling the definition (1.6), we hence conclude that α∗(µ) = α∗(µ) + o(1). In other words, α∗(µ)
is the asymptotic value of α∗(µ). We refer to Figure B.1 for an illustration of the function α∗(µ).

2

2.1

0 0.05 0.1 0.15 0.2 0.25 µ

α∗(µ)

1− b
b∗

αmax(b)

Figure B.1. An illustration of the function µ 7→ α∗(µ), the asymptotic version of α∗(µ). We plot it for
the values b = 2.0, 2.1, . . . , 2.5, corresponding to the graphs from top to bottom. Each graph crosses the
horizontal axis at µ = 1− b

b∗
and the vertical axis at α = αmax(b).
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Next, we define
αmax(b) ..= α∗(0) , λmax(b) ..= Λ(αmax(b)) , (B.3)

which, by (B.2) and Remark 1.2, have the interpretation of the asymptotic largest normalized degree
and largest nontrivial eigenvalue of H, respectively. Moreover, for b < b∗ we define

ρb(λ) ..=
{
θb(Λ−1(λ))+ if |λ| > 2
1 if |λ| < 2 ,

(B.4)

where Λ−1(λ) = λ2

2 (1 +
√

1− 4/λ2) for |λ| > 2. Then with high probability the density of states
around energy λ ∈ R equals Nρb(λ)+o(1). For λ > 2, this follows from Remark 1.2 and (B.2). The
function ρb is illustrated in Figure B.2 below.

λ

1

0
2 λmax(b)

ρb(λ)

Figure B.2. The behaviour of the exponent ρb of the density of states from (B.4), as a function of the
energy λ. Here d = b logN with b = 1 and λmax(b) ≈ 2.0737. We only plot a neighbourhood of the threshold
energy 2. The jump at 2 of ρb is from ρb(2−) = 1 to ρb(2+) = 1− b/b∗ = 2− 2 log 2.

C. Largest eigenvalues of H and some submatrices – proof of Proposition 3.4

In this section we prove Proposition 3.4. We start with the following auxiliary result.

Lemma C.1. Let d satisfy (1.5). With high probability, for all ν ∈ [0, 1], we have

‖(H − EH)({x :αx>α∗(ν)})‖ 6 Λ(α∗(ν)) + o(1) . (C.1)

Before giving the proof of Lemma C.1, we use it to establish Proposition 3.4. Lemma C.1 is the
core ingredient in the proof of Proposition 3.4 (i). The main ideas for the proofs of Proposition 3.4 (i)
and Lemma C.1 stem from [13], where a version of Proposition 3.4 (i) was shown in [13, eq. (8.11)].
However, [13, eq. (8.11)] does not cover the full range of d required in Proposition 3.4 (i) and does
not have precise enough error bounds. Therefore, we apply the results from [12], which refined the
ideas from [13].
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Proof of Proposition 3.4. For the proof of (i), we choose ν = µ in (C.1), observe that {x .. αx >
α∗(µ)} = V and use eigenvalue interlacing (Lemma D.4) to obtain (i) since (EH)(V) is a positive
semidefinite rank-one matrix.

For the proof of (ii), we regard H(X) as perturbation of (EH)(X). We note that ‖H(X) −
(EH)(X)‖ 6 ‖H −EH‖ �

√
d by (5.24), that (EH)(X) is a rank-one matrix with nonzero eigenvalue√

d
(
1 − |X|N

)
and associated eigenvector 1Xc

|Xc|1/2 , and that |X| 6 ∑
x∈V |Br(x)| 6 N1/3+o(1) by

Proposition 3.2 (i) and Proposition 3.1 (ii), recalling the condition (3.2). We hence conclude (ii)
using Lemma D.2.

For the proof of (iii), we first note that H(X)vr(x) = Hvr(x) since X ∩ Br(x) = ∅ and
supp v ⊂ Br−1(x). To estimate (H − EH − Λ(αx))vr(x), we now apply [13, Proposition 5.1]. From
the assumption log d� r 6 logN

6 log d , |S1(x)| 6 10 logN by Proposition 3.1 (i) and the lower bound
in (1.5), we conclude that the condition on r in [13, Proposition 5.1] is satisfied14. The condition
log d � r 6 logN

6 log d , 2 + κ 6 α∗ 6 αx for x ∈ V and Proposition 3.1 (i) imply that the event
from [13, eq. (5.4)] occurs with high probability. Therefore, using the lower bound on d from (1.5)
and Lemma A.2, we obtain from [13, Proposition 5.1] that

‖(H − EH − Λ(αx))vr(x)‖ . (log logN)−1
(

log
(10 logN

d

))1/2
= o(1)

with high probability. Using that supp vr(x) ⊂ Br−1(x) and EHxy =
√
d
N 1x 6=y, we deduce that

‖(EH)vr(x)‖ 6
√

d
N |Br(x)| = o(1), where in the last step we used the upper bound on r and

Proposition 3.1 (ii). We hence conclude that ‖(H(X)−Λ(αx))vr(x)‖ = o(1) by recalling H(X)vr(x) =
Hvr(x).

We now turn to the proof of (iv). For the given r ∈ N, we choose q as in [15, Proposition 6.1].
Then [15, Proposition 6.1] yields ‖q − e‖ . d−1/2 and ‖(H −

√
d)q‖ . d−1/2. In order to estimate

‖w1 − q‖, we use Lemma D.2 with M = H, λ̂ =
√
d and v = q whose assumptions we check next.

From (5.24) and eigenvalue interlacing (Lemma D.4), we conclude that λ2(H)�
√
d. Therefore,

there is ∆ �
√
d such thatH has a unique eigenvalue in [

√
d−∆,

√
d+∆]. Since ‖(H−

√
d)q‖ . d−1/2

as explained above, the conditions of Lemma D.2 with ∆ �
√
d and ε � d−1/2 are satisfied and we

obtain ‖w1 − q‖ . d−1.
Finally, from [15, Proposition 6.1], we know the inclusion supp q ⊂

(⋃
x∈U Br+1(x)

)c, where
U ..=

{{
x ∈ [N ] .. αx > 2 + ξ1/4} if d > (logN)3/4{
x ∈ [N ] .. αx > a/5

}
if d 6 (logN)3/4 (C.2)

with ξ from (5.17) and a the solution of h(a− 1) = logN
d (compare with (D.1) below).

We now show that V ⊂ U . If d > (logN)3/4, the inclusion V ⊂ U is obvious as ξ = o(1) by
(5.21) and αx > 2 + κ by (2.1) and (1.6). For d 6 (logN)3/4, we note that a short analysis of the
definition of a reveals that a = t

log t(1 + o(1)) with t ..= logN
d if t > C for some sufficiently large

constant C. By possibly increasing C, we conclude from Lemma A.1 that α∗(µ) > a/5 if µ ∈ [0, 1/5)
and t > C. This implies V \W if d 6 (logN)3/4 and completes the proof of Proposition 3.4 (iv).

Remark C.2. We note that in Proposition 3.4 (iv), actually supp q ⊂
(⋃

x∈U Br+1(x)
)c holds as

shown in the above proof.
14See [13, eq. (5.1)] for the definition of rx.
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Proof of Lemma C.1. We first recall ξ and ξu from (5.17). Throughout the proof, we choose
τ ..= 1 + ξ1/2. Note that ξ = o(1), τ = 1 + o(1) and ξτ−1 = o(1) by (5.21).

The proof relies on an analogous argument in [12, Proof of Proposition 3.12], to which we refer
in the following. We begin by introducing some notation. Following [12, Section 3.1], we define
Vα ..= {x ∈ [N ] .. αx > α} for α > 0. We set U ..= V2+ξ1/4 \ Vα∗(ν); we note that the set U ∪ Vα∗(ν)
was denoted by V in [12], see [12, eqs. (1.9) and (3.3)]. Observe that Vα∗(ν) ⊂ V2+ξ1/4 by the
definition of α∗ in (1.6). From (5.23) and ‖M (Vα∗(ν))‖ 6 ‖M‖ for any matrix M , we conclude that
(H − EH)(Vα∗(ν)) = (Ĥτ )(Vα∗(ν)) + o(1), where o(1) is in the sense of operator norm. Therefore, in
order to prove (C.1), it suffices to prove that, for any constant δ > 0, the matrix (Ĥτ )(Vα∗(ν)) does
not have an eigenvalue larger than Λ(α∗(ν)) + δ.

Suppose, by contradiction, that λ is an eigenvalue of (Ĥτ )(Vα∗(ν)) with associated normalized
eigenvector w such that |λ| > Λ(α∗(ν)) + δ. Let x ∈ U . Since (supp vτσ(x)) ∩ Vα∗(ν) = ∅ by the
definition of vτσ(x) in (5.18), [12, Proposition 3.1 (i)] and α∗(ν) > 2 + κ > τ , we deduce from the
definition of Ĥτ in (5.20) that vτσ(x) is an eigenvector of (Ĥτ )(Vα∗(ν)) with eigenvalue σΛ(αx). As
Λ(αx) 6 Λ(α∗(ν)) for any x ∈ U , we conclude that w ⊥ vτσ(x) for all x ∈ U and σ = ±. Since
supp w ⊂ (Vα∗(ν))c, we deduce from (5.23), [12, Proposition 3.13]15 and (1.5) that

|λ| = |〈w , (Ĥτ )(Vα∗(ν))w〉| = |〈w , Ĥτw〉| 6 1 + τ + (1 + o(1))
∑

x∈Vτ\Vα∗(ν)

αx〈1x ,w〉2 + o(1) . (C.3)

Note that τ = 1 + o(1) and Λ(α∗(ν)) > 2 imply 2τ 6 Λ(α∗(ν)) + o(1).
We will now apply Lemma 5.15 for each x ∈ Vτ \ Vα∗(ν). Note that |λ| > Λ(α∗(ν)) + δ >

2 + o(1) = 2τ + Cξ. In particular, there is a constant c ≡ cδ ∈ (0, 1) such that 2τ+Cξ
|λ| 6 1 − c.

Owing to the disjointness of the balls (Bτ
2r?(x))x∈Vτ (see [12, Proposition 3.1 (i)]) and the locality

of Ĥτ , we have ((Ĥτ )(Vα∗(ν))w)|Bτ2r? (x) = (Ĥτw)|Bτ2r? (x) for all x ∈ Vτ \ Vα∗(ν). Hence, for these x,
(5.36) holds. If x ∈ V2+ξ1/4 \ Vα∗(ν) then w ⊥ vτ±(x) as demonstrated above. Thus, all conditions of
Lemma 5.15 are satisfied for each x ∈ Vτ \ Vα∗(ν). Therefore, Lemma 5.15 and the disjointness of
the balls (Bτ

2r?(x))x∈Vτ (compare with the similar argument in (5.38)) yield

∑
x∈Vτ\Vα∗(ν)

〈1x ,w〉2 6
(

1− 2τ + Cξ

|λ|

)−4(2τ + Cξ

|λ|

)2r?
6 c−4(1− c)2r? � d

logN ,

where we used 2τ+Cξ
|λ| 6 1− c in the second step and r? �

√
logN as well as (1.5) in the last step.

Hence, from Proposition 3.1 (i), we conclude ∑x∈Vτ\Vα∗(ν)
αx〈1x ,w〉2 = o(1). Using this in (C.3)

implies |λ| 6 Λ(α∗(ν)) + o(1), in contradiction with the assumption on λ. We therefore conclude
(C.1).

D. Tools

In this appendix we summarize several well known results used throughout this paper.
15We stress that the definition of H in [12] differs from that in the current paper; see [12, Definition 3.6].
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D.1. Bennett’s inequality. Define the function h : [0,∞)→ [0,∞) by

h(a) ..= (1 + a) log(1 + a)− a . (D.1)

We use the notation Pµ to denote a Poisson random variable with parameter µ > 0, and Bn,p to
denote a binomial random variable with parameters n ∈ N∗ and p ∈ [0, 1]. The following estimate is
proved in [28, Section 2.7].

Lemma D.1 (Bennett). For 0 6 µ 6 n and a > 0 we have

P(Bn,µ/n − µ > aµ) 6 e−µh(a) , P(Bn,µ/n − µ 6 −aµ) 6 e−µa2/2 6 e−µh(a) ,

and a2

2(1+a/3) 6 h(a) 6 a2

2 . By taking n→∞, the same estimates hold with Bn,µ/n replaced with Pµ.

D.2. Perturbation theory. The following lemma contains simple perturbation estimates for
approximate eigenvalues and eigenvectors. Its proof can be found in [15, Lemma 4.10].

Lemma D.2. Let M be a real symmetric matrix. Let ε, ∆ > 0 satisfy 5ε 6 ∆. Suppose that M
has a unique eigenvalue, λ, in [λ̂−∆, λ̂+ ∆] for some λ̂ ∈ R. Let w be a corresponding normalized
eigenvector of M . If there exists a normalized vector v such that ‖(M − λ̂)v‖ 6 ε then, for some
σ ∈ {±},

λ− λ̂ = 〈v , (M − λ̂)v〉+O

(
ε2

∆

)
, ‖w− σv‖ = O

(
ε

∆

)
.

D.3. Eigenvalue interlacing. For an N ×N Hermitian matrix M , we use the convention that
λi(M) = −∞ for i > N .

Lemma D.3 (Interlacing for minors). Let X ⊂ Y ⊂ [N ] and M be an N ×N Hermitian matrix.
Then, for all i ∈ [N ],

λi+|Y \X|(M (X))+ 6 λi(M (Y ))+ 6 λi(M (X))+ ,

where λ+ ..= max{λ, 0}.

Lemma D.4 (Interlacing for rank-one perturbations). Let M be an N ×N Hermitian matrix and
V a rank-one positive semidefinite N ×N matrix. Then, for all i ∈ [N ],

λi+1(M + V ) 6 λi(M) 6 λi(M + V ) .

D.4. Resolvent of adjacency matrix of N∗. Define the infinite tridiagonal matrix

M ..=


0 1 0
1 0 1 . . .

0 1 0 . . .
. . . . . . . . .

 , (D.2)

which we regard as a bounded operator on `2(N∗). Note that M is the adjacency matrix of N∗ with
the graph structure induced by regarding adjacent numbers as neighbours.
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Lemma D.5. Let t > 2. Then 1− t−1M is invertible with convergent Neumann series and explicit
inverse

(1− t−1M)−1
1j = t

( 2
t+
√
t2 − 4

)j
for any j ∈ N∗.

Proof. By the Schur test, ‖M‖ 6 2. Therefore, t > 2 implies the invertibility of 1 − t−1M in
`2(N∗) and the convergence of the Neumann series representation of its inverse. In particular,
a = (aj)j∈N∗ ∈ `2(N∗) with aj ..= (1− t−1M)−1

1j for any j ∈ N∗. With e1 ..= (δ1j)j∈N∗ , the definition
of the resolvent yields (1− t−1M)a = e1 and, thus,

a1 − t−1a2 = 1 ,
(
aj+1
aj

)
= T (t)

(
aj
aj−1

)
, T (t) ..=

(
t −1
1 0

)
(D.3)

for any j ∈ N satisfying j > 2. The transfer matrix T (t) has the two eigenvalues, γ and γ−1, where

γ ..= 2
t+
√
t2 − 4

.

As t > 2, we have γ < 1 and, hence, a ∈ `2(N∗) implies aj = γaj−1 = γj−1a1 for any j > 2. Together
with the first relation in (D.3), we obtain a1 = 2t

t+
√
t2−4 , which completes the proof.

E. Graph properties – proofs of Propositions 3.1 and 3.2

Proof of Proposition 3.1. We show that each item holds individually with high probability. By
Bennett’s inequality (see Lemma D.1 below) and a union bound, we conclude that

P
(

max
x∈[N ]

|S1(x)| > 10 logN
)
6 Ne−10 logN � 1 ,

where we used d 6 3 logN . This shows (i).
To show (ii), we abbreviate Dx = |S1(x)| and note that by part (i) and a union bound, it suffices

to show, for any x ∈ [N ],

P
(
|Bi(x)| > 2 max{Dx, d}di−1 |Dx

)
6 N−2 (E.1)

for all i 6 1
3

logN
log d and Dx 6 10 logN . If Dx > d, then (E.1) follows from from [13, eq. (5.12b)],

where the upper and lower bounds in the condition [13, eq. (5.13)] follow from Dx 6 10 logN and
the upper bound on i, as well as Dx > d and d�

√
logN , respectively.

For Dx 6 d the bound (E.1) follows from the monotonicity property

P(|Bi(x)| > L |Dx = k) 6 P(|Bi(x)| > L |Dx = l) (E.2)

for any k 6 l 6 N − 1, combined with (E.1) on the event {Dx = d}.
What remains is the proof of (E.2). To that end, fix x ∈ [N ] and let k 6 l 6 N − 1. For

y ∈ [N ]\{x}, we denote by B(x)
i (y) the ball in G|[N ]\{x} of radius i around y. Moreover, let (K1,K2)
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be disjoint random uniformly chosen subsets of [N ] \ {x} of sizes k and l− k, respectively. Then we
estimate

P
(
|Bi(x)| > L

∣∣Dx = k
)

= P
(∣∣∣∣ ⋃
y∈S1(x)

B
(x)
i−1(y)

∣∣∣∣ > L− 1
∣∣∣∣Dx = k

)

= P
(∣∣∣∣ ⋃
y∈K1

B
(x)
i−1(y)

∣∣∣∣ > L− 1
)

6 P
(∣∣∣∣ ⋃
y∈K1∪K2

B
(x)
i−1(y)

∣∣∣∣ > L− 1
)

= P
(∣∣∣∣ ⋃
y∈S1(x)

B
(x)
i−1(y)

∣∣∣∣ > L− 1
∣∣∣∣Dx = l

)
= P(|Bi(x)| > L|Dx = l) .

This proves (E.2) and, thus, completes the proof of Proposition 3.1.

Proof of Proposition 3.2. We show that each item holds individually with high probability. For the
proof of (i), we estimate P(|V| > tNµ) 6 t−1N−µE|V| = t−1N−µNP(α1 > α∗) 6 t−1 for t > 0 by
the definitions of V and α∗ in (2.1) and (1.6), respectively. This proves (i). Item (ii) is a consequence
of [13, Lemma 5.5] with k = 1, Proposition 3.1 (i), r 6

(1
5 −

µ
4
) logN

log d , and d >
√

logN . Item (iii)
follows from [15, eq. (9.5)] with the choices τ = α∗ and n = 2, exp(−dh(α∗ − 1− 3

d)) 6 Nµ−1+o(1)

and r 6
(1

3 − µ
) logN

log d .
To prove (iv), we set η/2 ..= r log d

logN and conclude from (i), Proposition 3.1 (i) and (ii) that
|
⋃
x∈V Br(x)| 6 Nµ+η/2+o(1). Thus, we obtain (iv) by arguing similarly as in [15, Proof of Proposi-

tion 4.4], see especially [15, eq. (9.10)].

F. Eigenfunction correlator and dynamical localization – proof of Corollary 1.10

Before proving (1.16), we use it to show (1.18). If d(x, y) 6 1 then (1.18) holds trivially. If
d(x, y) > 2, (1.18) follows directly from (1.16) by choosing r = d(x, y)− 1 and F (λ) = e−itλ. This
completes the proof of (1.18) assuming (1.16).

We now turn to the proof of (1.16). First, we introduce some notation. By (2.3) from the proof
of Theorem 1.1, with high probability, there is a one-to-one correspondence between eigenvalues
satisfying (1.7) and vertices x in some subset of W. Under this correspondence, we denote such an
eigenvalue and its corresponding eigenvector by λx and w(x), respectively.

Let x ∈ [N ]. Let J ⊂ I be an interval, where I ..= [Λ(α∗(µ)) + κ,
√
d/2]. Let F be a function as

in the statement of Corollary 1.10. Then we obtain

ΠJ(H)F (H)1x =
∑

a∈W : λa∈J
F (λa)〈w(a) ,1x〉w(a).

By following the proof of Lemma 5.13, we see that if µ < 1
24 and r 6 1

6
logN
log d then, with high

probability,
‖u(a)|Br(b)‖ 6 N−3/8 (F.1)
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for all a 6= b ∈ W.
We now fix r > 0 as in the statement. Without loss of generality, we can assume that r 6 2 logN

log d ,
because diam(G) 6 2 logN

log d with high probability. Suppose first that there is b ∈ W such that
x ∈ BR(b) with R ..= min{ r2 ,

1
6

logN
log d }. Note that this b is unique by Proposition 3.2 (iii) and

R > r/12 as r 6 2 logN
log d . In this case, (1.16) follows from

‖(ΠJ(H)F (H)1x)|Br(x)c‖2 . ‖w(b)|Br(x)c‖2 +
∑

a∈W\{b}
|〈w(a) ,1x〉|2

. e−cR +N−3/4+µ +N2(η−ζ)+µ . e−cr. (F.2)

Here, we used that ‖w(b)|Br(x)c‖ 6 ‖w(b)|Br(x)c‖ . e−cR, which is a consequence of BR(b) ⊂ Br(x)
as well as (1.8) if αx 6 3 or R > 10 log logN due to (3.1) and (1.9) otherwise. Moreover, we
employed |〈w(a) ,1x〉|2 6 ‖w(a)|BR(b)‖2 . N−3/4 +N2(η−ζ) due to (2.3) and (F.1). The last step
in (F.2) follows from r/12 6 R 6 1

6
logN
log d and N−3/4+µ +N2(η−ζ)+µ . e−c logN/ log d by appropriate

choices of η and ζ if µ < 1
24 .

Hence, it remains to consider the case x /∈ BR(W). Under this condition, we will show that

‖ΠJ(H)1x‖ 6 Ce−cr (F.3)

if r 6 2 logN
log d , which will directly imply (1.16) in this missing case.

For the proof of (F.3), we note that ‖ΠJ(H)1x‖2 6 ‖ΠI(H)1x‖2 as J ⊂ I = [Λ(α∗) + κ,
√
d/2]

and, for k ∈ N such that 2k < R, estimate

‖ΠI(H)1x‖2(Λ(α∗) + κ)2k 6 〈1x ,ΠI(H)H2kΠI(H)1x〉 6 〈1x , H2k1x〉 = 〈1x , (H(W))2k1x〉,

where the last step follows from the locality of H, 2k < r/2 and x /∈ BR(W). Moreover, by locality
of H, we have

〈1x , (H(W))2k1x〉 = 〈1x , (H(W) − (EH)(W∪Bk(x)))2k1x〉
6 ‖H(W) − (EH)(W∪Bk(x))‖2k

6
(
‖H(W) − (EH)(W)‖+ ‖(EH)(W) − (EH)(W∪Bk(x))‖

)2k
6 (Λ(α∗) + o(1))2k

with high probability, where we used Proposition 3.1, Lemma C.1, (3.1) and (2.2) in the last step.
Combining these bounds, choosing k � r and using r 6 2 logN

log d implies the existence of constants
C > 0 and c > 0 depending on κ such that ‖ΠI(H)1x‖ 6 Ce−cr if d � logN as Λ(α∗) � 1 in
this case. For d � logN , this proves (F.3) since ‖ΠJ(H)1x‖ 6 ‖ΠI(H)1x‖ as explained above.
Otherwise, we use T as in Corollary A.3 for ε = 1/2. We choose ν < 1

24 satisfying the assumptions
made on µ in this proof up to now, and consider W to be defined with respect to this ν instead
of µ, i.e. W = {x ∈ [N ] : Λ(αx) > Λ(α∗(ν)) + κ/2} (cf. (2.2)). For any constant µ ∈ (0, ν)
and I = [Λ(α∗(µ) + κ,

√
d/2], we obtain ‖ΠI(H)1x‖2 6

(Λ(α∗(ν))+o(1)
Λ(α∗(µ))+κ

)2k
6 (1 − ε)2k for some

constant ε ∈ (0, 1), where the last step follows from Corollary A.3 by assuming logN
d > T . Since

‖ΠJ(H)1x‖ 6 ‖ΠI(H)1x‖, this completes the proof of (F.3) in the missing regime and, thus, the
one of (1.16).
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Next, we show (1.17). First, we assume that x, y /∈ Br(W) with r ..= 1
20

logN
log d . Then (1.17)

follows from the Cauchy-Schwarz inequality, (F.3) and d(x, y) 6 diam(G) 6 2 logN
log d . Finally, we

assume that x ∈ Br(W) with r as above. By Proposition 3.2 (iii), there is a unique b ∈ W such that
d(x, b) 6 r and d(x, a) > 2r for all a ∈ W \ {b}. As in the second step of (F.2), we conclude from
(1.8) and (1.9) that |〈1x ,w(b)〉| . e−cd(x,b) and |〈w(b) ,1y〉| . e−cd(y,b) for some constant c > 0.
Hence, arguing similarly as in (F.2) as well as using d(x, b) + d(y, b) > d(x, y) and |〈w(a) ,1y〉| 6 1
for all a ∈ W \ {b} yields (1.17). This completes the proofs of (1.17) and Corollary 1.10.

G. The expected optimal range for µ

In this appendix we give a heuristic argument that yields the expected optimal size of the localized
phase, by providing the optimal upper bound on the exponent µ. We also explain how the conclusion
of this argument relates to that of [73].

The optimal value for µ can already be seen from the simple case where V =W = {x, y} consists
of two vertices, x and y, which are are in resonance (i.e. with normalized degrees close to each
other). In that case, as in Proposition 5.3, we obtain with high probability

(H − λ(x))u(x) = εy(x)1y , |εy(x)| 6 N−1/2+o(1) ,

where the estimate on εy(x) follows as in the proof of Proposition 5.3.
We conclude that the tunnelling amplitude between x and y is with high probability bounded

by N−1/2+o(1). By Mott’s criterion, we therefore expect localization at vertex x whenever the
typical eigenvalue spacing N−ρb(λ(x))+o(1) is much larger than N−1/2+o(1), i.e. ρb(λ(x)) < 1

2 . This
condition holds precisely for the Nµ largest eigenvalues of the semilocalized phase for any µ < 1

2
(see Appendix B). This conclusion coincides with that of [73], obtained by a different argument.

The preceding argument has two important shortcomings. First, it only considers a single pair
of resonant vertices, instead of the Nµ+o(1) vertices associated with the localized phase. Second,
it assumes that the eigenvalue spacing around λ(x) is typical, i.e. N−µ, which is true for most
eigenvalues in the localized phase but is false for all eigenvalues simultaneously.

To address these shortcomings, we define a random matrix model that heuristically captures the
main features of the localized phase. Define the W ×W matrix M = (Mxy)x,y∈W through

Mxy
..= 〈u(x) , Hu(y)〉 .

Recall from Proposition 2.3 that (u(x))x∈W are approximate eigenvectors of H, and that all
eigenvalues of H in the localized phase arise by perturbation from the approximate eigenvalues
(λ(x))x∈W . Hence, localization is tantamount to the matrix M being close to diagonal.

We make the simplifying assumption that the vectors (u(x) .. x ∈ W) are orthogonal, i.e.
we neglect their overlaps for the purpose of this heuristic argument. As above, the proof of
Proposition 5.3 implies that

Mxy ≈ δxy λ(x) +O(N−1/2+o(1))
with high probability for all x, y ∈ W, since (under the orthogonality assumption)

Mxy ≈ δxy λ(x) + (1− δxy) 〈u(x) , (H − λ(y))u(y)〉
= δxy λ(x) + (1− δxy) εx(y)〈u(x) ,1x〉
≈ δxy λ(x) + (1− δxy) εx(y) ,
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where we used that 〈u(x) ,1z〉 = 0 for any z ∈ W \ {x}.
Hence, the random variables Mxy are typically of order N−1/2+o(1). Assuming that they are

mean zero, independent up to the symmetry constraint Mxy = Myx, and have light enough tails, we
therefore arrive at the following toy model for M :

M ≈M(t) ..= D +
√
tW , t = Nµ−1+o(1) , (G.1)

where D = diag(λ(x) .. x ∈ W) and W is an independent W ×W Wigner matrix, normalized so
that its entries have variance 1/|W| (and hence W has typically a norm of order 1).

The matrixM(t) from (G.1) is a deformed Wigner matrix, the kind of which has been extensively
studied in the random matrix theory literature. Assuming that W is a GOE matrix (i.e. with a
Gaussian law), the law of M(t) is governed by Dyson Brownian motion at time t starting from the
diagonal matrix D. We refer for instance to [23, 25, 64, 75, 76]. Although not stated explicitly in
these works, the analysis of Dyson Brownian motion, as for instance in [25], implies that, with high
probability, for any x ∈ W, the eigenvector associated with the eigenvalue λ(t, x) of the W ×W
matrix M(t) remains localized for

t� min
{
∆(x) , |W|∆(x)2} , (G.2)

where ∆(x) ..= miny 6=x|λ(x) − λ(y)| is the eigenvalue spacing of D around λ(x). Indeed, the
eigenvalues λ(t, x) of M(t) satisfy

dλ(t, x) =
√

2
|W|

dB(t, x) + 1
|W|

∑
y 6=x

dt
λ(t, x)− λ(t, y) ,

where (B(t, x) .. t > 0, x ∈ W) is a family of independent standard Brownian motions. Heuristically,
we therefore see immediately that if (G.2) holds then |λ(t, x) − λ(0, x)| � ∆(x), i.e. the shift in
λ(x) is negligible compared to ∆(x). A similar calculation using Dyson Brownian motion for the
eigenvectors (see e.g. [25]) shows that they remain localized under the condition (G.2). Another
heuristic way of arriving at the condition (G.2) is to notice that under it all finite-order corrections in
perturbation theory to λ(t, x) are o(∆(x)), and similarly all finite-order corrections in perturbation
theory to the eigenvectors are o(1).

We remark that the condition (G.2) is strictly weaker than Mott’s criterion, which reads
t � ∆(x)2. Hence, for the model (G.1), Mott’s criterion is sufficient but not necessary for
localization. Heuristically, this discrepancy stems from the special relationship between the mean-
field matrix W and the diagonal eigenvector basis of D, in which all entries of W are of order N−µ/2,
while the norm of W is of order 1.

The typical eigenvalue spacing of D is N−µ+o(1), i.e. ∆(x) = N−µ+o(1) for most x ∈ W. In
contrast, we expect the minimal eigenvalue spacing minx∈W ∆(x) to be N−2µ+o(1), as follows from
basic extreme value theory (cf. the birthday paradox) and the assumption that the random variables
(λ(x) .. x ∈ W) are independent. Using t = Nµ−1+o(1) and |W| = Nµ+o(1), from the condition (G.2)
we therefore expect the following behaviour for the top Nµ eigenvectors.

(i) For µ < 1
2 most eigenvectors are localized.

(ii) For µ < 1
4 all eigenvectors are localized.
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For 1
4 6 µ < 1

2 , while most eigenvectors are localized, we expect some eigenvectors to hybridize with
others associated with resonant vertices. These hybridized eigenvectors have a divergent localization
length (1.14). In fact, a more refined analysis of Dyson Brownian motion in (G.1), as performed for
instance in [25], yields a precise picture of the hybridized structure of such eigenvectors. We shall
not go into further details in this appendix.

In particular, the optimal bound for µ in Theorem 1.1 is expected to be 1
4 . In our proof we

obtain the bound 1
24 because both our upper bound on the tunnelling amplitude (Proposition 2.3)

is worse than N−1/2+o(1) and because our lower bound on the eigenvalue spacing (Proposition 2.4)
is worse than N−2µ+o(1). Both of these bounds, however, can be somewhat improved by a suitable
refinement of our proof.
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