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Written Problems

1. (Heath E3.10) Let B be an n × n matrix, and assume that B is both orthogonal and triangular.

(a) Prove that B must be diagonal.

(b) What are the diagonal entries of B?

(c) Let A be n × n and non-singular. Use parts (a) and (b) to prove that the QR factorization of
A is unique up to the signs of the diagonal entries of R. In particular, show that there exist
unique matrices Q and R such that Q is orthogonal, R is upper triangular with positive entries
on its main diagonal, and A = QR.

Solution. (a) We need two facts:

i. P ,Q orthogonal =⇒ PQ orthogonal

ii. P upper triangular =⇒ P−1 upper triangular

(i) is easy: (PQ)T (PQ) = QT PT PQ = QT IQ = QT Q = I.
(ii) can be argued by considering the kth column pk of P−1. Then P−1ek = pk, so Ppk = ek.
Since P is upper triangular, we can use backward substitution to solve for pk. Recall the formula
for backward substitution for a general upper triangular system Tx = b:

xk =
1

tkk



bk −

n∑

j=k+1

tkjbj



 .

In our case, we see that since (ek)j = 0 for j > k, this implies (pk)j = 0 for j > k. In other
words, the kth column of P−1 must be all zero below the kth row. This is to say P−1 is upper
triangular.

Now we show that B both orthogonal and triangular implies B diagonal. Without loss of
generality (i.e. replacing B by BT if necessary), we can assume B is upper triangular. Then
B−1 is also upper triangular by (ii). But B−1 = BT by orthogonality, and we know BT is lower
triangular. So BT (and hence B) is both upper and lower triangular, implying that B is in fact
diagonal.

(b) We know B is diagonal, so that B = BT . Let B = diag(b11, . . . , bnn). Then I = BBT =
diag(b2

11, . . . , b
2
nn), so b2

ii = 1 for all i. Thus, the diagonal entries of B are ±1.

(c) There is an existence part and a uniqueness part to this problem. In class we showed existence of
a decomposition A = QR where Q is orthogonal, and R is upper triangular, but not necessarily
with positive entries on the diagonal, so we have to fix it up. We know that rii 6= 0 (otherwise
R would be singular, contradicting the non-singularity of A), so we can define

D = diag(sgn(r11), . . . , sgn(rnn)),
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where

sgn(x) =







1, x > 0,

0, x = 0,

−1, x < 0.

Note that D is orthogonal, and R̃ = DR has positive diagonal. So if we define Q̃ = QD
(orthogonal), then A = Q̃R̃ gives the required decomposition, so we have proved existence.

For uniqueness, suppose A = Q1R1 = Q2R2 are two such decompositions. Then QT
2 Q1 =

R2R
−1
1 , so that the left-hand side is orthogonal and the right-hand side is upper triangular.

By parts (a) and (b), this implies both sides are equal to a diagonal matrix with ±1 as the
only possible entries. But both R1 and R2 has positive diagonal, so R2R

−1
1 must have positive

diagonal (you should verify that for upper triangular matrices, the diagonal of the inverse is
the inverse of the diagonal, and the diagonal of the product is the product of the diagonals).
Thus, both sides are equal to a diagonal matrices with +1 on the diagonal, i.e. the identity. So
QT

2 Q1 = I =⇒ Q1 = Q2, and R2R
−1
1 = I =⇒ R1 = R2. This shows uniqueness.

2. Let A be a real matrix. If there exists an orthogonal matrix Q such that A = Q

[
R
0

]

, show that

AT A = RT R.

Solution. This simply involves multiplying the block matrices out:

AT A =
[
RT 0

]
QT Q

[
R
0

]

=
[
RT 0

]
[
R
0

]

= RT R.

3. Let A be symmetric positive definite. Given an initial guess x0, the method of steepest descent for
solving Ax = b is defined as

xk+1 = xk + αkrk,

where rk = b − Axk and αk is chosen to minimize f(xk+1), where

f(x) :=
1

2
xT Ax − xT b.

(a) Show that

αk =
rT
k rk

rT
k Ark

.

(b) Show that
rT
i+1ri = 0.

(c) If ei := x − xi 6= 0, show that
eT

i+1Aei+1 < eT
i Aei.

Hint: This is equivalent to showing rT
i+1A

−1ri+1 < rT
i A−1ri (why?).

Solution. (a) To find out what αk is, apply the recurrence relation to the definition of f(xk+1):

f(xk+1) =
1

2
(xk + αkrk)T A(xk + αkrk) − (xk + αkrk)T b

=
1

2
(xT

k Axk + αkrT
k Axk + αkxT

k Ark + α2
krT

k Ark) − xT
k b − αkrT

k b

=
1

2
(xT

k Axk + αkrT
k Axk + αkrT

k AT xk + α2
krT

k Ark) − xT
k b − αkrT

k b

=
1

2
(xT

k Axk + αkrT
k Axk + αkrT

k Axk + α2
krT

k Ark) − xT
k b − αkrT

k b

=
1

2
(xT

k Axk + 2αkrT
k Axk + α2

krT
k Ark) − xT

k b − αkrT
k b.
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Now differentiate with respect to αk and set to zero:

d

dαk
f(xk+1(αk)) = rT

k Axk + αrT
k Ark − rT

k b = 0

αkrT
k Ark = rT

k b − rT
k Axk = rT

k rk.

Isolating αk yields the desired result. Note that α > 0, since A is positive definite.

(b) It helps to first establish a recurrence relation involving the residuals only: note that

rk + 1 = b − Axk+1 = b − A(xk + αkrk) = rk − αkArk.

Then

rT
k+1rk = (rk − αkArk)T rk

= rT
k rk −

(
rT
k rk

rT
k Ark

)

rT
k AT rk

= 0

since A = AT .

(c) First, note that
rk = b − Axk = Ax − Axk = A(x − xk) = Aek,

so that rT
k A−1rk = eT

k AT A−1Aek = eT
k Aek, and similarly for rk+1. Thus, the two inequalities

are completely equivalent. Now we attack the inequality involving r:

rT
k+1A

−1rk+1 = rT
k+1A

−1(rk − αkArk)

= rT
k+1A

−1rk − αkrT
k+1rk

︸ ︷︷ ︸

0 by (b)

= (rk − αkArk)T A−1rk

= rkA−1rk − αkrT
k rk

︸ ︷︷ ︸

>0

< rkA−1rk.

Computer Problems

4. Let A be an n × n matrix of the form

A =














2 + σ1h
2 −1

−1 2 + σ2h
2 −1

−1
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1
−1 2 + σnh2














.

(a) Let n = 25, h = 1/26, and

σi =

{

100, i = 1, . . . , 13,

1 i = 14, . . . , 25.

Implement the conjugate gradient method and use it to solve the problem Ax = h2b, where b is a
random vector with entries between −1 and 1. Use x(0) = 0 as your starting vector, and iterate
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until the relative residual ‖r(k)‖2/‖b‖2 is less than 10−5. Plot the quantities ‖e(i)‖2, ‖r
(i)‖2 and

‖e(i)‖A. Which of these quantities do you expect to be monotonically decreasing?

(Recall that ‖e(i)‖A :=
(
e(i)T Ae(i)

)1/2
).

(b) Transform the matrix problem into

(DAD)y = h2Db,

where x = Dy, and D is a diagonal matrix with

dii = (2 + σih
2)−1/2.

Repeat part (a) on the transformed problem. For which problem does CG converge faster?

(c) For this part assume σi = 0 for all i. Let

M =












1 −1

−1 2
. . .

. . .
. . .

. . .

. . .
. . . −1
−1 2












.

Apply conjugate gradients with M as a preconditioner as follows. First, compute the Cholesky
factorization M = LLT , and then solve the modified problem

(L−1AL−T )y = L−1b,

where y = LT x. How many iteration does CG require to converge? Note that it is not necessary
to compute L−1 and form L−1AL−T explicitly. What should be done instead?

Solution. (a) The following MATLAB code implements the preconditioned conjugate gradient method
with preconditioner M , where M = PT P .

function [x,R] = mypcg(A,b,P,x0,tol)

% [x,R] = MYPCG(A,b,P,x0,tol)

% Solves (inv(P’)*A*inv(P))(P*x) = inv(P’)*b, where A is symmetric

% positive definite, using the conjugate gradient method. R(:,i) is the

% (i-1)st residual vector.

r = (P’)\(b - A*x0);

initres = norm(r);

tol = tol * initres;

s = r;

y = P*x0;

count = 0;

R(:,1) = r;

while (norm(r) > tol),

count = count + 1;

As = (P’)\(A*(P\s));

alpha = (r’*r)/(s’*As);

y = y + alpha * s;

rnew = r - alpha * As;

beta = (rnew’*rnew)/(r’*r);

r = rnew;

s = r + beta*s;

R(:,count+1) = r;

end;

x = P\y;

disp([’CG converged in ’,num2str(count),’ iterations.’]);
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Figure 1 shows the results for the first test case. We get convergence in 25 iterations, as is
predicted by the theory. We also see that ‖e(i)‖A is monotonically decreasing, as expected. The
other two quantities need not decrease monotonically (e.g. see the curve for ‖r(i)‖2).
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Figure 1: Error plots for 4(a).

(b) With diagonal scaling, we also get convergence in 25 iterations, i.e. no improvement. This is
likely because the variation in the diagonal is too insignificant for diagonal scaling to have any
effect. The error and residual norms are shown in Figure 2.
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Figure 2: Error plots for 4(b).

(c) Here we expect the convergence to be in two steps because M is a rank-one change from A, and
this is confirmed by the error plots in Figure 3. Note that in the CG code, it is not necessary to
compute L−1 and form L−1AL−T explicitly. Instead, there are two solves and a matrix-vector
multiply at the beginning of each iteration, and these solves are generally implemented as a
forward/backward substitution (since L is triangular).
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Figure 3: Error plot for 4(c).

5. We are given the following data for the total population of the United States, as determined by the
U. S. Census, for the years 1900 to 2000. The units are millions of people.

t y
1900 75.995
1910 91.972
1920 105.711
1930 123.203
1940 131.669
1950 150.697
1960 179.323
1970 203.212
1980 226.505
1990 249.633
2000 281.422

Suppose we model the population growth by

y ≈ β1t
3 + β2t

2 + β3t + β4.

(a) Use normal equations for computing β. Plot the resulting polynomial and the exact values y in
the same graph.

(b) Use the QR factorization to obtain β for the same problem. Plot the resulting polynomial and
the exact values, as well as the polynomial in part (a), in the same graph. Also compare your
coefficients with those obtained in part (a).

(c) Suppose we translate and scale the time variable t by

s = (t − 1950)/50

and use the model
y ≈ β1s

3 + β2s
2 + β3s + β4.

Now solve for the coefficients β and plot the polynomial and the exact values in the same graph.
Which of the polynomials in part (a) through (c) gives the best fit to the data?

Solution. (a) The least squares problem is

min ‖y − Aβ‖
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where

A =






t31 t21 t1 1
...

...
t3n t2n tn 1




 ,

n = 11, ti = 1900 + 10(i − 1). We form the normal equations AT Aβ = AT y and solve for β to
obtain

beta =

1.010415596011712e-005

-4.961885780449666e-002

8.025770365215973e+001

-4.259196447217581e+004

The plot is shown in Figure 4. Here we have ‖y − Aβ‖2 = 10.1.
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Figure 4: Least squares fit for 5(a).

(b) Now we use the QR factorization to obtain beta2:

>> [Q,R] = qr(A);

>> b = Q’*y;

>> beta2 = R(1:4,1:4)\b(1:4)

beta2 =

1.010353535409117e-005

-4.961522727598729e-002

8.025062525889830e+001

-4.258736497384948e+004

So ‖beta2−beta‖2 = 4.60. The norm of the residual is essentially the same as in part (a), with
a difference of 1.08 × 10−10. This shows the least-squares problem is very ill-conditioned, since
a small change in the residual yields a relatively large change in the solution vector. However,
Figure 5 shows that the two fits are hardly distinguishable on a graph (mostly because the
residuals are both small).
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Figure 5: Least squares fit for 5(b).

(c) We now perform a change of the independent variable

s = (t − 1950)/50

so that s ∈ [−1, 1]. We again set up the least square system and solve:

>> [Q,R] = qr(A);

>> b = Q’*b;

>> b = Q’*y;

>> beta3 = R(1:4,1:4)\b(1:4);

>> beta3

beta3 =

1.262941919191900e+000

2.372613636363639e+001

1.003659217171717e+002

1.559042727272727e+002

Note that the coefficients are different because we are using a different basis. The residual is
again essentially the same as parts (a) and (b) (the difference is 1.54× 10−11). So even though
the coefficients are quite different, the quality of the fit is essentially the same (even though (c)
is more accurate by just a tiny bit).
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Figure 6: Least squares fit for 5(c).
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