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Objective

¢ Build the fastest possible simulator
for fully-implicit black oil simulator

* Exploit physics of
Darcy flow

* Algorithms should be
easy to implement
within existing
simulators




Black Qil Equations
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* Mass-balance equations (In — out = Accum.)

o Upstream weighting for S

 Implicit time discretization

» Must solve nonlinear system to get S"*!, p*|



Black Qil Equations
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» System of PDEs (one equation per phase)

* Pressure-driven flow

e Heterogeneous media

e Nonlinear coupling between flow and transport

* Non-convex (and possibly non-monotonic) flux
functions

* External forces (gravity)



Where does all the time go?

e Bottlenecks:

o Solution of large
nonlinear systems due
to time-implicit
discretization

o Solution of linear
systems (Newton’s
method)
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Simulation time
(2-phase, | million grid
blocks)

® Prop. Calc. (2%)
Linearization (5%)

B Newton Update (1%)

m Solver Iter. (85%)

m Misc. (7%)



What are the challenges?

e Nonlinear solver:

> Newton’s method is locally quadratically
convergent, BUT...

> May diverge if initial guess is poor.
> Can use previous time step as initial guess
> Restriction on At

> Want to choose At based on accuracy, not
stability of nonlinear solver



What are the challenges?

e Linear solver:
> Jacobians for fully-implicit discretizations are
highly non-symmetric, indefinite and ill-conditioned

> Operator contains both elliptic (pressure-
driven flow) and hyperbolic (transport)
components

> Standard preconditioning techniques (ILU,
multigrid, SPAl) are inadequate



Key Observations

e Two different mechanisms

* Flow:
° Pressure driven
> Globally coupled via elliptic PDE

* Transport:
> Directional, based on pressure field

> Acyclic: edges always go from high to low
pressure

> Upstream weighting allows partial decoupling
of nonlinear system



Qutline

* Potential ordering

» Application to nonlinear solver:
° Reduced-order Newton method

» Application to linear solver:
° Ordering for CPR preconditioner



> POTENTIAL ORDERING



Jacobian Matrix

e Three-phase flow:
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* Water component independent of gas phase

* Reorder to make J,,, and J,, lower triangular
(possible because of upstream differencing)

* Ordering for water and oil can be different



Potential Ordering

* Use flow directions to reorder equations and

variables:
1— Producer

Injector




Potential Ordering

e Order the water equations and S, by decreasing

J
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* Use @, to order oil equations and §,



Potential Ordering

» After reordering;
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(Note: J , may not be triangular!)

* Once pressure is known, back substitute to get
saturations



Potential Ordering

e Triangulation possible for any flow configuration:
> Cocurrent flow
> Countercurrent flow due to buoyancy
> Countercurrent flow due to
> Two- or three-phase flow

e Ordering ideas studied in:

o Multiphase flow: Appleyard & Cheshire (1980), Natvig
et al. (2006)

> Navier-Stokes: Chin et al. (1992), Meister & Vomel
(2001)



> REDUCED-ORDER
NEWTON METHOD



Reduced Newton lteration

o If pressure is known, J . lower triangular
—WVe can solve F(S,p) =0 for §

Foi(Sy s p)=0
sZ(SwI w2 p)=0
sN(SwI w2’ SwN ’P) = O’
and F(S,,,5,2 S.nsp)=0, i=12,..,N.

> In other words,



Reduced Newton lteration

* Solve the remaining N x N system

F, S (p).p) =0
for pressure p using Newton’s method

e Advantages:
»Reduces order by a factor of N,, (= no. of phases)
»Retains quadratic convergence

»Resolves strongest nonlinearity during back
substitution



Reduced Newton — Algorithm

*  While not converged, do:

I. Compute cell ordering for each phase p = w, 0, g;

2. Evaluate Jacobian J = {Jss :]]Sp} at (S (pY), p¥);

JPS Pp
3. Solve (fpp = Jps s~ Jyy) Ok = 1%
4. Compute pk*I = pk + gpk;

5. Update Sk*! = § (pk*1) by solving
FLSE P



Comparisons

Reduced Newton Seq. Implicit Method
e Full coupling between * Frozen total velocity field
saturation and pressure
e Exact mass conservation e Mass-balance errors that
for all phases, for any At grow with At for some

phases (see Aziz & Settari)

 Saturations calculated by e Globally coupled
single-cell solves, one saturation solves (when
unknown at a time countercurrent flow is

present)



Convergence Analysis

 Rigorous analysis possible for two-phase
|-D flow

Inject Const.
fluids (known) i : (unknown) pressure

Swi=Sw(7)

F.= (5—S9/At+KA,(S)7—q,,=0  (constraint)

wi

F.= —(S;— SO JAt + KA(S)7 - q,, (obj. function)

o)



Convergence Analysis

 Rigorous analysis possible for two-phase

|-D flow

Inject
fluids (known)

Foi = —(5,{(m)-S% At +

Syi=Sw(7)

Kido(5,i(7)) 75— q,;

(unknown)

Const.
pressure

(obj. function)



Convergence Analysis

* Analysis based on convexity of reduced
objective function

e Cocurrent flow:
> Global convergence for arbitrary At

> Proof uses convexity of objective function

e Countercurrent flow:

o Convergence when gravity effects are moderate:

At '|Vmin‘ < AX




Convergence Analysis

e Convergence when

|
At ) ‘Vmin| < AX < Cocurrent }l{ Countercurrent

Vmin

* Generally less severe ']
than forward CFL

e For strong gravity, v
hybridize the method
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Large Heterogeneous Example

 Fine scale SPE |0 problem
e 60 x 220 x 85 = 1.12 million cells
e Spatially-varying porosity & permeability fields
* Three time-stepping strategies:
> At = 0.0183 PVI (short) ¢
> At = 0.0366 PVI (medium) T
> At = 0.183 PVI (long)

e Matching densities: p, = p,,




Large Heterogeneous Example

Standard Reduced
Short | Medium | Short | Medium | Long
# Time steps 58 38 53 26 11
# Newton steps 233 176 128 90 55
# Linear solves 2958 2323 | 2271 2399 | 1805
# Time step cuts 6 17 0 0 0
# Wasted lin. solves 860 3934 0 0 0
Total time (sec): 24053 | 37388 | 16558 | 14727 | 10275
Linear solves 22570 | 35457 | 11697 | 11301| 7899
Single-cell solves 0 0| 4194 2996 | 2132
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Large Heterogeneous Example
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> CPRWITH POTENTIAL
ORDERING



Linear Solvers

e Direct solvers are slow for large problems due
to fill-in entries

e Off-the-shelf preconditioners do not work well
with multiphase flow problems:
o ILU: Slow for elliptic subproblem
> AMG: Does not work well for transport problem

o AINV: Does not work for matrices whose inverses
have many dense entries



Multistage Preconditioners

e Two-stage preconditioner:
My =My (=AM ) + M
* Works well when M, and M, approximate different
parts of the spectrum of A, since

* Especially well-suited for problems of mixed character,
e.g. multiphase flow problem:

> M, : Flow problem (AMG on pressure matrix)
> M, :Transport problem (ILU on full matrix)

e Constrained pressure residual method (Wallis 1983)



CPR vs. ILU
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CPR with Potential Ordering

e Quality of second-stage ILU varies with
ordering of equations/variables

* Exploit flow direction information:
> M, same as CPR (get approximate p)

> M, ": BILU(0) on matrix, from upstream to
downstream



CPR with Potential Ordering

I. Factorization is exact on the saturation part:
0 E
LU - A= >
{O EDJ
Optimal choice of M, (since M, is exact on pressure)

2. Factorization is invariant over different
potential orderings

Reduced sensitivity over flow configurations



Test Cases

Quarter 5-spot Upscaled SPE10

(b)
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Results — Quarter 5-spot

Config. (a) Config. (b)

Natural | Potential | Natural | Potential

Ordering | Ordering | Ordering | Ordering
# Time steps 21 21 21 21
# Newton steps 80 80 80 80
# GMRES iterations 254 254 346 246
# AMG V-cycles 286 286 368 274
Total running time (s) 1.37 1.45 1.49 1.43




Results — Upscaled SPE |0

Config. (a) Config. (b)

Natural | Potential | Natural | Potential

Ordering | Ordering | Ordering | Ordering
# Time steps 37 37 37 37
# Newton steps 106 106 106 106
# GMRES iterations 389 349 447 351
# AMG V-cycles 524 502 570 504
Total running time (s) 595.99 614.37 630.55 616.21




Conclusions

* Flow-based ordering allows:

° Partial decoupling of saturation equations (both linear
and nonlinear)

> Rigorous convergence analysis based on convexity
arguments

> Improvements in quality of CPR preconditioner

e Reduced Newton method:

> Retains local quadratic convergence

> Converges for much larger At than standard Newton
and avoids time step cuts

> Works for complicated, large-scale problems



Ongoing work

e Derive effective hybridization criteria to handle strong
countercurrent flow

e Extend framework to handle IMPSAT-based AIM
formulations

e Spectral analysis of CPR preconditioner with ordering,
esp. its sensitivity with respect to At
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