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Classical Schwarz MethodClassical Schwarz MethodClassical Schwarz MethodClassical Schwarz Method

� Schwarz (1869), Lions (1988):( ) ( )
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Optimal Schwarz MethodsOptimal Schwarz MethodsOptimal Schwarz MethodsOptimal Schwarz Methods

� Change boundary conditions:g y

j
k

j
k
j

gu

fu

�����

����
�

�

on

on
1

1

B li i l 	
ij

k
iij

k
jij

jj

uBuB

gu

	�

�����
� on

on
1

� Bij = linear operators acting on u along 	ij

� Bij can be:j

� Local: differential operators (compact stencil), e.g. 
Dirichlet, Neumann, Robin, etc.

� Nonlocal: convolutions (dense matrix blocks), e.g. 
Steklov-Poincaré, Dirichlet-to-Neumann, etc.
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Optimal Schwarz MethodsOptimal Schwarz MethodsOptimal Schwarz MethodsOptimal Schwarz Methods
� Optimal operator for convergence is 

generally nonlocal:
� Optimal means 
 = 0, or convergence in a 

fi i b f i ifinite number of iterations
� Decomposition into strips :  Use

�

where � is the Dirichlet-to-Neumann

i
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where �i is the Dirichlet-to-Neumann 
operator (Nataf et al., 1994)

� Corresponds to Schur complements in the p p
discrete case
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Optimal Schwarz MethodOptimal Schwarz MethodOptimal Schwarz MethodOptimal Schwarz Method
� Optimal Schwarz methods exist when the 

decomposition has no cycles (Nier 1995)
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Optimal Schwarz MethodOptimal Schwarz MethodOptimal Schwarz MethodOptimal Schwarz Method
� Optimal Schwarz methods exist when the 

decomposition has no cycles (Nier 1995)

No Cycle Cycle
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Optimal Schwarz MethodOptimal Schwarz MethodOptimal Schwarz MethodOptimal Schwarz Method
� Conjecture :  no optimal method when cycles 

are present, but
� Does there exist an iteration by subdomains

that converges in a finite number of iterations if 
we are allowed to communicate more than just 
boundary data?boundary data?
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SchurSchur complementcomplementSchurSchur complementcomplement
� For any subdomain �j, we can rewrite the j

linear system (after permutation) as
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which is equivalent to

h h b l d ll l f h
� � 011

jjjjjjjjj fDBfuCDBA �� ���
which can be solved in parallel for each j.

� How to reconstruct fjo (RHS outside �j) using 
sol tio s f o othe s bdo ai s?solutions from other subdomains?
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Sufficient OverlapSufficient OverlapSufficient OverlapSufficient Overlap

� Assume each 
grid point lies 
in the interior�22�11

of at least one 
subdomain 
(away from 
interface)�33 �44 )
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ExtractingExtracting ffjjooExtracting Extracting ffjj
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ExtractingExtracting ffjjooExtracting Extracting ffjj
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ExtractingExtracting ffjjooExtracting Extracting ffjj

R2S2
R fu2 == R2f2
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Parallel AlgorithmParallel Algorithm ––Version IVersion IParallel Algorithm Parallel Algorithm Version IVersion I
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� uj
k+1 will yield the exact solution as long 

as each ui
k satisfies Ri Ai ui = Ri fi (i � j)

� Algorithm converges in two steps!
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Reducing CommunicationReducing CommunicationReducing CommunicationReducing Communication
� Observation:
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iijj ARDB

has a very specific 

���� 0

sparsity pattern
� Column is nonzero 

l t i t f
j

only at interfaces 
between subdomains

� Values of interior nodes� Values of interior nodes 
not needed!
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Parallel AlgorithmParallel Algorithm ––Version IIVersion IIParallel Algorithm Parallel Algorithm Version IIVersion II
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( Pji restricts ui
k to the “boundary” )

� Identical iterates for the two versions
� Convergence in two steps, even though fj0 is 

no longer reconstructed faithfully
� Communication reduced by a factor of H/h !
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6 × 1 Decomposition
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4 × 4 Decomposition



4 × 4 Decomposition



4 × 4 Decomposition



Parallel AlgorithmParallel Algorithm ––Version IIVersion IIParallel Algorithm Parallel Algorithm Version IIVersion II
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� LHS is the Schur complement (same as 
tree case), but

� RHS is a special linear combination of 
data gathered from each of the other 
subdomains
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ConclusionsConclusionsConclusionsConclusions
� New algebraic method based on Schur

complements
� Convergence in two iterations possible if 

one also uses boundary data from non-
neighbours
W k f b d� Works for arbitrary decompositions into 
subdomains
O i k� Ongoing work:
� Derive associated optimized methods with local 

approximations of the Schur complementsapproximations of the Schur complements
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