Potential Ordering Methods for Nonlinear Solution of Three-Phase Flow in Porous Media

FELIX KWOK

Section de mathématiques University of Geneva <u>Felix.Kwok@unige.ch</u>

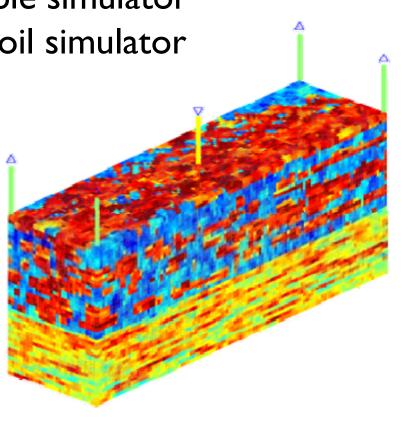
HAMDI TCHELEPI

Energy Resources Engineering Stanford University <u>tchelepi@stanford.edu</u>

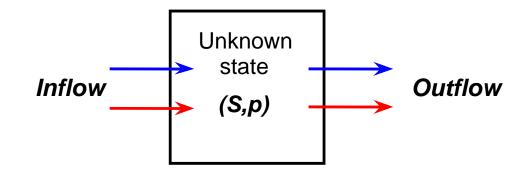
International Conference on Challenges of Porous Media March 14, 2009

Objective

- Build the fastest possible simulator for fully-implicit black oil simulator
- Exploit physics of Darcy flow
- Algorithms should be easy to implement within existing simulators



Black Oil Equations



$$\frac{\partial \left(\phi S_{p}\right)}{\partial t} - \nabla \cdot \left[K\lambda_{p}(S)\nabla \left(P - \gamma_{p}z\right)\right] = q_{p}, \quad p = o, w, g$$

- Mass-balance equations (In out = Accum.)
- Upstream weighting for S
- Implicit time discretization
- Must solve nonlinear system to get S^{n+1} , p^{n+1}

Black Oil Equations

$$\frac{\partial (\phi S_p)}{\partial t} - \nabla \cdot \left[K \lambda_p(S) \nabla (P - \gamma_p z) \right] = q_p, \quad p = o, w, g$$

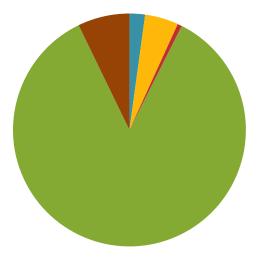
- System of PDEs (one equation per phase)
- Pressure-driven flow
- Heterogeneous media
- Nonlinear coupling between flow and transport
- Non-convex (and possibly non-monotonic) flux functions
- External forces (gravity)

Where does all the time go?

- Bottlenecks:
 - Solution of large nonlinear systems due to time-implicit discretization
 - Solution of linear systems (Newton's method)

Simulation time

(2-phase, I million grid blocks)



Prop. Calc. (2%)
Linearization (5%)
Newton Update (1%)
Solver Iter. (85%)
Misc. (7%)

- Nonlinear solver:
 - Newton's method is locally quadratically convergent, BUT...
 - May diverge if initial guess is poor.
 - Can use previous time step as initial guess
 - Restriction on Δt
 - Want to choose Δt based on accuracy, not stability of nonlinear solver

What are the challenges?

- Linear solver:
 - Jacobians for fully-implicit discretizations are highly non-symmetric, indefinite and ill-conditioned
 - Operator contains both elliptic (pressuredriven flow) and hyperbolic (transport) components
 - Standard preconditioning techniques (ILU, multigrid, SPAI) are inadequate

Key Observations

- Two different mechanisms
- Flow:
 - Pressure driven
 - Globally coupled via elliptic PDE
- Transport:
 - Directional, based on pressure field
 - Acyclic: edges always go from high to low pressure
 - Upstream weighting allows partial decoupling of nonlinear system

Outline

- Potential ordering
- Application to nonlinear solver:
 - Reduced-order Newton method
- Application to linear solver:
 - Ordering for CPR preconditioner

O POTENTIAL ORDERING

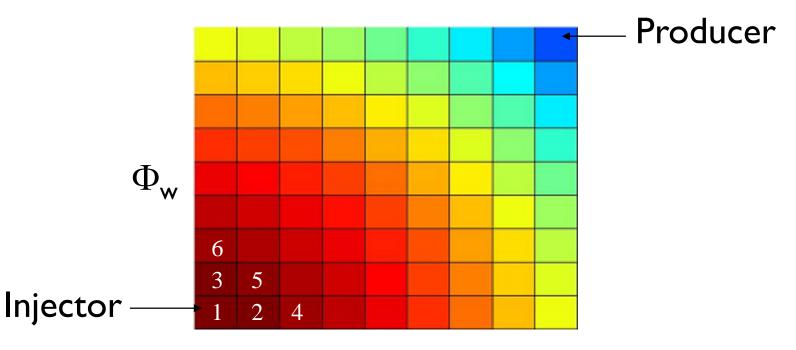
Jacobian Matrix

• Three-phase flow:

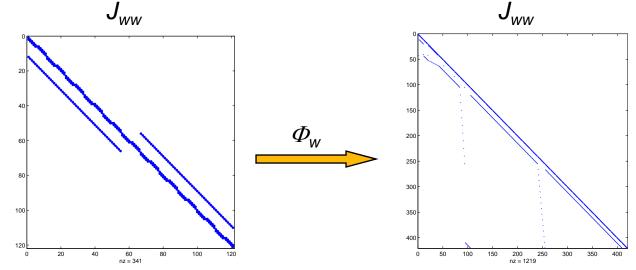
$$\begin{bmatrix} S_{w} & S_{g} & p \\ W & \begin{bmatrix} J_{ww} & \mathbf{0} & J_{wp} \\ J_{ow} & J_{og} & J_{op} \\ J_{gw} & J_{gg} & J_{gp} \end{bmatrix} \begin{bmatrix} \delta S_{w} \\ \delta S_{g} \\ \delta p \end{bmatrix} = - \begin{bmatrix} R_{w} \\ R_{o} \\ R_{g} \end{bmatrix}$$

- Water component independent of gas phase
- Reorder to make J_{ww} and J_{og} lower triangular (possible because of upstream differencing)
- Ordering for water and oil can be different

Use flow directions to reorder equations and variables:

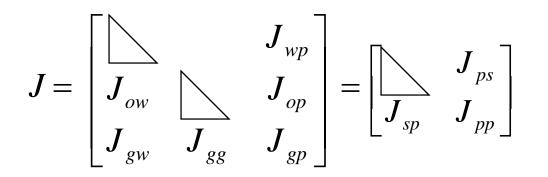


• Order the water equations and S_w by decreasing Φ_w :



• Use Φ_0 to order oil equations and S_g

• After reordering:



(Note: J_{ow} may not be triangular!)

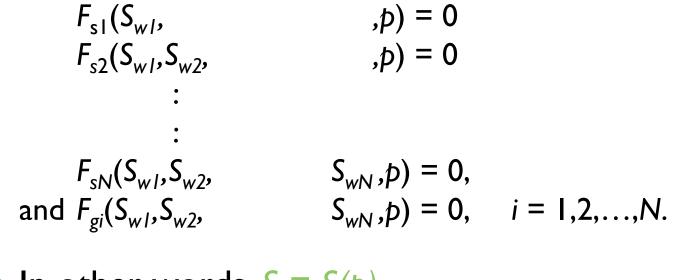
Once pressure is known, back substitute to get saturations

- Triangulation possible for any flow configuration:
 - Cocurrent flow
 - Countercurrent flow due to buoyancy
 - Countercurrent flow due to <u>capillarity</u>
 - Two- or three-phase flow
- Ordering ideas studied in:
 - Multiphase flow: Appleyard & Cheshire (1980), Natvig et al. (2006)
 - Navier-Stokes: Chin et al. (1992), Meister & Vömel (2001)

REDUCED-ORDER NEWTON METHOD

^°

If pressure is known, J_{ss} lower triangular
 ⇒We can solve F_s(S,p) = 0 for S one unknown at a time.



> In other words, S = S(p).

• Solve the remaining $N \times N$ system

 $F_g(S(p),p)=0$

for pressure *p* using Newton's method

- Advantages:
 - > Reduces order by a factor of N_p (= no. of phases)
 - >Retains quadratic convergence
 - Resolves strongest nonlinearity during back substitution

Reduced Newton – Algorithm

- While not converged, do:
 - I. Compute cell ordering for each phase p = w, o, g;

2. Evaluate Jacobian
$$J = \begin{bmatrix} J_{ss} & J_{sp} \\ J_{ps} & J_{pp} \end{bmatrix}$$
 at (S (p^k), p^k);

3. Solve
$$(J_{pp} - J_{ps} J_{ss}^{-1} J_{sp}) \delta p^k = -r^k;$$

- 4. Compute $p^{k+1} = p^k + \delta p^k$;
- 5. Update $S^{k+1} = S(p^{k+1})$ nonlinearly by solving $F_s(S^{k+1}, p^{k+1})$ one variable at a time.

Comparisons

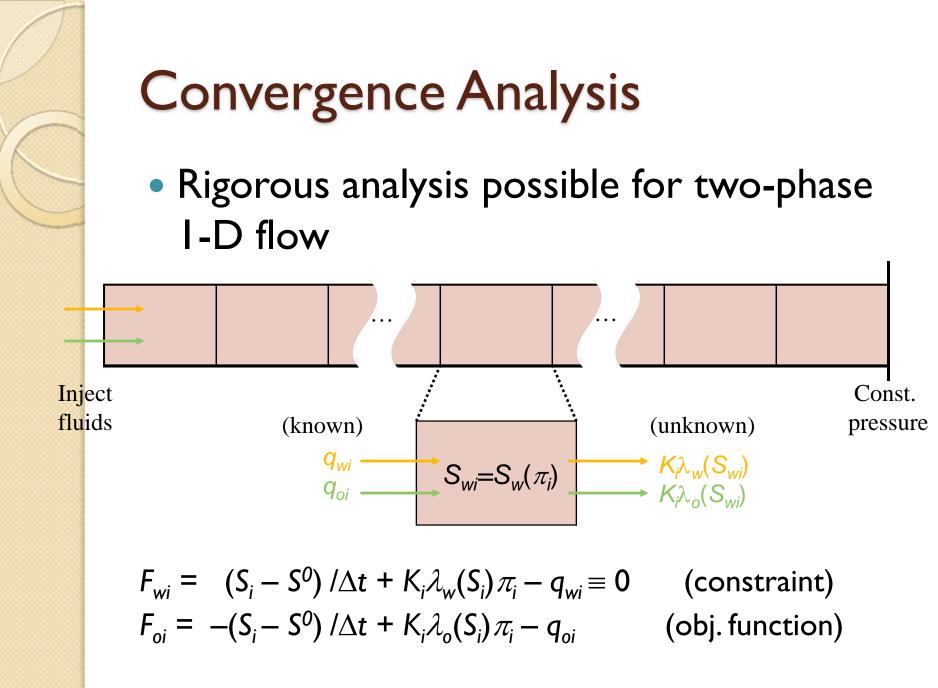
Reduced Newton

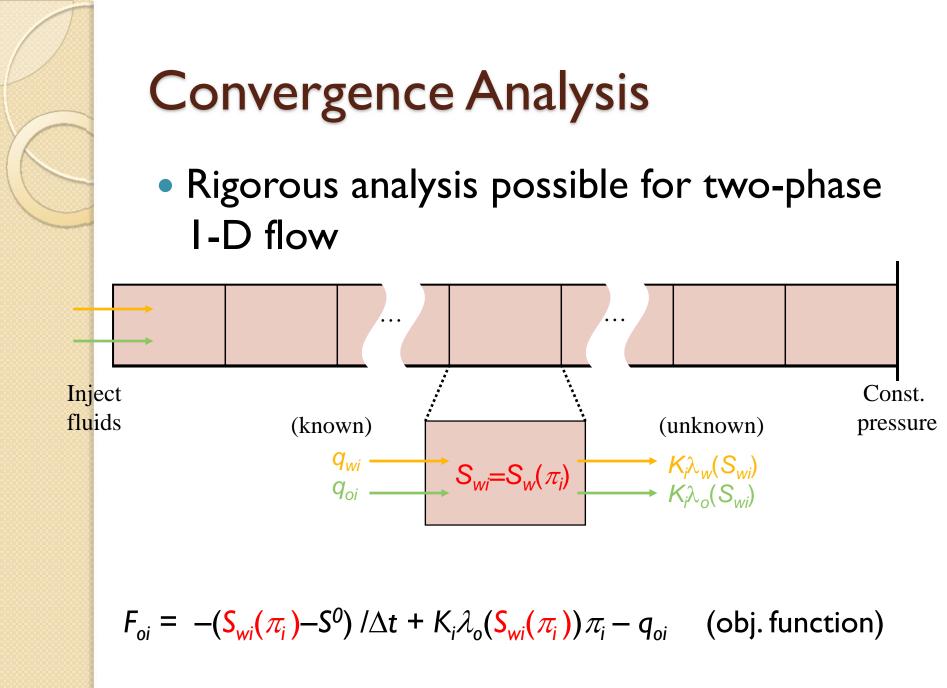
- Full coupling between saturation and pressure
- Exact mass conservation for all phases, for any Δt

 Saturations calculated by single-cell solves, one unknown at a time

Seq. Implicit Method

- Frozen total velocity field
- Mass-balance errors that grow with *∆t* for some phases (see Aziz & Settari)
- Globally coupled saturation solves (when countercurrent flow is present)





Convergence Analysis

- Analysis based on convexity of reduced objective function
- Cocurrent flow:
 - Global convergence for arbitrary Δt
 - Proof uses convexity of objective function
- Countercurrent flow:
 - Convergence when gravity effects are moderate:

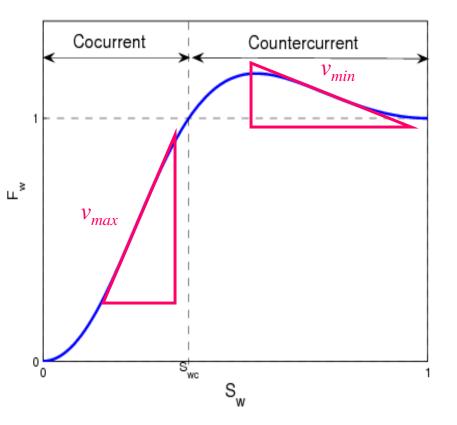
$$\Delta t \cdot |v_{\min}| < \Delta x$$

Convergence Analysis

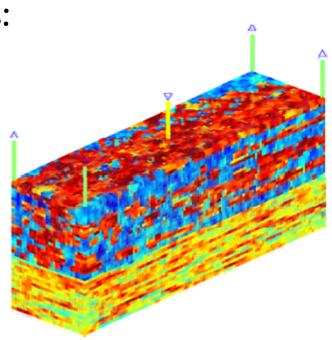
Convergence when

 $\Delta t \cdot \left| v_{\min} \right| < \Delta x$

- Generally less severe than forward CFL
- For strong gravity, hybridize the method



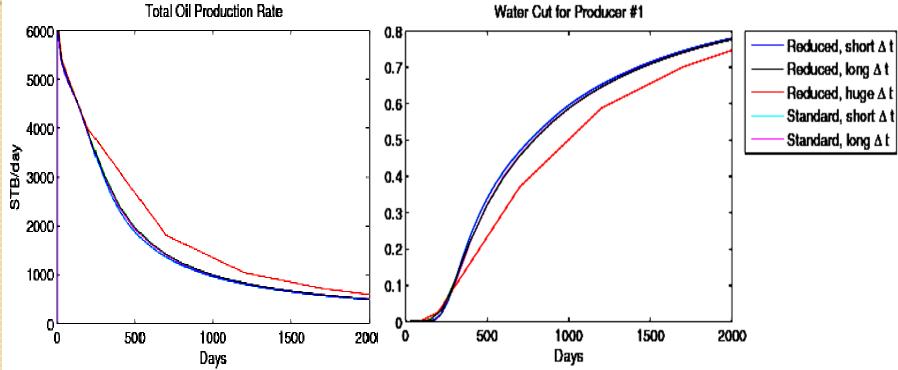
- Fine scale SPE 10 problem
- $60 \times 220 \times 85 = 1.12$ million cells
- Spatially-varying porosity & permeability fields
- Three time-stepping strategies:
 - $\Delta t = 0.0183 \text{ PVI (short)}$
 - $\Delta t = 0.0366 \text{ PVI} \text{ (medium)}$
 - $\Delta t = 0.183 \text{ PVI}$ (long)
- Matching densities: $\rho_{\rm o} = \rho_{\rm w}$



	Standard				
	Short	Medium	Short	Medium	Long
# Time steps	58	38	53	26	11
# Newton steps	233	176	128	90	55
# Linear solves	2958	2323	2271	2399	1805
# Time step cuts	6	17	0	0	0
# Wasted lin. solves	860	3934	0	0	0
Total time (sec):	24053	37388	16558	14727	10275
Linear solves	22570	35457	11697	11301	7899
Single-cell solves	0	0	4194	2996	2132

	Standard				
	Short	Medium	Short	Medium	Long
# Time steps	58	38	53	26	11
# Newton steps	233	176	128	90	55
# Linear solves	2958	2323	2271	2399	1805
# Time step cuts	6	17	0	0	0
# Wasted lin. solves	860	3934	0	0	0
Total time (sec):	24053	37388	16558	14727	10275
Linear solves	22570	35457	11697	11301	7899
Single-cell solves	0	0	4194	2996	2132

	Standard				
	Short	Medium	Short	Medium	Long
# Time steps	58	38	53	26	11
# Newton steps	233	176	128	90	55
# Linear solves	2958	2323	2271	2399	1805
# Time step cuts	6	17	0	0	0
# Wasted lin. solves	860	3934	0	0	0
Total time (sec):	24053	37388	16558	14727	10275
Linear solves	22570	35457	11697	11301	7899
Single-cell solves	0	0	4194	2996	2132



More Examples

• CPR WITH POTENTIAL ORDERING

Linear Solvers

- Direct solvers are slow for large problems due to fill-in entries
- Off-the-shelf preconditioners do not work well with multiphase flow problems:
 - ILU: Slow for elliptic subproblem
 - AMG: Does not work well for transport problem
 - AINV: Does not work for matrices whose inverses have many dense entries

Multistage Preconditioners

• Two-stage preconditioner:

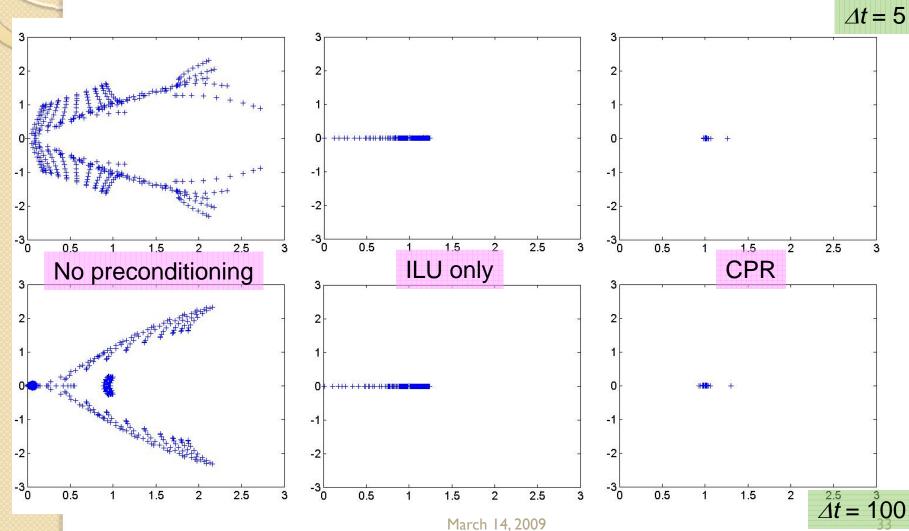
$$M_{1,2}^{-1} = M_2^{-1}(I - AM_1^{-1}) + M_1^{-1}$$

• Works well when M_1 and M_2 approximate different parts of the spectrum of A, since

$$I - AM_{1,2}^{-1} = (I - AM_2^{-1})(I - AM_1^{-1})$$

- Especially well-suited for problems of mixed character, e.g. multiphase flow problem:
 - M_1 : Flow problem (AMG on pressure matrix)
 - M_2 : Transport problem (ILU on full matrix)
- Constrained pressure residual method (Wallis 1983)

CPR vs. ILU



CPR with Potential Ordering

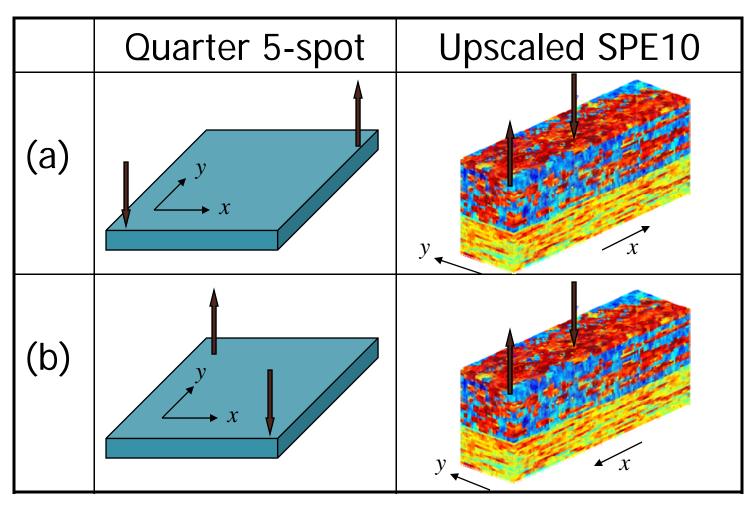
- Quality of second-stage ILU varies with ordering of equations/variables
- Exploit flow direction information:
 - M_1^{-1} : same as CPR (get approximate p)
 - *M*₂⁻¹: BILU(0) on *reordered* matrix, from upstream to downstream

CPR with Potential Ordering

I. Factorization is exact on the saturation part:

$$LU - A = \begin{bmatrix} 0 & E_{ps} \\ 0 & E_{pp} \end{bmatrix}$$

- > Optimal choice of M_2 (since M_1 is exact on pressure)
- 2. Factorization is invariant over different potential orderings
- Reduced sensitivity over flow configurations



March 14, 2009

Results – Quarter 5-spot

	Confi	g. (a)	Config. (b)		
	Natural Ordering	Potential Ordering	Natural Ordering	Potential Ordering	
# Time steps	21	21	21	21	
# Newton steps	80	80	80	80	
# GMRES iterations	254	254	346	246	
# AMG V-cycles	286	286	368	274	
Total running time (s)	1.37	1.45	1.49	1.43	

Results – Upscaled SPE 10

	Confi	g. (a)	Config. (b)		
	Natural Ordering	Potential Ordering	Natural Ordering	Potential Ordering	
# Time steps	37	37	37	37	
# Newton steps	106	106	106	106	
# GMRES iterations	389	349	447	351	
# AMG V-cycles	524	502	570	504	
Total running time (s)	595.99	614.37	630.55	616.21	

Conclusions

- Flow-based ordering allows:
 - Partial decoupling of saturation equations (both linear and nonlinear)
 - Rigorous convergence analysis based on convexity arguments
 - Improvements in quality of CPR preconditioner
- Reduced Newton method:
 - Retains local quadratic convergence
 - Converges for much larger *At* than standard Newton and avoids time step cuts
 - Works for complicated, large-scale problems

Ongoing work

- Derive effective hybridization criteria to handle strong countercurrent flow
- Extend framework to handle IMPSAT-based AIM formulations
- Spectral analysis of CPR preconditioner with ordering, esp. its sensitivity with respect to Δt

References

- I. Kwok, F. and Tchelepi, H. Potential-based Reduced Newton algorithm for nonlinear multiphase flow in porous media. J. Comput. Phys., 227:706–727, 2007.
- 2. Kwok, F. Scalable Linear and Nonlinear Algorithms for Multiphase Flow in Porous Media. PhD thesis, Stanford University, Stanford, CA, December 2007.