Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains

Felix Kwok and Martin J. Gander
Section de mathématiques Université de Genève

19th International Conference on Domain Decomposition Methods Zhangjiajie, China,August I8 ${ }^{\text {th }}, 2009$

Classical Schwarz Method

- Schwarz (I869), Lions (I988):

$$
\begin{aligned}
& -\Delta u_{j}^{k+1}=f \quad \text { on } \Omega_{j} \\
& u_{j}^{k+1}=g \quad \text { on } \partial \Omega \cap \bar{\Omega}_{j} \\
& u_{j}^{k+1}=u_{i}^{k} \text { on } \Gamma_{i j}
\end{aligned}
$$

Optimal Schwarz Methods

- Change boundary conditions:

$$
\begin{array}{rlrl}
-\Delta u_{j}^{k+1} & =f & & \text { on } \Omega_{j} \\
u_{j}^{k+1} & =g \quad & \text { on } \partial \Omega \cap \bar{\Omega}_{j} \\
B_{i j} u_{j}^{k+1} & =B_{i j} u_{i}^{k} & \text { on } \Gamma_{i j}
\end{array}
$$

- $B_{i j}=$ linear operators acting on u along $\Gamma_{i j}$
- $B_{i j}$ can be:
- Local: differential operators (compact stencil), e.g. Dirichlet, Neumann, Robin, etc.
- Nonlocal: convolutions (dense matrix blocks), e.g. Steklov-Poincaré, Dirichlet-to-Neumann, etc.

Optimal Schwarz Methods

- Optimal operator for convergence is generally nonlocal:
- Optimal means $\rho=0$, or convergence in a finite number of iterations
- Decomposition into strips: Use

$$
\frac{\partial}{\partial \vec{n}_{i}}-\Lambda_{i}
$$

where Λ_{i} is the Dirichlet-to-Neumann operator (Nataf et al., I994)

- Corresponds to Schur complements in the discrete case

Optimal Schwarz Method

- Optimal Schwarz methods exist when the decomposition has no cycles (Nier 1995)

Optimal Schwarz Method

- Optimal Schwarz methods exist when the decomposition has no cycles (Nier 1995)

No Cycle
Cycle

Optimal Schwarz Method

- Conjecture : no optimal method when cycles are present, but
- Does there exist an iteration by subdomains that converges in a finite number of iterations if we are allowed to communicate more than just boundary data?

Schur complement

- For any subdomain Ω_{j}, we can rewrite the linear system (after permutation) as

$$
\left[\begin{array}{cc}
A_{j} & B_{j} \\
C_{j} & D_{j}
\end{array}\right]\binom{u_{j}}{u^{0}}=\binom{f_{j}}{f_{j}^{0}} \stackrel{\text { Inside } \Omega_{\mathrm{i}}}{\longleftarrow} \begin{aligned}
& \text { Outside } \Omega_{\mathrm{i}}
\end{aligned}
$$

which is equivalent to

$$
\left(A_{j}-B_{j} D_{j}^{-1} C_{j}\right) u_{j}=f_{j}-B_{j} D_{j}^{-1} f_{j}^{0}
$$

which can be solved in parallel for each j.

- How to reconstruct f_{j}^{0} (RHS outside Ω_{j}) using solutions from other subdomains?

Sufficient Overlap

- Assume each grid point lies in the interior of at least one subdomain
(away from interface)

Extracting f_{j}^{0}

Extracting f_{j}^{0}

Extracting f_{j}^{0}

Parallel Algorithm - Version I

$$
\left(A_{j}-B_{j} D_{j}^{-1} C_{j}\right) u_{j}=f_{j}-B_{j} D_{j}^{-1} f_{j}^{0}
$$

$$
\left(A_{j}-B_{j} D_{j}^{-1} C_{j}\right) u_{j}^{k+1}=f_{j}-\sum_{i \neq j} B_{j} D_{j}^{-1}\left[\begin{array}{c}
0 \\
R_{i} A_{i} \\
0
\end{array}\right] u_{i}^{k}
$$

- u_{j}^{k+1} will yield the exact solution as long as each u_{i}^{k} satisfies $R_{i} A_{i} u_{i}=R_{i} f_{i}(i \neq j)$
- Algorithm converges in two steps!

Reducing Communication

- Observation:

$$
B_{j} D_{j}^{-1}\left[\begin{array}{c}
0 \\
R_{i} A_{i} \\
0
\end{array}\right]
$$

has a very specific sparsity pattern

- Column is nonzero only at interfaces between subdomains
- Values of interior nodes not needed!

Parallel Algorithm - Version II

$$
\left(A_{j}-B_{j} D_{j}^{-1} C_{j}\right) u_{j}^{k+1}=f_{j}-\sum_{i \neq j} B_{j} D_{j}^{-1}\left[\begin{array}{c}
0 \\
R_{i} A_{i} P_{j i}^{\top} \\
0
\end{array}\right] P_{j j} u_{i}^{k}
$$

($P_{j i}$ restricts u_{i}^{k} to the "boundary")

- Identical iterates for the two versions
- Convergence in two steps, even though f_{j}^{0} is no longer reconstructed faithfully
- Communication reduced by a factor of H / h !

6×1 Decomposition

6×1 Decomposition

6×1 Decomposition

6×1 Decomposition

6×1 Decomposition

6×1 Decomposition

6×1 Decomposition

6×1 Decomposition

4×4 Decomposition

4×4 Decomposition

$\mathrm{k}=1$, Max Eror $=6.81 \mathrm{e}+001$

4×4 Decomposition

$\mathrm{k}=2$, Max Eror $=1.29 \mathrm{e}-012$

Parallel Algorithm - Version II

$$
\left(A_{j}-B_{j} D_{j}^{-1} C_{j}\right) u_{j}^{k+1}=f_{j}-\sum_{i \neq j} B_{j} D_{j}^{-1}\left[\begin{array}{c}
0 \\
R_{i} A_{i} P_{j i}^{\top} \\
0
\end{array}\right] P_{j i} u_{i}^{k}
$$

- LHS is the Schur complement (same as tree case), but
- RHS is a special linear combination of data gathered from each of the other subdomains

Conclusions

- New algebraic method based on Schur complements
- Convergence in two iterations possible if one also uses boundary data from nonneighbours
- Works for arbitrary decompositions into subdomains
- Ongoing work:
- Derive associated optimized methods with local approximations of the Schur complements

