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OPTIMIZED ADDITIVE SCHWARZ WITH HARMONIC
EXTENSION AS A DISCRETIZATION OF THE CONTINUOUS

PARALLEL SCHWARZ METHOD∗

FELIX KWOK†

Abstract. The additive Schwarz method with harmonic extension (ASH) was introduced by
Cai and Sarkis (1999) as an efficient variant of the additive Schwarz method that converges faster
and requires less communication. We show that ASH can also be used with optimized transmission
conditions to obtain faster convergence. We show that when the decomposition into subdomains
contains no cross points, optimized ASH can be reformulated as an iteration that is closely related
to the optimized Schwarz method at the continuous level. In fact, the iterates of ASH are identical
to the iterates of the discretized parallel Schwarz method outside the overlap, whereas inside the
overlap they are linear combinations of previous Schwarz iterates. Thus, one method converges if
and only if the other one does, and they do so at the same asymptotic rate, unlike additive Schwarz,
which fails to converge inside the overlap. However, when cross points are present, then ASH and
the Schwarz methods are incomparable, i.e., there are cases where one method converges and the
other diverges, and vice versa.
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1. Introduction. The convergence properties of optimized Schwarz methods,
which are Schwarz methods with modified transmission conditions between subdo-
mains, have been studied for a variety of problems; for a nonexhaustive list, see
[4, 15, 11, 12, 1] and the references therein. In these works, the convergence rate and
optimal parameters are usually derived in the continuous setting, where it is possible
to use tools such as Fourier analysis and energy methods. However, the analysis is
less straightforward for discrete methods such as additive Schwarz, because there may
no longer be a direct correspondence between the discrete iterates and the subdomain
solutions in the continuous setting. In fact, it has been shown [9, 13] that additive
Schwarz does not converge as an iterative method when an overlapping decomposition
is used, even when the corresponding parallel Schwarz method does, and the same diffi-
culties arise when optimized transmission conditions are used. However, if the discrete
method can be interpreted as the discretization of the underlying continuous Schwarz
method, it would then be possible to estimate the convergence rate using the continu-
ous results, at least when the mesh is fine enough. For the restricted additive Schwarz
method, RAS, (defined below), such an interpretation is given in [13]. The goal of
this paper is to offer a similar interpretation for a related method, called the additive
Schwarz with harmonic extension (ASH), when optimized transmission conditions are
used. Once we establish the equivalence between optimized ASH and the continuous
optimized Schwarz method, its behavior as a preconditioner can immediately be in-
ferred from the spectral properties of the continuous method. To the best of our knowl-
edge, the optimized ASH method has not been defined nor analyzed in the literature.
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1290 FELIX KWOK

1.1. Lions’ method. Let Ω ⊂⊂ R be an open set. Suppose we want to solve
the elliptic PDE

(1) Lu = f on Ω, u = g on ∂Ω.

Based on the theoretical work of Schwarz [20], Lions introduced in [17] the first domain
decomposition methods for solving (1). In the two-subdomain case, let Ω1,Ω2 ⊂ Ω
such that Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 �= ∅. Also define

Γ1 = ∂Ω ∩ Ω̄1, Γ1 = ∂Ω ∩ Ω̄2; Γ12 = ∂Ω1 ∩ Ω̄2, Γ21 = ∂Ω2 ∩ Ω̄1.

Then Lions’ parallel Schwarz method defines the subdomain iterates

uk
1 : Ω1 → R, uk

2 : Ω2 → R, k ≥ 0,

and the method can be written as

(2)

Luk+1
1 = f on Ω1, Luk+1

2 = f on Ω2,

uk+1
1 = g on Γ1, uk+1

2 = g on Γ2,

uk+1
1 = uk

2 on Γ12, uk+1
2 = uk

1 on Γ21.

To describe the discretized version of the above method, we introduce some notation.
Let Ri be the operator that restricts the set V = {1, . . . , N} of all nodes onto the
subset Vi of nodes that lie in Ωi. Then the discretized parallel Schwarz method
becomes

A1u
k+1
1 = f1 −A12u

k
2 ,

A2u
k+1
2 = f2 −A21u

k
1 ,

where for i = 1, 2,

(3) Ai = RiAR
T
i , Aij = (RiA−AiRi)R

T
j .

The above method trivially generalizes to the case of many subdomains if there are
no cross points, i.e., Ωi∩Ωj ∩Ωl = ∅ for distinct i, j, and l. The discretized algorithm
then becomes

(4) Aiu
k+1
i = fi −

∑
j �=i

Aiju
k
j , for all i,

with the same definition of Ai and Aij as in (3) extended for all i.

1.2. Optimized parallel Schwarz method. Convergence of Lions’ parallel
Schwarz method can be improved by introducing optimized transmission conditions
[12]. In the continuous setting, one can obtain optimized Schwarz methods from (2)
by simply replacing the Dirichlet boundary conditions along internal boundaries with
more general boundary operators Bij :

(5)

Luk+1
1 = f on Ω1, Luk+1

2 = f on Ω2,

uk+1
1 = g on Γ1, uk+1

2 = g on Γ2,

B12u
k+1
1 = B12u

k
2 on Γ12, B21u

k+1
2 = B21u

k
1 on Γ21.
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A change in transmission conditions corresponds to changing the operator Ai into Ãi,
i.e., Ãi := Ai + Li, where Li represents a boundary operator that maps traces along
∂Ωi \∂Ω into itself. If there are no cross points, the discretized version of (4) becomes

(6) Ãiu
k+1
i = fi +

∑
j �=i

(LiRiR
T
j −Aij)u

k
j for all i.

Note that both methods (2) and (6) work exclusively on subdomain solutions uk
j ;

there is no built-in notion of a global approximation that is valid over the entire domain
Ω. In particular, if the subdomains overlap, there is no unique way of defining the
global approximations Uk before the methods converge. Thus, one cannot directly
consider parallel Schwarz as a preconditioner for the global system and use it in
combination with Krylov subspace methods.

1.3. The methods of additive Schwarz, RAS, and ASH. In order to turn
parallel Schwarz into a preconditioner, Dryja and Widlund [8] introduced the additive
Schwarz method. Starting from an initial guess of the global solution U0, the method
calculates successive iterates using

(7) Uk+1 = Uk +
∑
j

RT
j A

−1
j Rj(f −AUk).

When the subsets Vj are disjoint, additive Schwarz (AS) is equivalent to a block Jacobi
iteration. However, when the subdomains overlap, the method no longer converges
inside the overlap [9, 13]. This is because the overlap receives updates from several
subdomain solves, leading to a redundancy that prevents convergence of the method.
One way of eliminating this redundancy is to use the methods of restricted additive
Schwarz (RAS) and additive Schwarz with harmonic extension (ASH), which have
been introduced by Cai and Sarkis [3] as efficient variants of AS. Let Ω̃j be a partition

of Ω such that Ω̃j ⊂ Ωj . Let Ṽj be the nodes that lie in Ω̃j , and let R̃l be a matrix of
the same size as Rl such that

[R̃l]ij =

{
δij if j ∈ Ṽl,

0 otherwise.

Then RAS is defined by

(8) Uk+1 = Uk +
∑
j

R̃T
j A

−1
j Rj(f −AUk),

whereas ASH is defined by

(9) Uk+1 = Uk +
∑
j

RT
j A

−1
j R̃j(f −AUk).

By restricting either the residual or the update onto Ṽj , RAS and ASH avoid the
redundant updates that occur within the overlap when AS is used. There exist other
methods capable of eliminating the nonconverging modes in AS, such as the method
of restricted additive Schwarz with harmonic overlap (RASHO), which was proposed
by [2]. The idea behind RASHO is to construct a symmetric preconditioner (which
would then be amenable to conjugate gradients or MINRES, unlike RAS and ASH)
by finding a projector that would eliminate the nonconvergent modes from the initial
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error. A full discussion of this method is beyond the scope of this paper, as we will
concentrate on analyzing ASH and its optimized counterpart.

Optimized versions of AS and RAS are obtained by replacing each Aj with Ãj

in (7) and (8); such methods have been analyzed in [13]. It is clear that the RAS
and ASH preconditioners are transposes of each other when A is symmetric; one thus
expects the two methods to converge at a similar rate. In the case where A is an M -
matrix, the authors of [10] proved that RAS and ASH both converge as an iterative
method. For the RAS method, it has been proved [13] that the iterates produced
are equivalent to those of the discretized parallel Schwarz method, regardless of the
number of subdomains and whether cross points are present. In the case of ASH with
classical (Dirichlet) transmission conditions, such an interpretation has been shown
in [16].

We note that RAS, ASH, and related methods are often used in combination
with a Krylov subspace method for nonsymmetric matrices, such as GMRES [19];
such combinations are among the most efficient parallel iterative methods available
for general discretizations. In this paper, our analysis deals mainly with ASH as a
stationary iterative method. However, our results are also relevant for understanding
the behavior of ASH-GMRES. Since GMRES finds the solution that minimizes the
residual over Krylov subspaces, k steps of left-preconditioned ASH-GMRES will al-
ways converge faster than k steps of stationary ASH, which, in turn, converges at the
same asymptotic rate as (unaccelerated) parallel Schwarz. In addition, knowledge of
the spectral radius (and hence eigenvalues) of I −M−1A can be used to derive con-
vergence estimates using complex Chebyshev polynomials [18, Chap. 6] or potential
theory [7].

The remainder of this paper is organized as follows. In section 2, we illustrate the
type of arguments used to obtain equivalence using a concrete example. In section 3,
we state the algebraic conditions that ensure there are no cross points, and then state
the main equivalence results. Section 4 is devoted to the proof of the main result.
In section 5, we use this equivalence to show that when one of the two methods
(optimized ASH and optimized parallel Schwarz) converges, so does the other one, and
their asymptotic convergence rates are identical. We finally give numerical examples
showing the equivalence of both methods, including one where a system of PDEs is
solved. This shows the usefulness and generality of the algebraic conditions, since
they carry over trivially to the systems case.

2. An example.

2.1. Two subdomains. To illustrate the ideas used in the proof, consider the
two-subdomain decomposition shown in Figure 1. Assume the initial guess is U0 = 0.
Then, at the first iteration (k = 1), ASH solves the following system:

A11u
1,a
1 +A12u

1,a
2 = f1

A21u
1,a
1 +A22u

1,a
2 +A23u

1,a
3 = f2

A32u
1,a
2 +A33u

1,a
3 = 0

⎫⎪⎪⎬
⎪⎪⎭ in Ωa,(10a)

A22u
1,b
2 +A23u

1,b
3 = 0

A32u
1,b
2 +A33u

1,b
3 +A34u

1,b
4 = f3

A43u
1,b
3 +A44u

1,b
4 = f4

⎫⎪⎪⎬
⎪⎪⎭ in Ωb.(10b)
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Ωa Ωb

uk,a
1

uk,a
2

uk,b
2

uk,a
3

uk,b
3

uk,b
4

Fig. 1. A decomposition into two subdomains Ωa and Ωb. The subdomain solution uk
a contains

the subvectors uk,a
1 , uk,a

2 , and uk,a
3 , whereas uk

b contains uk,b
2 , uk,b

3 , and uk,b
4 as components.

Using the definition of the global solution U1, which is

U1
1 = u1,a

1 , U1
2 = u1,a

2 + u1,b
2 , U1

3 = u1,a
3 + u1,b

3 , U1
4 = u1,b

4 ,

we calculate the residual R1 = f −AU1:

R1 =

⎡
⎢⎢⎣
f1
f2
f3
f4

⎤
⎥⎥⎦−

⎡
⎢⎢⎢⎣

A11u
1,a
1 +A12(u

1,a
2 + u1,b

2 )

A21u
1,a
1 +A22(u

1,a
2 + u1,b

2 ) +A23(u
1,a
3 + u1,b

3 )

A32(u
1,a
2 + u1,b

2 ) +A33(u
1,a
3 + u1,b

3 ) +A34u
1,b
4

A43(u
1,a
3 + u1,b

3 ) +A44u
1,b
4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
−A12u

1,b
2

0
0

−A43u
1,a
3

⎤
⎥⎥⎦ .

Note that the residual vanishes inside the overlap. At the second iteration (k = 2),
the global solution is given by

U2 = U1 + δu2,a + δu2,b,

where

A11δu
2,a
1 +A12δu

2,a
2 = R1

1 = −A12u
1,b
2 ,

A21δu
2,a
1 +A22δu

2,a
2 +A23δu

2,a
3 = R2

2 = 0,

A32δu
2,a
2 +A33δu

2,a
3 = 0.

Adding (10a) to the above equations gives

A11u
2,a
1 +A12u

2,a
2 = f1 −A12u

1,b
2 ,(11a)

A21u
2,a
1 +A22u

2,a
2 +A23u

2,a
3 = f2,(11b)

A32u
2,a
2 +A33u

2,a
3 = 0.(11c)

u2,a by itself cannot be interpreted as the solution of a continuous subdomain solve
because of the term A12u

1,b
2 in the first equation. To obtain such an interpretation,

we will first move the term A12u
1,b
2 in (11a) to the left-hand side; then we can add

the first two equations in (10b) to (11b) and (11c) to get

A11u
2,a
1 + A12(u

2,a
2 + u1,b

2 ) = f1,

A21u
2,a
1 + A22(u

2,a
2 + u1,b

2 ) +A23(u
2,a
3 + u1,b

3 ) = f2,

A32(u
2,a
2 + u1,b

2 ) +A33(u
2,a
3 + u1,b

3 ) = f3 −A34u
1,b
4 .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1294 FELIX KWOK

Thus, if we define

vk,a =

⎡
⎣vk,a1

vk,a2

vk,a3

⎤
⎦ =

⎡
⎣ uk,a

1

uk,a
2 + uk−1,b

2

uk,a
3 + uk−1,b

3

⎤
⎦ , vk,b =

⎡
⎣vk,b2

vk,b3

vk,b4

⎤
⎦ =

⎡
⎣uk,b

2 + uk−1,a
2

uk,b
3 + uk−1,a

3

uk,b
4

⎤
⎦ ,

we obtain

A11v
2,a
1 +A12v

2,a
2 = f1

A21v
2,a
1 +A22v

2,a
2 +A23v

2,a
3 = f2

A32v
2,a
2 +A33v

2,a
3 = f3 −A34v

1,b
4

⎫⎪⎪⎬
⎪⎪⎭ in Ωa,(12a)

A22v
2,b
2 +A23v

2,b
3 = f2 −A21v

1,a
1

A32v
2,b
2 +A33v

2,b
3 +A34v

2,b
4 = f3

A43v
2,b
3 +A44v

2,b
4 = f4

⎫⎪⎪⎬
⎪⎪⎭ in Ωb,(12b)

which is precisely the discretization of the parallel Schwarz method (2) with the uk
j

replaced by the vkj . Thus, the ASH iterates are identical to parallel Schwarz iterates
outside the overlap, whereas inside the overlap they are linear combinations of the
current and previous iterates.

2.2. Cross points. When three or more subdomains have a common overlap,
the points within this overlap (regions 4, 7, and 8 in the example in Figure 2(a)) are
known as cross points. When cross points are present, one can, in fact, show that
ASH and RAS/parallel Schwarz are no longer equivalent. Let B, BRAS , and BASH

be the iteration matrices of parallel Schwarz, RAS, and ASH, respectively:

Bij =

{
0, i = j,

−A−1
i (RiA−AiRi)R̃

T
j , i �= j;

BRAS = I −
N∑
j=1

R̃T
j A

−1
j RjA, BASH = I −

N∑
j=1

RT
j A

−1
j R̃jA.

Lemma 1. The nonzero eigenvalues of B and BRAS are identical.
Proof. We first recall the well-known fact that if P and Q are two rectangular

matrices such that PQ and QP are both square, then PQ and QP have the same
nonzero eigenvalues. Indeed, suppose λ is a nonzero eigenvalue of PQ, i.e., PQv = λv
for v �= 0. Then Qv �= 0 (otherwise PQv = 0 =⇒ λ = 0), so we have QP (Qv) =
λ(Qv), so that λ is also an eigenvalue of QP . The other direction is similar. We now
show that there exist matrices P and Q such that

B = PQ, BRAS = QP.

Let

P =

⎡
⎢⎣−A−1

1 (R1A−A1R1)
...

−A−1
n (RnA−AnRn)

⎤
⎥⎦ , Q =

[
R̃T

1 , . . . , R̃
T
n

]
.
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1

2

3 6

8

9

10

11

12

4

7

5

Ω1

Ω2

Ω3

Ω
1

Ω
2

Ω
3

(a) (b)

Fig. 2. Decompositions into three subdomains with cross points. The dotted lines separate the
Ω̃i, the nonoverlapping decomposition. (a) A sketch with each subregion numbered, analogous to
Figure 1. (b) A decomposition for an 8× 8 grid, used in the spectral study.

Then it is straightforward to see that [PQ]ij = Bij for i �= j. For i = j, we calculate

[PQ]ii = −A−1
i (RiA−AiRi)R̃

T
i

= −A−1
i (RiAR̃

T
i −RiAR

T
i︸ ︷︷ ︸

Ai

RiR̃
T
i ) = −A−1

i (RiAR̃
T
i −RiAR̃

T
i ) = 0,

since RT
i RiR̃

T
i = R̃T

i . Thus, we have PQ = B. As for QP , we have

QP =
∑
j

R̃T
j A

−1
j (AjRj −RjA)

=
∑
j

R̃T
j A

−1
j AjRj −

∑
j

R̃T
j A

−1
j RjA = I −

∑
j

R̃T
j A

−1
j RjA,

since
∑

j R̃
T
j Rj = I. Thus we get QP = BRAS , which means BRAS and B have the

same nonzero eigenvalues.
The above lemma immediately implies that parallel Scwharz converges if and only

if RAS does; if they do converge, they do so at the same rate. As for ASH, we see
that if A = AT , then BASH = A−1BT

RASA, so that all three matrices have the same
nonzero eigenvalues. However, when A �= AT , such an equivalence is no longer valid;
in fact, we will now construct an example for which the spectrum of BASH is different
from that of B and BRAS . Given the domain decomposition shown in Figure 2(b),
let A be a matrix such that

• |Aij | = |Dij |, where D has the same sparsity pattern as the discrete five-point
Laplacian matrix, but with 1.9 on the diagonal (instead of 4) and −1 on the
off-diagonal;

• Aij = Dij for j ≥ i;
• Aij = ±Dij for j < i, with the sign chosen randomly with equal probability.

Figure 3 shows the spectra of B, BRAS , and BASH for one such A. We see that
while the eigenvalues of B and BRAS always coincide (as predicted by Lemma 1),
the spectrum of BASH is different from the other two; in this example, we have
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B
BRAS
BASH
ρRAS
ρASH

Fig. 3. Eigenvalues and spectral radii of B, BRAS , and BASH .

ρ(B) = ρ(BRAS) = 0.9929, whereas ρ(BASH) = 1.1552, so parallel Schwarz and RAS
converge, whereas ASH diverges. Of course, if we had considered AT instead of A
as our coefficient matrix, then the exact opposite would happen: RAS and parallel
Schwarz would diverge, whereas ASH would converge.

The above example shows that ASH is not equivalent to the multiple-subdomain
version of parallel Schwarz proposed by [13]; in fact, the two methods are incompara-
ble. If there were an equivalence between ASH and another Schwarz-like iteration, it
would have to be a very different generalization from the two-subdomain case which,
to the best of our knowledge, has yet to be proposed. In the absence of such a gener-
alization, we will concentrate on proving the equivalence of ASH and parallel Schwarz
without cross points. In the next section, we will state the assumptions necessary to
prove this correspondence in the case of multiple subdomains (with no cross points)
and with optimized transmission conditions.

Remark. The fact that RAS or ASH may diverge as stationary methods does
not mean that they cannot be successful preconditioners when used with Krylov
methods; it simply means that their behavior cannot be inferred from properties
of the continuous Schwarz method, since their spectra are not equivalent.

3. Assumptions and the main result. The main theorem stated in this sec-
tion relates the iterates of optimized ASH with those of the corresponding discretized
optimized Schwarz method. This result extends the one stated in [16] to handle opti-
mized transmission conditions. Before stating the result, we make some assumptions
that are algebraic manifestations of the fact that there are no cross points. Assump-
tions 1 and 2 are identical to those that appear in [16], whereas Assumption 3 deals
specifically with optimized transmission conditions.

The first assumption ensures that no degree of freedom lies in the intersection of
three distinct subdomains and is self-evident based on the definition of the restriction
operators Rk.

Assumption 1 (no cross points). For distinct i, j, and l, we have

(13) RiR
T
j RjR

T
l = 0.

The next pair of assumptions ensures that ∂Ωj \ ∂Ω are partitioned into r con-
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Ω1 Ω2

Ω3

Ω̃1 Ω̃2

Ω̃3

(a) (b)

Fig. 4. Some examples of decompositions into subdomains, with solid lines delimiting Ωi and
dashed lines delimiting the Ω̃i. In (a), Assumptions 1–3 are satisfied, whereas in (b) they are not.

nected components, each of which must be a subset of Ω̃i for some i (see Figure 4).
Assumption 2 (partition of internal boundaries). For all i �= j, we must have

(Ri − R̃i)(AR
T
j −RT

j Aj) = 0,(14a)

(RiA−AiRi)(R
T
j − R̃T

j ) = 0.(14b)

These two conditions are simply transposes of each other; hence, they will be
satisfied simultaneously if A has a symmetric nonzero pattern. Also note that when
i = j, the two relations are trivially satisfied: since R̃i = R̃iR

T
i Ri, we have

(Ri − R̃i)(AR
T
i −RT

i Ai) = RiAR
T
i︸ ︷︷ ︸

Ai

−RiR
T
i︸ ︷︷ ︸

I

Ai − R̃iAR
T
i + R̃iR

T
i Ai

= 0− R̃iR
T
i RiAR

T
i︸ ︷︷ ︸

Ai

+R̃iR
T
i Ai = 0.(15)

The interpretation of (14a) is as follows. For any vector w over Ωj , the vectors AR
T
j w

and RT
j Ajw must agree inside Ωj , but ART

j w may have nonzero entries outside Ωj

(which RT
j Ajw cannot have). For a PDE, these entries are generally located along the

boundary ∂Ωj . The assumption then says that these nonzero entries must fall outside

the overlap region Ωi \ Ω̃i, i.e., they must be either contained in Ω̃i or completely
outside Ωi, as in Figure 4(a). In Figure 4(b), the thick blue portion of ∂Ω1 is inside
Ω2 \ Ω̃2, violating (14a) and (14b).

The next set of assumptions characterizes the optimized transmission conditions.
They are analogous to (14a), (14b), and essentially require that Li operate along the
internal subdomain boundaries.

Assumption 3 (optimized transmission operators). For each i, Li must satisfy

(16) R̃T
i Li = 0, LiR̃i = 0.

Moreover, for i �= j, we must have

(17) (Ri − R̃i)R
T
j Lj = 0, LjRj(Ri − R̃i)

T = 0,
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and for distinct i, j, and l, we must have

(18) RiR
T
j LjRjR

T
l = 0.

The above conditions are motivated by the observation in [13] that a change in
transmission condition corresponds to a change in the diagonal blocks corresponding
to degrees of freedom on (or near) the boundary. Thus, conditions (16) require that
Li have support along the internal boundaries only, which must lie completely outside
Ω̃i. (In other words, we have implicitly assumed that the overlaps are large enough,
so that the boundary nodes do not lie within the nonoverlapping portion of the sub-
domain.) Conditions (17) then require that the boundary be completely contained
in Ω̃j for some j, just as in (14a) and (14b); this is usually the case when no cross
points are present. Again Figure 4(b) violates this condition because of the thick blue
portion of ∂Ω1. Finally, condition (18) prohibits direct coupling between disconnected
parts of the boundary via the optimized transmission conditions Li. This assumption
is reasonable, since the transmission conditions are supposed to be local operators
and should not introduce far away coupling. Note that for classical ASH (Dirichlet
transmission conditions), we have Li = 0; in this case, the assumptions are trivially
satisfied, so our results also apply to classical ASH.

We are now ready to state our main result.
Theorem 2. Suppose U0 = 0 and Assumptions 1–3 are satisfied. Then the

iterates Uk of the ASH method are related to the iterates vk
i of the discretized parallel

Schwarz method

v0
i = 0,

Ãiv
1
i = R̃if,

Ãiv
k
i = Rif +

∑
j �=i

(LiRiR
T
j −Aij)v

k−1
j for k ≥ 2

via the relation

(19)

N∑
j=1

RT
j v

k
j = Uk +

(∑
j

RT
j Rj − I

)
Uk−1.

In particular, Uk agree with vk
j outside overlapping regions for all j.

Since
∑

j RjR
T
j − I is zero outside overlapping regions, we see that the iterates

of ASH and parallel Schwarz are identical outside the overlap, whereas inside they
are linear combinations of the current and previous iterates. The following corollary
gives the exact relationship between Uk and vk

i inside the overlap.

Corollary 3. Let Assumptions 1–3 be satisfied, and let Uk and vk
i be defined

as in Theorem 2. Then the following relations hold:

Uk =

N∑
j=1

RT
j v

k
j +

(
N∑
j=1

RT
j Rj − I

)
k∑

l=1

N∑
j=1

(−1)lRT
j v

k−l
j ,(20)

vk
i = RiU

k−1 + Ã−1
i R̃i(f −AUk−1)(21)

= RiU
k −

∑
j �=i

RiR
T
j Ã

−1
j R̃j(f −AUk−1).(22)
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Thus, within the overlap, Uk is a linear combination of the previous Schwarz
iterates vl

j , l = 0, . . . , k. In contrast, the Schwarz iterates vk
i cannot be obtained by

simply restricting Uk to Vi; nonetheless, they are linear combinations of Uk and the
subdomain solutions of the residual problem Ã−1

j R̃jr
k−1.

4. Proof of Theorem 2. We assume throughout this section that Assump-
tions 1–3 hold. We begin by introducing some notation:

rk := f −AUk,(23)

δuk
j := Ã−1

j R̃j(f −AUk),(24)

uk
j :=

k−1∑
l=0

δul
j .(25)

From the definition of ASH (see (9)), we have Uk =
∑

j R
T
j u

k
j . We also define the

vectors vk
j such that v0

j = u0
j = 0, v1

j = u1
j , and for k ≥ 2,

(26) vk
j = uk

j +
∑
i�=j

RjR
T
i u

k−1
i .

The following properties are elementary and will be used often:
(a) RiR

T
i = I for all i,

(b) R̃T
i Ri = RT

i R̃i = R̃T
i R̃i for all i,

(c) R̃iR
T
i = RiR̃

T
i = R̃iR̃

T
i for all i,

(d)
∑

j R̃
T
j R̃j = I.

We first characterize the residual rk.
Lemma 4. For all k ≥ 1 and for all i, we have

(27) (Ri − R̃i)r
k = Liδu

k−1
i .

Proof. Fix i and let k ≥ 0. We have

(Ri − R̃i)r
k = (Ri − R̃i)

∑
j

RT
j R̃jr

k,

since
∑

j R
T
j R̃j = I. We can now use (24) to rewrite R̃jr

k as Ãjδu
k
j , giving

(Ri − R̃i)r
k = (Ri − R̃i)

∑
j

RT
j Ãjδu

k
j

= (Ri − R̃i)
∑
j

RT
j Ajδu

k
j + (Ri − R̃i)

∑
j

RT
j Ljδu

k
j .

For the first term on the right-hand side, we use (14a) and (15) to obtain

(Ri − R̃i)
∑
j

ART
j δu

k
j = (Ri − R̃i)A

∑
j

RT
j δu

k
j

= (Ri − R̃i)A
∑
j

RT
j (u

k+1
j − uk

j )

= (Ri − R̃i)A(U
k+1 −Uk) (since

∑
j R

T
j u

k
j = Uk)

= (Ri − R̃i)(r
k − rk+1) (since rk = fk −AUk).
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For the second term, note that the first identity in (17) implies

(Ri − R̃i)
∑
j

RT
j Ljδu

k
j = (Ri − R̃i)R

T
i Liδu

k
i

= RiR
T
i︸ ︷︷ ︸

=I

Liδu
k
i −Ri R̃

T
i Li︸ ︷︷ ︸
=0

δuk
i = Liδu

k
i .

Thus,

(Ri − R̃i)r
k = (Ri − R̃i)(r

k − rk+1) + Liδu
k
i .

Canceling (Ri − R̃i)r
k from both sides gives

(Ri − R̃i)r
k+1 = Liδu

k
i for k ≥ 0,

and the result follows.

The next two lemmas will be needed for Lemma 7.

Lemma 5. For all i, ∑
j �=i

LiRiR
T
j RjR

T
i = Li.

Proof. The second identity in (17) shows that for i �= j,

LiRi(Rj − R̃j)
T = 0 =⇒ LiRiR

T
j = LiRiR̃

T
j .

So

Li = LiRiR
T
i =

∑
j

LiRiR̃
T
j R̃jR

T
i

= LiRiR̃
T
i R̃iR

T
i +

∑
j �=i

LiRiR̃
T
j RjR

T
i

= LiR̃i︸ ︷︷ ︸
=0

R̃T
i R̃iR

T
i +

∑
j �=i

LiRiR
T
j RjR

T
i ,

since LiR̃i = 0 by (16).

Lemma 6. For all i and k ≥ 1,

LiRi

∑
j �=i

RT
j v

k
j = LiRiU

k − Liδu
k−1
i .

Proof. We have

LiRi

∑
j �=i

RT
j v

k
j = LiRi

∑
j �=i

RT
j u

k
j + LiRi

∑
j �=i

∑
l �=j

RT
j RjR

T
l u

k−1
l .

The double sum can be simplified by noting that if i, j, and l are all distinct, then
the term LiRiR

T
j RjR

T
l u

k−1
l = 0 by (13) (the no-cross-points assumption). Thus, for

a fixed i, all the terms within the double sum vanish, except for l = i, j �= i. So we
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have

LiRi

∑
j �=i

RT
j v

k
j = LiRi

∑
j �=i

RT
j u

k
j + LiRi

∑
j �=i

RT
j RjR

T
i u

k−1
i

= LiRi

∑
j �=i

RT
j u

k
j + Liu

k−1
i (by Lemma 5)

= LiRi

∑
j

RT
j u

k
j − Liu

k
i + Liu

k−1
i

= LiRiU
k − Liu

k
i + Liu

k−1
i

= LiRiU
k − Liδu

k−1
i .

We can now prove the following lemma.

Lemma 7. The vectors vk
i satisfy the following equations:

Ãiv
1
i = R̃if,(28)

Ãiv
k
i = Rif +

∑
j �=i

LiRiR
T
j v

k−1
j −AiΓU

k−1 (k ≥ 2),(29)

where AiΓ := RiA−AiRi is the boundary operator.

Proof. For k ≥ 0, we have

Ãiv
k+1
i = Ãiu

k+1
i + Ãi

∑
j �=i

RiR
T
j u

k
j

= Ãiδu
k
i + Ãiu

k
i + Ãi

∑
j �=i

RiR
T
j u

k
j

= R̃i(f −AUk) + Ãi

∑
j

RiR
T
j u

k
j

= R̃if − R̃iAU
k + (AiRi + LiRi)U

k
(
Ãi = Ai + Li and

∑
RT

j u
k
j = Uk

)
.

If k = 0, then all terms other than R̃if vanish because U0 = 0; we thus obtain (28).
We continue by assuming k ≥ 1:

Ãiv
k+1
i = R̃if − R̃iAU

k + (RiA−AiΓ + LiRi)U
k

= R̃if + (Ri − R̃i)AU
k + (LiRi −AiΓ)U

k

= R̃if + (Ri − R̃i)(f − rk) + (LiRi −AiΓ)U
k

= Rif − (Ri − R̃i)r
k + (LiRi −AiΓ)U

k

= Rif − Liδu
k−1
i + LiRiU

k −AiΓU
k (by Lemma 4)

= Rif + LiRi

∑
j �=i

RT
j v

k
j −AiΓU

k (by Lemma 6),

from which (29) follows.

Note that (28) is precisely the first iteration specified by Theorem 2; the proof
for k ≥ 2 follows.
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Proof of Theorem 2. We first prove the relation (19), which follows from the
definition of vk

j . We have

∑
j

RT
j v

k
j =

∑
j

RT
j u

k
j +

∑
j

RT
j

∑
l �=j

RjR
T
l u

k−1
l

= Uk +
∑
j

RT
j Rj

(∑
l

RT
l u

k−1
l −RT

j u
k−1
j

)

= Uk +
∑
j

RT
j Rj

(
Uk−1 −RT

j u
k−1
j

)

= Uk +

(∑
j

RT
j Rj

)
Uk−1 −

∑
j

RT
j u

k−1
j

= Uk +

(∑
j

RT
j Rj

)
Uk−1 −Uk−1

= Uk +

(∑
j

RT
j Rj − I

)
Uk−1,

as required. It remains for us to show that

Ãiv
k
i = Rif +

∑
j �=i

(LiRiR
T
j −Aij)v

k−1
j

for k ≥ 2. Multiplying both sides of (19) by AiΓ on the left gives

AiΓ

∑
j

RT
j v

k
j = AiΓU

k +AiΓ

(∑
j

RT
j Rj − I

)
Uk−1

= AiΓU
k +AiΓ

(∑
j

(RT
j Rj − R̃T

j Rj)

)
Uk−1

= AiΓU
k +AiΓ

(∑
j

(Rj − R̃j)
TRj

)
Uk−1 = AiΓU

k,

since AiΓ(Rj − R̃j)
T = 0 for all i and j by (14b) and (15). When i �= j, AiΓR

T
j =

(RiA−AiRi)R
T
j = Aij by definition (see (3)), and when i = j, we have

AiΓR
T
i = (RiA−AiRi)R

T
i = RiAR

T
i −AiRiR

T
i = Ai −Ai · I = 0.

So, in fact, we have

AiΓU
k = AiΓ

∑
j

RT
j v

k
j =

∑
j �=i

Aijv
k
j .

Substituting into (29) gives the required result.

We can now prove Corollary 3.
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Proof of Corollary 3. To prove (20), we simply unroll (19): by defining P =∑
j R

T
j Rj − I, we get

Uk =
∑
j

RT
j v

k
j − PUk−1

=
∑
j

RT
j v

k
j − P

∑
j

RT
j v

k−1
j + P 2Uk−2

= · · · =
∑
j

RT
j v

k
j +

k∑
l=1

∑
j

(−1)lP lRT
j v

k−l
j ,

using the fact that U0 = 0. But P acts as the identity on the overlap and zero outside
the overlap; thus, P 2 = P , which allows us to simplify the last equation to

Uk =
∑
j

RT
j v

k
j + P ·

k∑
l=1

∑
j

(−1)lRT
j v

k−l
j .

We now prove (21). By Lemma 5, we have for k ≥ 2,

Ãiv
k
i = Rif +

∑
j �=i

LiRiR
T
j v

k−1
j −AiΓU

k−1,

where AiΓ = RiA−AiRi. But Lemma 4 says for all k ≥ 1,

LiRi

∑
j �=i

RT
j v

k
j = LiRiU

k − Liδu
k−1
i ,

and Lemma 4 says for all k ≥ 1,

(Ri − R̃i)(f −AUk) = Liδu
k−1.

Substituting these two results yields

Ãiv
k
i = Rif + LiRiU

k−1 − (Ri − R̃i)(f −AUk−1)−AiΓU
k−1

= Ri(f −AUk−1) +RiAU
k−1 + LiRiU

k−1

− (Ri − R̃i)(f − AUk−1)−AiΓU
k−1

= R̃i(f −AUk−1) +RiAU
k−1 −AiΓU

k−1 + LiRiU
k−1

= R̃i(f −AUk−1) +AiRiU
k−1 + LiRiU

k−1

= R̃i(f −AUk−1) + ÃiRiU
k−1.

Multiplying both sides by Ã−1
i gives the desired result. From (21), we can easily

obtain (22) using the fact (cf. (9)) that

Uk −Uk−1 =
∑
j

RT
j Ã

−1
j (f −AUk−1).

5. Convergence rate. Given the close relationship between ASH and parallel
Schwarz, one would expect that the two methods converge at the same rate. The goal
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of this section is to show that this is indeed the case. Recall that we can interpret the
optimized parallel Schwarz method as a stationary iteration on the augmented system

(30)

⎡
⎢⎢⎢⎢⎣

Ã1 Ã12 · · · Ã1N

Ã21
. . .

...
...

. . .
...

ÃN1 · · · · · · ÃN

⎤
⎥⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

v1

v2

...
vN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1
f2
...
fN

⎞
⎟⎟⎟⎠ or Av = f ,

where Ãij = Aij − LiRiR
T
j = (RiA − ÃiRi)R

T
j and fi = Rif . In fact, optimized

parallel Schwarz is simply a block Jacobi splitting of the system Av = f , i.e.,

Mvk+1 = (M− A)vk + f for k ≥ 1,

where M = diag(Ã1, . . . , ÃN ). It is possible for A to be singular even when A is
nonsingular; in this case, the method can produce spurious solutions in which the vj

do not agree in the overlap, even when the method converges.
To facilitate later discussions, we now define the operator Ro, which restricts the

set of all nodes onto the set of nodes in the overlap (more precisely, the union of all
overlapping regions). In other words, Ro has full row rank and satisfies

N∑
j=1

RT
j Rj = I +RT

o Ro.

Note that since
∑

j R
T
i R̃i = I, the above definition implies that

(31) RT
o Ro =

N∑
j=1

RT
j (Rj − R̃j) =

N∑
j=1

(Rj − R̃j)
TRj .

We now state the main theorem of this section.
Theorem 8. Suppose Assumptions 1–3 are satisfied, and that A and A are both

nonsingular. Then the optimized ASH method

Uk+1 = Uk +

N∑
j=1

RjÃ
−1
j R̃j(f −AUk)

converges to the exact solution U∗ of AU = f for any f if and only if the parallel
Schwarz method with v0

i = 0 and

Ãiv
1
i = R̃if,

Ãiv
k+1
i = Rif −

∑
j �=i

Ãijv
k
j (k ≥ 2)(32)

converges for all right-hand side f . In addition, when both methods converge, they do
so with the same asymptotic contraction rate r = ρ(I −∑

j RjA
−1
j R̃jA) < 1.

To prove Theorem 8, we need the following two technical lemmas, which are
shown in the appendix.

Lemma 9. Suppose Assumptions 1–3 hold. Let BASH be the ASH iteration matrix

BASH = I −M−1A, M−1 =

N∑
j=1

RT
j Ã

−1
j R̃j .
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If there exists wo �= 0 such that BASHRT
o wo = −RT

o wo, then one of the following
must be true:

(i) RoÃR
T
o is singular, where Ã = A+

∑N
k=1 R

T
k LkRk, or

(ii) there exists some f for which the iteration (32) fails to converge.
Lemma 10. Suppose Assumptions 1–3 hold. Then whenever RoÃR

T
o is singular,

so is A, the augmented matrix in (30).
Proof of Theorem 8. Let U∗ be the unique solution of the global problem, i.e.,

we have AU∗ = f . First, suppose that ASH converges with an asymptotic rate of
ρ = ρ(BASH) < 1, i.e., there exists a constant C such that

‖Uk −U∗‖2 ≤ Cρk

for large enough k. We will show that vk
i → RiU

∗ with rate r ≤ ρ(BASH) < 1. By
(21), we have

vk
i = RiU

k−1 + Ã−1
i R̃i(f −AUk−1).

Subtracting RiU
∗ from both sides gives

vk
i −RiU

∗ = Ri(U
k−1 −U∗) + Ã−1

i R̃iA(U
∗ −Uk−1)

= (Ri − Ã−1
i R̃iA)(U

k−1 −U∗).

Taking two-norms on both sides yields

‖vk
i − RiU

∗‖2 ≤ ‖(Ri − Ã−1
i R̃iA)‖2‖Uk−1 −U∗‖2 ≤ C̄ρk−1.

Thus, optimized parallel Schwarz converges with rate r ≤ ρ(BASH).
Now suppose optimized parallel Schwarz (32) converges for any right-hand side

f . At convergence, the subdomain solutions {vi} must satisfy the augmented system
(30); since vk

i = RiU
∗ also satisfies (30) and A is invertible, we must have vk

i → RiU
∗;

thus, there exists a constant C independent of k and 0 ≤ r < 1 such that

‖vk
i −RiU

∗‖2 ≤ Crk‖v0
i −RiU

∗‖2.
We now show that the spectral radius of the ASH iteration matrix BASH = I−M−1A
satisfies ρ(BASH) ≤ r. If ρ(BASH) = 0, there is nothing to show. Otherwise, suppose
we choose an f so that the initial error E1 satisfies

E1 = U1 −U∗ = −A−1f = λW,

where W is the eigenvector of BASH corresponding to λ, the largest eigenvalue of
BASH in magnitude. Then for all k, we have

Ek = Uk −U∗ = λk−1E1 = λkW.

Taking (19) and subtracting
∑

j R
T
j RjU

∗ from both sides gives

N∑
j=1

RT
j (v

k
j − RjU

∗) = Ek +
(∑

j R
T
j Rj − I

)
Ek−1 = λkW + λk−1RT

o RoW.

If we take two-norms on both sides, we see that for large enough k, we have

(33) |λ|k−1
∥∥λW +RT

o RoW
∥∥
2
≤ C̄rk
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for some constant C̄ independent of k. Note that RT
o Ro simply projects the vector

W onto its components belonging to the overlapping regions; thus, if we reorder the
vector W and write the nonoverlapping and overlapping components separately as
W = [WT

no,W
T
o ]

T , then we get

λW +RT
o RoW =

[
λWno

(λ+ 1)Wo

]
.

Then squaring (33) and expressing it in terms of Wno and Wo gives

|λ|2k‖Wno‖22 + |λ|2k−2|λ+ 1|2‖Wo‖22 ≤ C̄r2k.

Thus, we obtain the inequalities

(34) |λ|2k‖Wno‖22 ≤ C̄r2k, |λ|2k−2|λ+ 1|2‖Wo‖22 ≤ C̄r2k.

If ‖Wno‖2 �= 0, then the first inequality leads to

|λ|2k ≤
(

C̄

‖Wno‖22

)
r2k.

Taking the (2k)th root and letting k → ∞ shows that |λ| ≤ r.
If ‖Wno‖2 = 0, then Wo = RT

o wo �= 0. Since RoÃR
T
o is nonsingular by Lemma 10

and (32) converges for all f , we know by Lemma 9 that λ �= −1, so there must exist
ε > 0 such that |λ+ 1| > ε. Then the second inequality in (34) implies

|λ|2k−2ε2‖Wo‖22 ≤ C̄r2k.

Taking (2k − 2)th roots on both sides and letting k → ∞ show once again that
|λ| ≤ r. Thus in both cases we have ρ(BASH) ≤ r, as required. Hence, we have shown
that when one method converges, so does the other, and we have ρ(BASH) ≤ r and
r ≤ ρ(BASH), which implies r = ρ(BASH), i.e., both methods converge at the same
asymptotic rate.

Remark. The main difficulty in proving Theorem 8 stems from the need to ensure
that the optimized ASH method does not contain oscillatory modes, i.e., we must
ascertain that its iteration matrix does not have −1 as an eigenvalue. If −1 does
belong to the spectrum of B, Lemmas 9 and 10 assert that this is because either
the augmented system is singular, or because optimized parallel Schwarz itself has an
oscillatory mode, which optimized ASH has inherited.

6. Numerical examples. In this section, we verify Theorem 8 by presenting
three examples in which optimized Schwarz and ASH have identical convergence rates.

6.1. A two-subdomain example. For the first test problem, we solve Poisson’s
equation on the unit square with homogeneous Dirichlet boundary condition. We
use a 20 × 20 grid, which is divided into two subdomains with a two-row overlap
(Figure 5(a)). In the first case, we simply use Dirichlet transmission conditions as in
[16], which correspond to the original ASH method as defined in [3]. In the second
case, we use Robin conditions with the optimal parameter p∗ = (π2/2h)1/3, as given
in [21]. The convergence results are shown in Figure 5(b). As expected, the optimized
method converges much faster than the classical method with Dirichlet transmission
conditions. We also see that regardless of the type of transmission conditions used, the
convergence curves for both methods are very close to each other, and the slopes are
asymptotically equal. Thus, as iterative methods, ASH and parallel Schwarz converge
at the same rate, just as we expected.
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Fig. 5. (a) A two-subdomain decomposition; (b) convergence of parallel Schwarz versus ASH
with classical (Dirichlet) transmission conditions and optimized Robin conditions.
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Fig. 6. Simulation of air flow in an apartment: (a) steady state pressure field (light = high
pressure exterior, dark = low pressure interior); (b) flow directions and speeds calculated based on
pressure gradients.

6.2. An example with multiple subdomains. We now present a more in-
volved example illustrating the convergence of ASH and parallel Schwarz. Here, we
would like to calculate the air flow in the apartment shown in Figure 6 when there is
a pressure difference between the exterior (P = 1 at the open windows) and the inte-
rior of the building (P = 0 at the entrance of the apartment). We impose Neumann
boundary conditions everywhere (including along the walls separating the rooms) ex-
cept at the windows and the entrance, where we use Dirichlet conditions as indicated
above. At steady state, the pressure field within the apartment satisfies the Laplace
equation and is shown in Figure 6(a), with the induced air currents shown in 6(b).
We decompose the domain into four subdomains (one per room), with an overlap-
ping structure similar to the one in Figure 5(a) to ensure that Assumptions 1–3 are
satisfied. The optimal Robin parameter for this problem is p∗ = (2a2h)−1/3, where
a is the distance between the interface and the closest Dirichlet boundary (see [14]).
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Fig. 7. Convergence of classical and optimized ASH for the apartment problem.

The convergence of both methods is shown in Figure 7. We see once again that
both optimized ASH and optimized parallel Schwarz converge much faster than their
classical counterparts, and that regardless of the boundary conditions used, the ASH
curve closely follows the parallel Schwarz curves and the two methods have the same
asymptotic convergence rates.

6.3. An example with systems of PDEs. We end this section with an ex-
ample involving a system of PDEs. We solve the Cauchy–Riemann equations

Lu =
√
ηu+A∂xu+B∂yu = f , A =

[−1 0
0 1

]
, B =

[
0 1
1 0

]

on the square Ω = [0, 1]× [0, 1], together with boundary conditions

u1(1, y) = f1, u2(0, y) = f2, u1(x, 0) + u2(x, 0) = u1(x, 1)− u2(x, 1) = 0.

The convergence of the parallel Schwarz method on this system has been analyzed
in [5, 6]. We use the same discretization as in [6] and the same decomposition into
two subdomains as in subsection 6.1 (cf. Figure 5(a)). We show only results in which
characteristic (Dirichlet) data are used as transmission conditions, although results
using optimized conditions are similar. We see from Figure 8(a) that once again, ASH
converges at the same asymptotic rate as parallel Schwarz. Whereas the convergence
rate of parallel Schwarz within each subdomain exhibits two-cyclic behavior (which is
typical for two-subdomain problems), the ASH error curve takes into account errors
over the whole domain; hence, its error at each iteration is the maximum of the two
errors. We also see from Figure 8(b) that the nonzero eigenvalues of both methods
coincide perfectly, just like for RAS. This shows that our results are just as valid for
systems as for scalar PDEs. Note that the identical spectra can only occur thanks to
the no-cross-point assumption, since we have already shown that the spectra can be
quite different when cross points are present (cf. Figure 3).

7. Conclusion. We have extended ASH to take advantage of optimized trans-
mission conditions. In the absence of cross points, this new method is closely related
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Fig. 8. Example on Cauchy–Riemann equations: (a) convergence of parallel Schwarz and ASH;
(b) eigenvalues of the iteration matrices for parallel Schwarz and ASH.

to optimized versions of Lions’ method: when the domain decomposition contains no
cross points, the iterates of the optimized ASH method can be obtained by taking
linear combinations of the corresponding parallel Schwarz method. In fact, the iter-
ates of the two methods are identical outside the overlap. Such insight can be used
to determine the convergence rate of the optimized ASH methods by analyzing the
underlying optimized Schwarz methods, for which more convergence results are avail-
able (e.g., for systems of PDEs). Thus, this work complements the known convergence
results for RAS and ASH, such as those in [10]. It would be interesting to see whether
similar ideas can be applied to RASHO to relate it to the parallel Schwarz method.
When cross points are present, the equivalence between ASH and parallel Schwarz no
longer holds; in fact, the two stationary iterations are incomparable from a spectral
point of view. Thus, another interesting prospect for future work would be to clarify
whether the divergence is caused by a single outlying eigenvalue or whether there
could be whole clusters lying outside the unit disc. This would give more insight into
whether the two methods have similar behavior when used as preconditioners under
GMRES.

Appendix. Proof of Lemma 9. The proof proceeds in several steps.

Step 1. Suppose there exists wo �= 0 such that (I − ∑
j R

T
j Ã

−1
j R̃jA)R

T
o wo =

−RT
o wo. Then

(35) 2RT
o wo =

∑
j

RT
j Ã

−1
j R̃jAR

T
o wo.

We now define wj = Ã−1
j R̃jAR

T
o wo, so that 2RT

o wo =
∑

j R
T
j wj . Moreover,

(36)
∑
j

RT
j Ãjwj =

∑
j

RT
j R̃jAR

T
o wo = ART

o wo.

Thus,∑
j

(ART
j −RT

j Ãj)wj = A
∑
j

Rjwj −
∑
j

RT
j Ãjwj = 2ART

o wo −ART
o wo = ART

o wo.
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Now if we multiply from the left-hand side by Ri − R̃i, then we see that for any i,

(Ri − R̃i)AR
T
o wo =

∑
j

(Ri − R̃i)(AR
T
j −RT

j Ãj)wj

=
∑
j

(Ri − R̃i)(AR
T
j −RT

j Aj)︸ ︷︷ ︸
=0 by Ass. 2

wj −
∑
j

(Ri − R̃i)R
T
j Lj︸ ︷︷ ︸

=0 for j �= i by (17)

wj

= −Liwi.

Step 2. Another way of writing (35) is to note that∑
j

RT
j RjR

T
o wo = (I +RT

o Ro)R
T
o wo = 2RT

o wo,

so (35) becomes∑
j

(RT
j Rj −RT

j Ã
−1
j R̃jA)R

T
o wo =

∑
j

RT
j Ã

−1
j (ÃjRj − R̃jA)R

T
o wo = 0.

Define zj = Ã−1
j (ÃjRj − R̃jA)R

T
o wo, so that

∑
j R

T
j zj = 0. It is straightforward to

see that wj + zj = RjR
T
o wo for all j. The result of the first step then implies

(Ri − R̃i)AR
T
o wo = Li(zi −RiR

T
o wo),

which then gives

Lizi = (Ri − R̃i)AR
T
o wo + LiRiR

T
o wo

= (Ri − R̃i)(A+RT
i LiRi)R

T
o wo,(37)

since R̃T
i Li = 0 by (16).

We now give another representation of zi which will be useful later. We calculate

(ÃjRj − R̃jA)R
T
o = LjRjR

T
o + (AjRj − R̃jA)R

T
o

= LjRjR
T
o + (AjRj −RjA)R

T
o + (RjA− R̃jA)R

T
o

= LjRjR
T
o + (AjRj −RjA)R

T
o RoR

T
o + (RjA− R̃jA)R

T
o

= LjRjR
T
o +

∑
k

(AjRj −RjA)(Rk − R̃k)
T︸ ︷︷ ︸

=0 by Ass. 2

RkR
T
o

+ (Rj − R̃j)AR
T
o ,

so that

(ÃjRj − R̃jA)R
T
o = LjRjR

T
o + (Rj − R̃j)AR

T
o = (Rj − R̃j)(A+RT

j LjRj)R
T
o .

Thus, combining the definition of zj and (37) gives

(38) Ãjzj = (ÃjRj − R̃jA)R
T
o wo = (Rj − R̃j)(A+RT

j LjRj)R
T
o wo = Ljzj .

Incidentally, (38) implies Ajzj = 0, but this does not imply zj = 0 because Aj

does not need to be invertible. Indeed, the method is well defined whenever Ãj is
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nonsingular, so the nonsingularity of Aj is not a natural requirement unless classical
(Dirichlet) transmission conditions are used.

Step 3. We now need to consider two cases: either zj = 0 for all j, or zi �= 0 for
at least one i. In the first case, zi = 0 implies wi = RiR

T
o wo for all i; the last line of

Step 1, which reads (Ri − R̃i)AR
T
o wo = −Liwi, can be rewritten as

0 = (Ri − R̃i)AR
T
o wo + Liwi

= (Ri − R̃i)(A +RT
i LiRi)R

T
o wo

= (Ri − R̃i)

(
A+

∑
k

RT
k LkRk

)
RT

o wo,(39)

since (Ri − R̃i)R
T
k Lk = 0 for k �= i by (17). Since (39) is true for all i, we can sum

through the i and get

0 =
∑
i

RT
i (Ri − R̃i)

(
A+

∑
k

RT
k LkRk

)
RT

o wo = RT
o RoÃR

T
o wo.

Multiplying the above by Ro shows that RoÃR
T
o is singular, with a nullspace contain-

ing the nonzero vector RT
o wo.

Step 4. Now suppose at least one of the zj is nonzero. Then let us run the
iteration (32) with the right-hand side f = ART

o wo. We claim that for all k ≥ 1, we
have

(40) vk
i = RiR

T
o wo + (−1)kzi.

Since zi �= 0 for some i, (40) would imply that parallel optimized Schwarz does not
converge, as stated in Lemma 9. For the first iterate, we have by definition

v1
i = Ã−1

i R̃iAR
T
o wo = wi = RiR

T
o wo − zi.

For k = 2, we subtract the equation for k = 1 from the one for k = 2:

Ãi(v
2
i − v1

i ) = (Ri − R̃i)f +
∑
j �=i

(LiRiR
T
j −Aij)v

1
j

= (Ri − R̃i)AR
T
o wo −

∑
j �=i

(RiA− ÃiRi)R
T
j wj

= (Ri − R̃i)AR
T
o wo −

∑
j

(RiA− ÃiRi)R
T
j wj + (RiA− ÃiRi)R

T
i wi.

The second term in the right-hand side above can be simplified using
∑

j Rjwj =

2RT
o wo:

Ãi(v
2
i − v1

i ) = (Ri − R̃i)AR
T
o wo − 2(RiA− ÃiRi)R

T
o wo

+ (RiA−AiRi)R
T
i︸ ︷︷ ︸

=0

wi − Liwi

= (Ri − R̃i)AR
T
o wo + 2LiRiR

T
o wo − Liwi

= (Ri − R̃i)(A+RT
i LiRi)R

T
o wo + Li(RiR

T
o wo −wi) = 2Ãizi
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by (38). Since Ãi is nonsingular, we conclude that

v2
i = v1

i + 2zi = RiR
T
o wo + zi.

Finally, for k > 2, we assume inductively that vk
i = RiR

T
o wo+(−1)kzi. Then to show

the (k + 1)st step, we subtract the equation for k from the one for k + 1:

Ãi(v
k+1
i − vk

i ) =
∑
j �=i

(LiRiR
T
j −Aij)(v

k
j − vk−1

j )

= 2(−1)k
∑
j �=i

(ÃiRi −RiA)R
T
j zj

= 2(−1)k
[
−(ÃiRi −RiA)R

T
i zi +

∑
j

(ÃiRi −RiA)R
T
j zj︸ ︷︷ ︸

=0 since
∑

j RT
j zj = 0

]

= −2(−1)kLizi = −2(−1)kÃizi.

Hence, we get

vk+1
i = vk

i − 2(−1)kzi = RiR
T
o wo + (−1)k+1zi.

Proof of Lemma 10. To prove Lemma 10, we will first need the following
lemma, which is the analogue of the no-cross-point assumption for the stencil of A.

Lemma 11. For distinct i, j, and l, we have

RiR
T
j RjAR

T
l = RiAR

T
j RjR

T
l = 0,(41)

RiR
T
j RjÃRT

l = RiÃR
T
j RjR

T
l = 0.(42)

Proof. We only show the first inequalities in (41) and (42); the proof for the
second inequalities is similar. We start by showing (41). Assumption 2 (partition of
internal boundaries) implies

RjAR
T
l = RjR

T
l Al + R̃j(AR

T
l −RT

l Al),

which means

RiR
T
j RjAR

T
l = RiR

T
j RjR

T
l Al +RiR

T
j R̃j(AR

T
l −RT

l Al).

Since RiR
T
j RjR

T
l = RiR

T
j R̃jR

T
l = 0 for distinct i, j, and l (no cross points), two

out of the three terms on the right-hand side vanish; multiplying the remaining terms
from the left by RT

i gives

RT
i RiR

T
j RjAR

T
l = RT

i RiR
T
j R̃jAR

T
l .

Thus, RT
i RiR

T
j RjAR

T
l has support inside Vi∩ Ṽj . By interchanging the roles of i and

j, we see that RT
j RjR

T
i RiAR

T
l has support inside Vj ∩ Ṽi. But

(RT
i Ri)(R

T
j Rj)AR

T
l = (RT

j Rj)(R
T
i Ri)AR

T
l ,

since diagonal matrices commute; so RT
i RiR

T
j RjAR

T
l , in fact, has support only inside

Ṽi ∩ Ṽj = ∅. Hence, we have shown that

RiR
T
j RjAR

T
l = Ri(R

T
i RiR

T
j RjAR

T
l ) = 0.
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We now show that RiR
T
j RjR

T
k LkRkR

T
l = 0 for all k, which together with (41) would

imply that

RiR
T
j RjÃR

T
l = RiR

T
j Rj

(∑
k

RT
k LkRk

)
RT

l = 0.

By (18) in Assumption 3, we know that RjR
T
k LkRkR

T
l = 0 for distinct j, k, and l;

thus, we have

RiR
T
j RjR

T
k LkRkR

T
l =

⎧⎪⎨
⎪⎩
0, k /∈ {j, l},
RiR

T
j LjRjR

T
l = 0, k = j,

RiR
T
j RjRlLl = 0, k = l,

where the last case gives zero because of the no-cross-point assumption.
Let Pij = RT

i RiR
T
j Rj = RT

j RjR
T
i Ri, i.e., Pij replaces any component outside

Vi∩Vj by zero. Then Lemma 11 says that unless l ∈ {i, j}, we must have PijAR
T
l = 0,

i.e., only stencils within Vi or Vj can extend into the overlap Vi ∩ Vj .
Corollary 12. For i �= j, we have

PijAR
T
o = PijAPijR

T
o , RoAPij = RoPijAPij ,(43)

PijÃR
T
o = PijÃPijR

T
o , RoÃPij = RoPijÃPij .(44)

Proof. We prove only the first inequality; the other is similar. This can be done
either purely algebraically using the properties of Ri, or by the following geometric
argument. For any wo �= 0, the nonzero elements of RT

o wo must lie within two of the
subdomains Vl. However, for any l /∈ {i, j}, we have PijÃR

T
l = 0. Thus, only nonzero

elements that lie within Vi ∩ Vj can contribute to the result, i.e.,

PijÃR
T
o = PijÃPijR

T
o .

Proof of Lemma 10. Suppose RoÃR
T
o is singular, i.e., there exists yT �= 0

such that yTRoÃR
T
o = 0. We show that there must be distinct i and j such that

yTRoR
T
i RiR

T
j Rj �= 0. Assume the contrary, i.e., yTRoR

T
i RiR

T
j Rj = 0 for all i �= j.

Then we must have

0 =
∑
i

∑
j �=i

yTRoR
T
i RiR

T
j Rj = yTRo

∑
i

RT
i Ri

(∑
j

RT
j Rj −RT

i Ri

)

= yTRo

(∑
i

RT
i Ri

∑
j

RT
j Rj −

∑
i

RT
i Ri

)

= yTRo

[
(I +RT

o Ro)(I +RT
o Ro)− (I +RT

o Ro)
]

= 2yTRo,

which contradicts the fact that yT �= 0, since Ro has full row rank. Thus, by re-
naming the subdomains if necessary, we can assume without loss of generality that
yTRoR

T
1 R1R

T
2 R2 �= 0. Now consider the nonzero vector

zT =
[
yTRoR

T
2 R2R

T
1 , −yTRoR

T
1 R1R

T
2 , 0, . . . , 0

]
.
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We argue that zTA = 0, which would imply that A is singular. We verify this by
calculating the first, second, and jth component (j �= 1, 2) of zTA. For the first
component, we have

(zTA)1 = yTRo(R
T
2 R2R

T
1 Ã1 −RT

1 R1R
T
2 Ã21)

= yTRo

[
RT

2 R2R
T
1 R1AR

T
1 +RT

2 R2R
T
1 L1

−RT
1 R1R

T
2 (R2A−A2R2 − L2R2)R

T
1

]
= yTRo

[
RT

2 R2R
T
1 L1 +RT

1 R1R
T
2 L2R2R

T
1 +RT

1 R1R
T
2 A2R2R

T
1

]
= yTRo

[
RT

2 R2R
T
1 L1 +RT

1 R1R
T
2 L2R2R

T
1 +RT

1 R1R
T
2 R2AR

T
2 R2R

T
1

]
(Lem. 5)

= yTRo

[
RT

2 R2R
T
1

∑
k �=1

L1R1R
T
k RkR

T
1

+RT
1 R1R

T
2 L2R2R

T
1 +RT

1 R1R
T
2 R2AR

T
2 R2R

T
1

]
(18)
= yTRo

[
RT

2 R2R
T
1 L1R1R

T
2 R2R

T
1 +RT

1 R1R
T
2 L2R2R

T
1

+ RT
1 R1R

T
2 R2AR

T
2 R2R

T
1

]
= yTRoR

T
1 R1R

T
2 R2ÃR

T
2 R2R

T
1

(44)
= yTRoÃR

T
2 R2R

T
1 .

Using the fact that RT
2 R2R

T
1 R1 = RT

o RoR
T
2 R2R

T
1 R1 (since RT

o Ro projects onto the
union of all overlapping regions, which is a superset of V1 ∩ V2), we get

(zTA)1 = yTRoÃ(R
T
o︸ ︷︷ ︸

=0

Ro)R
T
2 R2R

T
1 R1R

T
1 = 0.

A similar calculation shows that the second component of zTA also vanishes. For the
jth component with j �= 1, 2, we see that

(zTA)j = yTRo(R
T
2 R2R

T
1 Ã1j −RT

1 R1R
T
2 Ã2j)

= yTRo

[
RT

2 R2R
T
1 (R1A−A1R1 − L1R1)

−RT
1 R1R

T
2 (R2A−A2R2 − L2R2)

]
RT

j .

Since RT
2 R2R

T
1 L1R1R

T
j = RT

1 R1R
T
2 L2R2R

T
j = 0 for j �= 1, 2, we, in fact, have

(zTA)j = yTRo

[
RT

2 R2R
T
1 (R1A−A1R1)− RT

1 R1R
T
2 (R2A−A2R2)

]
RT

j

= yTRo(R
T
2 R2R

T
1 A1R1 −RT

1 R1R
T
2 A2R2)R

T
j

= yTRoR
T
1 R1R

T
2 R2(AR

T
1 R1 −ART

2 R2)R
T
j

= yTRoP12AR
T
1 R1R

T
j − yTRoP12AR

T
2 R2R

T
j .

We now show that yTRoP12AR
T
i RiR

T
j = 0 for i = 1, 2. Using the fact thatRT

i RiR
T
j =
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(RT
o Ro)R

T
i RiR

T
j (the same argument as above, since i �= j), we get

yTRoP12AR
T
i RiR

T
j = yTRoP12A(R

T
o Ro)R

T
i RiR

T
j

= yTRoP12AP12R
T
o RoR

T
i RiR

T
j (by (43))

= yTRoAP12R
T
o RoR

T
i RiR

T
j (by (43))

= yTRoAR
T
o RoP12R

T
i RiR

T
j = 0.

Thus, we conclude that zTA = 0, i.e., A is singular.
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