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1 Introduction

The goal of this paper is to introduce and analyze a new variant of waveform relax-
ation (WR) methods based on Neumann–Neumann iterations. Originally introduced
by [13] for ODE systems, WR methods have first been used to solve time-dependent
PDEs in [11] and [12]. When applying a WR method for a given domain Ω and a
decomposition into subdomains{Ωi}N

i=1,∪iΩ i = Ω , each iteration consists of solv-
ing independent subproblems onΩi × [0,T], i.e., over thewhole time window[0,T],
before exchanging information across the interfaces; in other words, the informa-
tion exchanged consists of interface traces over the time window [0,T]. This is in
contrast with the classical approach, in which one fixes a time stepping strategy for
the whole domainΩ and uses domain decomposition to solve the resulting spatial
problem at each time step. One advantage of the WR framework is that it allows
the use of different spatial and time discretizations for each subdomain; this is espe-
cially useful for problems with large coefficient jumps [9] or with different models
for different parts of the domain [8]. In addition, since communication between
subdomains are less frequent than for the standard approach, there is a reduction in
communication costs, particularly for networks with high latency.

Typically, WR methods can be derived from methods for elliptic PDEs. For
example, one can extend the parallel Schwarz method with classical transmission
conditions [14] to obtain the parallel Schwarz WR method; this has been ana-
lyzed in [11, 12]. WR extensions based on optimized Schwarz methods [6] have
also been proposed. Substructuring methods form another class of methods for
elliptic PDEs: examples include the Neumann–Neumann method [2, 4], as well
as the FETI method [5] and its variants. However, to the best of our knowledge,
no substructuring-type analogue of WR has been proposed, despite substructuring
methods having many attractive properties for elliptic problems, such as mesh inde-
pendence in the two-subdomain case. Thus, our first aim is to define the Neumann–
Neumann waveform relaxation (NNWR) method, which generalizes the elliptic
Neumann–Neumann method in a natural way. This is done in Section 2.

Our second goal is to understand the convergence of the proposed algorithm for
parabolic problems. For systems of ODEs, a Picard–Lindelöf type argument shows
that convergence is superlinear on bounded time intervals[0,T], with an error es-
timate of the form(CT)k/k! after k iterations [16]. For overlapping Schwarz WR
methods applied to the advection-diffusion equation, the estimate can be improved
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to e−(kL)2/T , whereL is the size of the overlap [12]; this bound is possible because
of the diffusivity of the problem. However, for unbounded time intervals, only lin-
ear convergence can be expected [11]. Similar conclusions hold for Schwarz WR
with optimized transmission conditions, with or without overlap [15, 7, 1]. Using
the 1D heat equation as the model problem, we show that the NNWR method also
converges superlinearly for finite time intervals; this is done in Section 3, with some
numerical experiments confirming the results in Section 4. We also derive a linear
bound that is valid for unbounded time intervals. We have chosen to analyze the
method in the continuous setting because it allows us to understand the asymptotic
behaviour of the algorithm for very fine grids, without requiring explicit knowledge
of how each subdomain problem is discretized. For ease of presentation, we prove
our results for two subdomains in one spatial dimension; [10] contains further re-
sults, some of which are mentioned at the end of Section 4.

2 The NNWR algorithm

Suppose we want to solve the 1D heat equation

∂tu− ∂ 2
x u= f , x∈ Ω = (−b,a), t ∈ (0,T],

with initial conditionsu(x,0) = v(x) and Dirichlet boundary conditionsu(−b, t) =
uL(t), u(a, t) = uR(t). We consider a decomposition into two non-overlapping sub-
domainsΩ1 = (−b,0) andΩ2 = (0,a). On the interfaceΓ = {0}, we are given the
initial guessg0(t), t ∈ [0,T]. Then the NNWR algorithm is given by the following
iteration: fork= 1,2, . . ., do

1. Dirichlet step:























∂tu
k
1− ∂ 2

x uk
1 = f (x, t) on (−b,0),

uk
1(−b, t) = uL(t),

uk
1(0, t) = gk−1(t),

uk
1(x,0) = v(x) on (−b,0),























∂tu
k
2− ∂ 2

x uk
2 = f (x, t) on (0,a),

uk
2(0, t) = gk−1(t),

uk
2(a, t) = uR(t),

uk
2(x,0) = v(x) on (0,a).

2. Neumann step:























∂tψk
1 − ∂ 2

x ψk
1 = 0 on(−b,0),

ψk
1(−b, t) = 0,

∂n1ψk
1 = ∂n1uk

1+ ∂n2u
k
2 onΓ ,

ψk
1(x,0) = 0 on(−b,0),























∂tψk
2 − ∂ 2

x ψk
2 = 0 on(0,a),

∂n2ψk
2 = ∂n1uk

1+ ∂n2u
k
2 onΓ ,

ψk
2(a, t) = 0,

ψk
2(x,0) = 0, on (0,a).

3. Update step:

gk(t) = gk−1(t)−θ [ψk
1(0, t)+ψk

2(0, t)].
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The relaxation parameterθ ∈ (0,1] is chosen to obtain fast convergence. Note
that this algorithm can be generalized in a straightforwardway to handle decompo-
sitions into many subdomains and in higher dimensions, see [10]. This is because,
unlike for the elliptic case, the Neumann step is always well-posed for the heat
equation, even for “floating” subdomains that do not share anedge with∂Ω .

Analysis by Laplace transforms. Our convergenceanalysis is based on the Laplace
transform method. The Laplace transform of a functionu(x, t) with respect to time
is defined as

û(x,s) := L {u(x, t)}=
∫ ∞

0
u(x, t)e−st dt.

In the remainder of the paper, hats will denote the Laplace transform of a function
in time, ands will denote the Laplace variable. Since we are interested inthe error
gk(t)−u(0, t) of the method, it suffices to assume thatv(x), f (x, t),uL(t) anduR(t)
all vanish and study howgk(t) tends to zero ask → ∞. In this case, the NNWR
algorithm can be written in Laplace space as follows: fork= 1,2, . . ., do

1. Dirichlet step:











(s− ∂ 2
x )û

k
1 = 0 on(−b,0),

ûk
1(−b,s) = 0,

ûk
1(0,s) = ĝk−1(s),











(s− ∂ 2
x )û

k
2 = 0 on(0,a),

ûk
2(0,s) = ĝk−1(s),

ûk
2(a, t) = 0.

2. Neumann step:











(s− ∂ 2
x )ψ̂

k
1 = 0 on(−b,0),

ψ̂k
1(−b,s) = 0,

∂xψ̂k
1 = ∂xû

k
1− ∂xû

k
2 onΓ ,











(s− ∂ 2
x )ψ̂

k
2 = 0 on(0,a),

−∂xψ̂k
2 = ∂xû

k
1− ∂xû

k
2 onΓ ,

ψ̂k
2(a,s) = 0.

3. Update step:

ĝk(s) = ĝk−1(s)−θ [ψ̂k
1(0,s)+ ψ̂k

2(0,s)].

Solving the two-point boundary value problems in the Dirichlet step yields

ûk
1(x,s) = ĝk−1(s)

sinh((x+b)
√

s)
sinh(b

√
s)

, ûk
2(x,s) = ĝk−1(s)

sinh((a− x)
√

s)
sinh(a

√
s)

. (1)

The Neumann step can be solved similarly by letting ˆrk(s) := ∂xûk
1(0,s)−∂xûk

2(0,s):

ψ̂k
1(x,s) = r̂k(s)

sinh((x+b)
√

s)√
scosh(b

√
s)

, ψ̂k
2(x,s) = r̂k(s)

sinh((a− x)
√

s)√
scosh(a

√
s)

. (2)

Then the update step becomes

ĝk(s)= ĝk−1(s)−θ [ψk
1(0,s)+ψk

2(0,s)] = ĝk−1(s)−θ
r̂k(s)√

s
[tanh(b

√
s)+ tanh(a

√
s)].
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But

r̂k(s) = ∂xu
k
1(0,s)− ∂xu

k
2(0,s) =

√
sĝk−1(s)

(

cosh(b
√

s)
sinh(b

√
s)

+
cosh(a

√
s)

sinh(a
√

s)

)

.

So we obtain

ĝk(s) = ĝk−1(s)

[

1−θ
(

2+
tanh(a

√
s)

tanh(b
√

s)
+

tanh(b
√

s)
tanh(a

√
s)

)]

. (3)

Note that ifa= b, thenĝk(s) = ĝk−1(s)(1−4θ ),which meansthe method converges
to the exact solution in one iteration forθ = 1/4. Thus, the classical result for
elliptic problems also holds for the time-dependent case. The main result of our
paper concerns the case when the subdomains are unequal, i.e., whena 6= b.

Theorem 1 (Convergence of NNWR).Let θ = 1/4. Then the error of the NNWR
method for two subdomains satisfies

‖gk(·)−u(0, ·)‖L∞(0,∞) ≤
(

(a−b)2

4ab

)k

‖g0(·)−u(0, ·)‖L∞(0,∞). (4)

Moreover, for every finite time interval(0,T), NNWR converges superlinearly with
the estimate

‖gk(·)−u(0, ·)‖L∞(0,T) ≤ e−k2m2/T
(

(a−b)2

ab

)k

‖g0(·)−u(0, ·)‖L∞(0,T), (5)

where m= min{a,b}.

3 Convergence analysis

Since (3) is symmetric with respect toa and b, we will assume without loss of
generality thata> b in the remainder of the paper. Forθ = 1/4, the recurrence (3)
simplifies to give

ĝk(s) =−ĝk−1(s) · sinh2((a−b)
√

s)
sinh(2a

√
s)sinh(2b

√
s)

=: −Y(s)ĝk−1(s), (6)

which impliesĝk(s) = (−1)kYk(s)ĝ0(s). Note that forℜ(s) > 0, we haveY(s) =

O(e−4b|s|1/2
) as|s| → ∞, i.e.,Y(s) decays exponentially as|s| → ∞. Thus, by [3, p.

183],Y(s) is the Laplace transform of a regular functiony1(t). If we now define
yk(t) = L −1{Yk(s)}, then fort ∈ (0,T), we have

|gk(t)|=
∣

∣

∣

∣

∫ t

0
g0(t − τ)yk(τ)dτ

∣

∣

∣

∣

≤ ‖g0‖L∞(0,T)

∫ T

0
|yk(τ)|dτ. (7)
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Thus, to obtainL∞ convergence estimates, we need bounds on
∫ T

0 |yk(τ)|dτ. Our
first step is to show thatyk(t) ≥ 0, for t > 0, which makes bounding its integral
much easier. We start by stating a few elementary propertiesof positive functions
and their Laplace transforms; their proofs follow easily from the definitions.

Lemma 1. Let f and g be positive functions, i.e., f(t) ≥ 0 and g(t) ≥ 0 for t > 0,
and let F(s) = L { f (t)}. Then

(i) For all T > 0,
∫ T

0
| f (τ)|dτ ≤

∫ ∞

0
f (τ)dτ = lim

s→0
F(s).

(ii) ( f ∗g)(t) =
∫ t

0
f (t − τ)g(τ)dτ ≥ 0 for all t > 0.

(iii) ‖ f ∗g‖L1(0,T) ≤ ‖ f‖L1(0,T) · ‖g‖L1(0,T).

Lemma 2. For β > α ≥ 0, let

Q1(s) =
sinh(α

√
s)

sinh(β
√

s)
, Q2(s) =

cosh(α
√

s)
cosh(β

√
s)
.

Then q1(t) = L −1{Q1(s)} and q2(t) = L −1{Q2(s)} are positive functions.

Proof. Forn= 1,2, . . . , let un(x, t) andvn(x, t) be the solutions of the following two
boundary value problems:



















∂tun− ∂ 2
x un = 0 on(0,β ),

un(0, t) = 0,

un(β , t) = fn(t),

un(x,0) = 0,



















∂twn− ∂ 2
x wn = 0 on(−β ,β ),

wn(−β , t) = fn(t),

wn(β , t) = fn(t),

wn(x,0) = 0.

A calculation similar to that in Section 2 shows thatL {un(α, t)}= Q1(s) f̂n(s) and
L {wn(α, t)} = Q2(s) f̂n(s). Moreover, if fn(t) ≥ 0 for all t, then by the maximum
principle, we haveun(α, t) ≥ 0. We now choose a sequence( fn) of positive func-
tions that converges weakly toδ (t); then since eachun(α, t) is positive, we have
un(α, t)→ q1(t)≥ 0. A similar argument shows thatwn(α, t)→ q2(t)≥ 0. ⊓⊔

We now analyze the kernely1(t), with Laplace transformY(s), as defined in (6).

Lemma 3. Let m≥ 1 be the unique integer such that mb< a ≤ (m+ 1)b. Then
Y(s) = V(s)H(s), with V(s) = 1/cosh2(b

√
s) and lims→0H(s) = (a− b)2/4ab.

Moreover, h(t) = L −1{H(s)} is positive, so that y1(t) = (v∗h)(t)≥ 0 for all t > 0.

Proof. Fork< m, we have the identity

sinh2((a− kb)
√

s)−sinh2((a− (k+1)b)
√

s)

=
1
2

[

cosh(2(a− kb)
√

s)−1− cosh(2(a− (k+1)b)
√

s)+1
]

= sinh((2a− (2k+1)b)
√

s)sinh(b
√

s).
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Sincek< m, we have 0< 2a− (2k+1)b< 2a, which gives

sinh2((a− kb)
√

s)
sinh(2a

√
s)sinh(2b

√
s)

=
sinh((2a− (2k+1)b)

√
s)

sinh(2a
√

s)
· sinh(b

√
s)

sinh(2b
√

s)
+

sinh2((a− (k+1)b)
√

s)
sinh(2a

√
s)sinh(2b

√
s)

.

Applying this identity repeatedly fork= 1, . . . ,m−1 gives

Y(s) =
sinh2((a−b)

√
s)

sinh(2a
√

s)sinh(2b
√

s)

=
sinh2((a−mb)

√
s)

sinh(2a
√

s)sinh(2b
√

s)
+

m−1

∑
k=1

sinh((2a− (2k+1)b)
√

s)
sinh(2a

√
s)

· sinh(b
√

s)
sinh(2b

√
s)

=
1

2cosh2(b
√

s)

[

sinh2((a−mb)
√

s)cosh(b
√

s)
sinh(2a

√
s)sinh(b

√
s)

+
m−1

∑
k=1

sinh((2a− (2k+1)b)
√

s)cosh(b
√

s)
sinh(2a

√
s)

]

=
1

4cosh2(b
√

s)

[

sinh((a−mb)
√

s)
sinh(a

√
s)

· sinh((a−mb)
√

s)
sinh(b

√
s)

· cosh(b
√

s)
cosh(a

√
s)
+

m−1

∑
k=1

(

sinh((2a−2kb)
√

s)
sinh(2a

√
s)

+
sinh((2a−2(k+1)b)

√
s)

sinh(2a
√

s)

)]

Let V(s) = 1/cosh2(b
√

s) andH(s) be the rest. Then since 0< a−mb≤ b < a,
we see thatH(s) consists of a sum of products of functions of the formQ1(s) and
Q2(s) in Lemma 2. Thus, its inverse Laplace transformh(t) is positive. Moreover,
sincev(t) = L

−1{V(s)} is also positive by Lemma 2, we see thaty(t) = (v∗h)(t)
is positive. Finally, since lims→0V(s) = 1, we have

lim
s→0

H(s) = lim
s→0

Y(s) = lim
s→0

sinh2((a−b)
√

s)
sinh(2a

√
s)sinh(2b

√
s)

=
(a−b)2

4ab
. ⊓⊔

We are finally ready to prove our main result.

Proof (Theorem 1).According to (7), it suffices to bound
∫ T

0 |yk(τ)|dτ for finite
T > 0 and forT = ∞, whereyk(t) =L −1{Yk(s)}. Sincey1(t) is positive by Lemma
3, so isyk(t), so by Lemma 1(i), we have

∫ ∞

0
|yk(τ)|dτ = lim

s→0
Yk(s) =

( (a−b)2

4ab

)k
,

which shows the linear bound (4). ForT < ∞, let vk(t) = L
−1{Vk(s)} andhk(t) =

L −1{Hk(s)}. Then since
∫ ∞

0 hk(t)dt = lims→0 Hk(s) = (lims→0H(s))k, we have

‖yk‖L1(0,T) ≤ ‖vk‖L1(0,T) · ‖hk‖L1(0,T) ≤
( (a−b)2

4ab

)k∫ T

0
vk(τ)dτ. (8)

To bound the remaining integral, letD(s) = 4ke−2kb
√

s−Vk(s). We will show that
d(t) = L −1{D(s)} ≥ 0. We have
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D(s)= 4ke−2kb
√

s− 22k

(eb
√

s+e−b
√

s)2k
= 4k · (1+e−2b

√
s)2k−1

(eb
√

s+e−b
√

s)2k
= 4k

2k

∑
m=1

(

2k
m

)

e−2bm
√

sVk(s).

From [17], we know thatL −1{e−2bm
√

s} = bm√
πt3

e−b2m2/t is a positive function for

m≥ 1. Sincevk(t) = L −1{Vk(s)} is also positive, we see thatd(t) is in fact a sum
of convolutions of positive functions. Henced(t)≥ 0, as claimed. Thus, we have

∫ T

0
vk(τ)dτ ≤

∫ T

0
(vk(τ)+d(τ))dτ =

∫ T

0
4k kb√

πτ3
e−k2b2/τ dτ = 4kerfc

(

bk√
T

)

.

But erfc(x)≤ e−x2
for all x≥ 0; introducing this into (8) gives the estimate

‖yk‖L1(0,T) ≤
( (a−b)2

ab

)k
erfc

(

bk√
T

)

≤
( (a−b)2

ab

)k
e−k2b2/T ,

which tends to zero ask→ ∞.

4 Numerical experiments

Figure 1 shows the convergence of NNWR for a mildly asymmetric case (a= 0.7,
b= 0.3) and a strongly asymmetric case (a= 0.9, b= 0.1) when applied to a finite-
difference Crank–Nicolson discretization. We see that thebounds in Theorem 1,
while not necessarily sharp, does capture the superlinear convergence of the method.
As the length of the time windowT increases, the error curve approaches the lin-
ear bound, which can be increasing for highly asymmetric problems. In this case,
the error can grow substantially before decreasing to zero superlinearly. Thus, one
should divide up the problem into several small time windowsbefore using NNWR.
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Fig. 1 Convergence curves and their respective bounds for (i)a = 0.7, b = 0.3 and (ii) a = 0.9,
b= 0.1. The solid curves (with markers) denote theL∞ error afterk iterations for the final timeT
indicated, and dotted lines of the same color show the superlinear bound (5) for the sameT. The
linear bound (4) is shown as a solid black line (no markers).
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Convergence estimates for more general decompositions canalso be obtained.
For the 1D heat equation withN subdomains, we have

max
1≤i≤N

‖ek
i ‖L∞(0,T) ≤

(

√
6

1−e−(2k+1)/τ

)2k
e−k2/τ max

1≤i≤N
‖e0

i ‖L∞(0,T), (9)

whereek
i is the error along theith interface at iterationk andτ = T/h2, with h being

the smallest subdomain size. The estimate (9) is also valid for the 2D heat equation
on a rectangular domain decomposed intoN strips. For the proofs of these and
other results, see [10]. Note that asN increases, the subdomain sizeh necessarily
decreases, and the bound (9) shows that the error can increase before superlinear
convergence kicks in, just like in the asymmetric case above. To remedy this, we
recommend using a coarse grid correction, which is the subject of a future paper.
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