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Objective
Build the fastest possible simulator 
for fully-implicit black oil simulator

Exploit physics of 
Darcy flow
Algorithms should be 
easy to implement 
within existing 
simulators
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Black Oil Equations

Mass-balance equations (In – out = Accum.)
Upstream weighting for S
Implicit time discretization
Must solve nonlinear system to get Sn+1, pn+1
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Black Oil Equations

System of PDEs (one equation per phase)
Pressure-driven flow
Heterogeneous media
Nonlinear coupling between flow and transport
Non-convex (and possibly non-monotonic) flux 
functions
External forces (gravity)
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Where does all the time go?

Bottlenecks:
◦ Solution of large 

nonlinear systems due 
to time-implicit 
discretization
◦ Solution of linear 

systems (Newton’s 
method)

Simulation time
(2-phase, 1 million grid 

blocks)

Prop. Calc. (2%)
Linearization (5%)
Newton Update (1%)
Solver Iter. (85%)
Misc. (7%)
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What are the challenges?

Nonlinear solver:
◦ Newton’s method is locally quadratically

convergent,  BUT…
◦ May diverge if initial guess is poor.
◦ Can use previous time step as initial guess
◦ Restriction on ∆t
◦ Want to choose ∆t based on accuracy, not 

stability of nonlinear solver
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What are the challenges?

Linear solver:
◦ Jacobians for fully-implicit discretizations are 

highly non-symmetric, indefinite and ill-conditioned
◦ Operator contains both elliptic (pressure-

driven flow) and hyperbolic (transport) 
components
◦ Standard preconditioning techniques (ILU, 

multigrid, SPAI) are inadequate
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Key Observations
Two different mechanisms
Flow:
◦ Pressure driven
◦ Globally coupled via elliptic PDE
Transport:
◦ Directional, based on pressure field
◦ Acyclic: edges always go from high to low 

pressure
◦ Upstream weighting allows partial decoupling 

of nonlinear system
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Outline

Potential ordering
Application to nonlinear solver:
◦ Reduced-order Newton method

Application to linear solver:
◦ Ordering for CPR preconditioner
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POTENTIAL ORDERING
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Jacobian Matrix
Three-phase flow:

Water component independent of gas phase
Reorder to make Jww and Jog lower triangular 
(possible because of upstream differencing)
Ordering for water and oil can be different
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Potential Ordering
Use flow directions to reorder equations and 
variables:
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Potential Ordering

Order the water equations and Sw by decreasing 
Φw:

Use Φo to order oil equations and Sg
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Potential Ordering
After reordering:

(Note: Jow may not be triangular!)
Once pressure is known, back substitute to get 
saturations
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Potential Ordering
Triangulation possible for any flow configuration:
◦ Cocurrent flow
◦ Countercurrent flow due to buoyancy
◦ Countercurrent flow due to capillarity
◦ Two- or three-phase flow

Ordering ideas studied in:
◦ Multiphase flow:  Appleyard & Cheshire (1980), Natvig

et al. (2006)
◦ Navier-Stokes: Chin et al. (1992), Meister & Vömel

(2001)
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REDUCED-ORDER 
NEWTON METHOD
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Reduced Newton Iteration

If pressure is known, Jss lower triangular 
⇒We can solve Fs(S,p) = 0 for S one unknown at 

a time.

Fs1(Sw1, ,p) = 0
Fs2(Sw1,Sw2, ,p) = 0

:
:

FsN(Sw1,Sw2, SwN ,p) = 0,
and Fgi(Sw1,Sw2, SwN ,p) = 0,     i = 1,2,…,N.

In other words, S = S(p).
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Reduced Newton Iteration
Solve the remaining N × N system

Fg (S (p), p) = 0
for pressure p using Newton’s method
Advantages:

Reduces order by a factor of Np (= no. of phases)
Retains quadratic convergence
Resolves strongest nonlinearity during back 
substitution
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Reduced Newton – Algorithm
While not converged, do:

1. Compute cell ordering for each phase p = w, o, g;

2. Evaluate Jacobian at (S (pk), pk );

3. Solve (Jpp – Jps Jss–1 Jsp) δpk = -rk ;
4. Compute pk+1 = pk + δpk ;
5. Update Sk+1 = S (pk+1) nonlinearly by solving 

Fs(Sk+1,pk+1) one variable at a time.
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Comparisons

Reduced Newton

Full coupling between 
saturation and pressure

Exact mass conservation 
for all phases, for any Δt

Saturations calculated by 
single-cell solves, one 
unknown at a time

Seq. Implicit Method

Frozen total velocity field

Mass-balance errors that 
grow with Δt for some 
phases (see Aziz & Settari)

Globally coupled 
saturation solves (when 
countercurrent flow is 
present)
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Convergence Analysis

Rigorous analysis possible for two-phase 
1-D flow
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Inject 
fluids

Const. 
pressure

… …

Swi=Sw(πi)
qwi
qoi
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(known) (unknown)

Fwi =   (Si – S0) /Δt + Kiλw(Si)πi – qwi ≡ 0      (constraint)
Foi =  –(Si – S0) /Δt + Kiλo(Si)πi – qoi (obj. function)
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Convergence Analysis
Analysis based on convexity of reduced 
objective function
Cocurrent flow:
◦ Global convergence for arbitrary Δt
◦ Proof uses convexity of objective function

Countercurrent flow:
◦ Convergence when gravity effects are moderate:

March 14, 2009 23

xvt Δ<⋅Δ min



Convergence Analysis

Convergence when

Generally less severe 
than forward CFL
For strong gravity, 
hybridize the method
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Large Heterogeneous Example

Fine scale SPE 10 problem
60 × 220 × 85 = 1.12 million cells
Spatially-varying porosity & permeability fields
Three time-stepping strategies:
◦ Δt = 0.0183 PVI (short)
◦ Δt = 0.0366 PVI (medium)
◦ Δt = 0.183 PVI (long)
Matching densities: ρo = ρw
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Large Heterogeneous Example

Standard Reduced

Short Medium Short Medium Long

# Time steps 58 38 53 26 11

# Newton steps 233 176 128 90 55

# Linear solves 2958 2323 2271 2399 1805

# Time step cuts 6 17 0 0 0

# Wasted lin. solves 860 3934 0 0 0

Total time (sec): 24053 37388 16558 14727 10275

Linear solves 22570 35457 11697 11301 7899

Single-cell solves 0 0 4194 2996 2132
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Large Heterogeneous Example
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More Examples



CPR WITH POTENTIAL 
ORDERING
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Linear Solvers
Direct solvers are slow for large problems due 
to fill-in entries
Off-the-shelf preconditioners do not work well 
with multiphase flow problems:
◦ ILU: Slow for elliptic subproblem
◦ AMG: Does not work well for transport problem
◦ AINV: Does not work for matrices whose inverses 

have many dense entries
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Multistage Preconditioners
Two-stage preconditioner:

M1,2
-1 = M2

-1(I – AM1
-1) + M1

-1

Works well when M1 and M2 approximate different 
parts of the spectrum of A, since

I – AM1,2
-1 = (I – AM2

-1)(I – AM1
-1)

Especially well-suited for problems of mixed character, 
e.g. multiphase flow problem:
◦ M1 : Flow problem (AMG on pressure matrix)
◦ M2 : Transport problem (ILU on full matrix)
Constrained pressure residual method (Wallis 1983)
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CPR vs. ILU
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No preconditioning ILU only CPR

Δt = 5

Δt = 100



CPR with Potential Ordering

Quality of second-stage ILU varies with 
ordering of equations/variables

Exploit flow direction information:
◦ M1

-1: same as CPR (get approximate p)
◦ M2

-1: BILU(0) on reordered matrix, from upstream to 
downstream
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CPR with Potential Ordering

1. Factorization is exact on the saturation part:

Optimal choice of M2 (since M1 is exact on pressure)

2. Factorization is invariant over different 
potential orderings
Reduced sensitivity over flow configurations
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Test Cases
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Results – Quarter 5-spot

Config. (a) Config. (b)

Natural 
Ordering

Potential 
Ordering

Natural 
Ordering

Potential 
Ordering

# Time steps 21 21 21 21

# Newton steps 80 80 80 80

# GMRES iterations 254 254 346 246

# AMG V-cycles 286 286 368 274

Total running time (s) 1.37 1.45 1.49 1.43
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Results – Upscaled SPE 10

Config. (a) Config. (b)

Natural 
Ordering

Potential 
Ordering

Natural 
Ordering

Potential 
Ordering

# Time steps 37 37 37 37

# Newton steps 106 106 106 106

# GMRES iterations 389 349 447 351

# AMG V-cycles 524 502 570 504

Total running time (s) 595.99 614.37 630.55 616.21
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Conclusions
Flow-based ordering allows:
◦ Partial decoupling of saturation equations (both linear 

and nonlinear)
◦ Rigorous convergence analysis based on convexity 

arguments
◦ Improvements in quality of CPR preconditioner
Reduced Newton method:
◦ Retains local quadratic convergence
◦ Converges for much larger Δt than standard Newton 

and avoids time step cuts
◦ Works for complicated, large-scale problems
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Ongoing work
Derive effective hybridization criteria to handle strong 
countercurrent flow
Extend framework to handle IMPSAT-based AIM 
formulations
Spectral analysis of CPR preconditioner with ordering, 
esp. its sensitivity with respect to Δt 
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