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Abstract. Phase-based upstreaming, which is a commonly used spatial discretization for mul-
tiphase flow in reservoir simulation, naturally gives rise to implicit monotone schemes when implicit
time-stepping is used. The nonlinear Gauss-Seidel and Jacobi algorithms are shown to converge to a
unique bounded solution when applied to the resulting system of equations. Thus, for 1D problems,
we obtain an alternate, constructive proof that such schemes are well-defined and converge to the
entropy solution of the conservation law for arbitrary CFL numbers. The accuracy of phase-based
upstream solutions is studied for various spatial and temporal grids, revealing the importance of
unconditional stability when non-uniform grids and/or variable porosity is involved.
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1. Introduction. In the simulation of multiphase flow in petroleum reservoirs,
the most commonly used model consists of a system of n conservation laws, where
n is the number of immiscible fluid phases. Each conservation law is defined for all
x ∈ Ω ⊂ R

k (1 ≤ k ≤ 3) and has the form

∂(φρjSj)

∂t
+ ∇ · (ρjvj) = ρjqj , j = 1, . . . , n, (1.1)

where φ = φ(x) is the porosity of the medium (with 0 < φmin ≤ φ ≤ 1), K =
K(x) ≥ Kmin > 0 is the absolute permeability; for each phase j, Sj = Sj(x, t) is
the saturation (i.e., the volume fraction occupied by phase j in the neighborhood of
x), ρj > 0 is the density, qj = qj(x) is the source or sink term, and vj is the phase
velocity, which is given by generalized Darcy’s law:

vj = −Kλj [∇pj − ρjg] . (1.2)

Here λj = λj(S1, . . . , Sn) is the phase mobility, pj is the phase pressure, and g ∈ R
k

is a constant vector representing the gravitational acceleration. In addition, we have
the following algebraic relations:

Saturation constraint:
∑

Sj = 1, (1.3)

Capillary pressure constraint: pj − pj+1 = Pcj(S1, . . . , Sn), j = 1, . . . , n − 1.
(1.4)

In this paper we restrict our attention to incompressible flow with zero capillarity,
i.e., we assume that the densities ρj are constant with respect to time and space, and
that p1 = · · · = pn ≡ p. The resulting system of PDEs exhibits a mixed hyperbolic-
parabolic character, which becomes apparent when we consider the various limiting
cases. If we multiply (1.1) by 1/ρj and sum over j = 1, . . . , N , we obtain

∑

j ∇·vj =
∑

j qj , where the ∂/∂t terms cancel because of the saturation constraint. We have

−∇ ·
[

KλT∇p − Kg
∑

jλjρj

]

=
∑

jqj , (1.5)

where λT =
∑

j λj is the total mobility, which is assumed to be positive and uniformly
bounded away from zero. Thus, for a given saturation distribution, the pressure field
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satisfies an elliptic PDE. On the other hand, if we define the total velocity vT by
vT =

∑

j vj , we can rewrite vj as

vj =
λj

λT
[vT − Kg

∑

`λ`(ρ` − ρj)] . (1.6)

This means when vT is constant over time (which is the case for flow in a 1D porous
medium), the phase velocities vj become functions of x and S1, . . . , Sn only, so when
we substitute (1.6) into (1.1), we get

φ
∂Sj

∂t
+ ∇ · vj(x, S1, . . . , Sn) = 0, j = 1, . . . , n − 1. (1.7)

As a result, saturation behaves like the solution to a system of first-order hyperbolic
conservation laws, so one should expect discontinuous saturation profiles. In higher
dimensions, vT generally varies over time, and a strong coupling exists between pres-
sure and saturation because of the saturation dependence of λj and λT in (1.5), as
well as the dependence of vT on the pressure field. However, one can still observe the
same kind of discontinuities in the saturation profile in such cases.

The vastly different behavior between saturation and pressure means these vari-
ables need to be treated differently in a numerical method. The shock-forming nature
of (1.7) requires the use of a finite-volume method, whereas the elliptic nature of (1.5)
means pressure variables must be treated implicitly to avoid a time step restriction
of the form ∆t = O(∆x2). One can treat saturation variables either explicitly, for
which a CFL condition of the form ∆t = O(∆x) applies, or implicitly, where no such
time-step limit exists. In problems of practical interest, the porosity φ and perme-
ability K are highly oscillatory, non-smooth functions of x, and K(x) can vary by
several orders of magnitude over the domain Ω. Thus, local CFL numbers can also
exhibit large spatial variations. This means the time-step limit of an explicit method,
which is determined by the maximum local CFL number, is often overly restrictive
compared to the average CFL number. For this reason, the discretization of choice
for most reservoir simulators is the fully-implicit method (FIM), which uses finite vol-
ume in space and backward Euler in time. The numerical flux function Fj,il, which
approximates the continuous flux

∫

∂Vil

ρjvj · nil ds, is given by

Fj,il = |∂Vil|ρjKilλj(S
∗)

(

−
(pl − pi)(xl − xi)

|xl − xi|2
− ρjg

)

· nil, (1.8)

where |∂Vil| is the area of the interface between cells i and l, xi and xl are the locations
of the centers of cells i and l, and nil is the unit normal to the cell interface, pointing
from cell i to cell l. The mobility λj is evaluated at the upstream saturation:

S =







S(xi) if

(

−
(pl − pi)(xl − xi)

|xl − xi|2
+ ρjg

)

· nil ≥ 0,

S(xl) otherwise.
(1.9)

As we will see in section 4, the resulting numerical flux functions are different
from those used in classical CFD (e.g. the Godunov and Engquist-Osher schemes).
Despite being only first-order accurate, phase-based upstreaming is the preferred up-
wind method in reservoir simulation because it is physically intuitive, and because it
is generally easier to verify a consistency condition such as (1.9) than to locate poten-
tial sonic points, which vary over the domain and are strong functions of permeability
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Fig. 1.1. Flux functions for 1D incompressible two-phase flow: (a) Cocurrent flow (no buoyancy
effects), (b) Countercurrent flow due to gravity.

and total velocity. This is especially true for the fully-implicit method because the
total velocity at time tn+1 is usually unknown.

Notice that in (1.9) it is possible for each phase to have a different upstream direc-
tion when the densities ρj are different, i.e., when buoyancy forces are significant; this
is known as countercurrent flow in reservoir engineering literature. In one-dimensional
porous media, countercurrent flow manifests itself through the presence of sonic points
in the flux function vj ; thus, the flux function for a countercurrent flow problem would
typically look like the one shown in Figure 1.1(b), whereas without countercurrent
flow it would look more like Figure 1.1(a). A detailed treatment of phase-based up-
streaming is given in [3], in which the authors show that, when explicit time-stepping
is used on a two-phase flow problem, phase-based upstreaming leads to a monotone
difference scheme, as long as the appropriate CFL condition is satisfied. This in turn
implies that the solution of the explicit schemes converge to the entropy solution of
the two-phase equations

∂S1

∂t
+

∂f1

∂x
= 0, (1.10)

f1(x, S1) = v1(x, S1) =
λ1(S1)

λ1(S1) + λ2(S1)
[vT + K(x)gλ2(S1)(ρ1 − ρ2)] (1.11)

as ∆t, ∆x → 0 while satisfying the CFL condition. The goal of this paper is to extend
this result for the fully-implicit case. This leads us to study the more general problem
of implicit monotone schemes, of which the multiphase flow problem is a special case.

The use of implicit time stepping leads to a (typically large) system of nonlinear
algebraic equations that must be solved for each time step. Moreover, the resid-
ual functions are generally non-differentiable due to upstreaming criteria of the form
(1.9); thus, the existence of a unique solution to these systems of equations is not
immediately obvious. For implicit monotone schemes for 1D scalar conservation laws,
Lucier [9] showed that a unique solution to the discrete problem exists whenever the
initial data is bounded and has bounded total variation. The proof of existence,
which relies heavily on Crandall-Liggett theory [5], proceeds along the following lines
(see [6, Ch. 3] for more details). First, one shows that the residual function R for
the numerical scheme defines an m-accretive operator in the L1 norm. Then by the
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Crandall-Ligett theorem, the ODE

du

dt
= −Ru, u(0) = x (1.12)

has a unique solution for t ∈ [0,∞) for any initial point x. Let u(t; x) denote the
solution of (1.12) with starting point x. Then one shows that the Poincaré operator
Pω, which maps the point x to the point u(ω, x), is strictly contractive. Then by
Banach’s fixed point theorem, Pω has a unique fixed point x0. One then proceeds to
prove that u(t; x0) = x0 for all 0 ≤ t ≤ ω; thus, du/dt = 0, which implies Rx0 = 0.

While this argument does prove the existence and uniqueness of a solution to
the discretized problem, the proof does not suggest a practical algorithm for finding
the solution. In section 3, we present an alternate constructive proof of existence by
showing that the classical Gauss-Seidel and Jacobi iterations converge for this class of
problems. In fact, we show that the iterative methods converge whenever the initial
data for the discrete problem is bounded, so the implicit scheme is well-defined even
when the initial data does not have bounded variation in R. The well-definedness of
the numerical scheme, together with the total variation diminishing (TVD) property
and the existence of a discrete entropy inequality, imply that the numerical scheme
converges to the entropy solution as the mesh is refined (i.e., as ∆x → 0). This result
holds for any mesh ratio λ = ∆t/∆x (i.e., for any Courant number).

The remainder of this paper is organized as follows. Section 2 states the necessary
assumptions of our framework. Section 3 contains the main result of this paper, which
asserts that the nonlinear Gauss-Seidel and Jacobi processes converge when applied
to monotone implicit schemes. This leads to a constructive proof of well-definedness
of the numerical scheme, from which convergence of the numerical scheme under
grid refinement follows [14]. In section 4, we derive the numerical flux functions
for an implicit monotone scheme that is equivalent to the coupled problem (1.1) in
the one-dimensional case, which would allow us to establish the well-definedness and
convergence of the coupled problem. We also discuss the applicability of the above
analysis for multidimensional problems. Finally, we discuss the convergence behavior
and accuracy issues for implicit schemes with phase-based upstreaming in section 5.

2. Implicit monotone schemes. We consider the following fully-implicit, finite
volume discretization

φi(u
n+1
i − un

i ) + λ(Fn+1
i+1/2 − Fn+1

i−1/2) = 0, λ = ∆t/∆x, i ∈ Z, (2.1)

where Fi+1/2 denotes the numerical flux across the interface between cells i and i+1.
The above scheme approximates the 1D nonlinear conservation law

φ(x)ut + f(x, u)x = 0, (x, t) ∈ R × R
+, (2.2)

u(x, 0) = u0(x), (2.3)

which generalizes the problem (1.10), (1.11) to the variable porosity and permeability
case. For simplicity, we assume a three-point scheme Fn+1

i+1/2 = Fi+1/2(u
n+1
i , un+1

i+1 );

thus, the implicit stencil at cell i contains the value at cell i at time tn, as well as the
values at cells i − 1, i and i + 1 at the future time tn+1. We also ignore the effects
of boundary conditions by limiting ourselves to Cauchy problems for the moment; in
section 4 we explain how certain boundary conditions can be incorporated. Assume
that f and F are both locally Lipschitz continous (but not necessarily differentiable),
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and that the numerical flux function Fi+1/2 is consistent with f in the sense that
Fi+1/2(u, u) = f(xi+1/2, u). Given we are interested in handling flux functions of
the type shown in Figure 1.1(b), we cannot assume that the flux function f(x, u) is
monotonic in u, so sonic points may be present. However, the numerical flux function
is assumed to satisfy the following condition, which also appears in [14] and is central
to all our arguments in this paper:

Assumption 1 (Monotonic fluxes). For all i ∈ Z, the numerical flux func-
tion Fi+1/2 is non-decreasing in the first argument and non-increasing in the second
argument, i.e. for any w, we have Fi+1/2(u, w) ≤ Fi+1/2(v, w) and Fi+1/2(w, u) ≥
Fi+1/2(w, v) whenever u ≤ v.

For two-phase flow problems in one dimension, the numerical flux functions ob-
tained by phase-based upstreaming have the form

Fi+1/2(S1,i, S1,i+1) =
λ1(S1,i)

λ1(S1,i) + λ2(S∗
1 )

[vT + Kλ2g(ρ1 − ρ2)], (2.4)

where g(ρ1 − ρ2) ≥ 0 and

S∗
1 =

{

S1,i, if vT − Kλ1(Si)g(ρ1 − ρ2) ≥ 0,

S1,i+1 otherwise.
(2.5)

The detailed derivation is deferred to section 4. The following theorem, which summa-
rizes several results by Brenier and Jaffré [3] in the case of two-phase flow, guarantees
that Fi+1/2(Si, Si+1) has the required properties.

Theorem 2.1. Assume that the mobility of phase j is increasing with Sj and
decreasing with the saturation of the other phase for j = 1, 2 (e.g., water and oil).
Then the numerical fluxes obtained from phase-based upstreaming defined by (2.4),
(2.5) are consistent, Lipchitz continuous and satisfy Assumption 1.

The hypothesis on phase mobilities is physically realistic [2]. Assumption 1 en-
sures that (2.1) is an implicit monotone scheme, in the sense that the resulting residual
function defines an m-accretive operator in `1(Z) (see [7] for a proof). We do not use
m-accretivity directly in this work. Instead, we show that Assumption 1 also implies
that the residual function is an M -function in the sense of Rheinboldt [11]; this is
generally not equivalent to m-accretivity [8], but nontheless allows us to prove ex-
istence and uniqueness of solutions. Once we establish that the implicit scheme is
well-defined, we can apply the following theorem of Sanders [14, Theorem II] to con-
clude that the solutions of (2.1) converges to the unique entropy solution of (2.2)
when f does not depend explicitly on x, i.e., when f = f(u). Note that Assumption
1 implies that (2.1) is an E-scheme [10], so it is at most first-order accurate.

Theorem 2.2 (Sanders). Let R = ∪In
i with In

i = [xi, xi+1) × [tn, tn+1) and
δ = supi,n |xi+1 − xi| + |tn+1 − tn|. Suppose the conservation law (2.2), (2.3) with
f = f(u) is discretized using (2.1), where Fi+1/2(ui, ui+1) ≡ F (ui, ui+1) for all i.
Assume that F is locally Lipschitz continuous, consistent and monotonic. Define the
step function vδ such that vδ(x, t) = un

i when (x, t) ∈ In
i , and suppose the initial data

(2.3) is discretized via the averaging operator Tδ,

Tδ(u0)(x) =
1

|xi+1 − xi|

∫ xi+1

xi

u0(ξ)dξ

when x ∈ [xi, xi+1). Then vδ(x, t) converges in L∞(L1(R); [0, T ]) to the unique en-
tropy solution of (2.2), (2.3) as δ tends to zero.
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3. Existence and uniqueness of solutions for the discretized problem. In
this section, we show that the nonlinear Jacobi and Gauss-Seidel processes, when ap-
plied to the infinite system of nonlinear equations (2.1), converge to a unique bounded
solution. Thus, we obtain an alternate constructive proof of the well-definedness of
implicit monotone schemes. In addition, we show that Jacobi and Gauss-Seidel con-
verge for any starting point that is bounded by the initial data, leading to a practical
algorithm for computing the solution. Finally, we show how to extend the analysis to
deal with problems with spatially-varying coefficients, as well as problems for which
the flux function f(u) is only defined over a finite interval rather than all of R. An ex-
tension to multidimensional problems is considered in section 4.2. (Note: Throughout
this section, x and t are generic variables and do not denote space or time.)

3.1. Nonlinear Jacobi and Gauss-Seidel processes. Suppose we want to
solve a nonlinear system of algebraic equations R(x) = 0 for x ∈ `∞(N), where
R = (r1, r2, . . .)

T : `∞(N) → `∞(N). Then we can consider the nonlinear Gauss-
Seidel process :

Solve ri(x
k+1
1 , . . . , xk+1

i−1 , x∗
i , x

k
i+1, x

k
i+2, . . .) = 0 for x∗

i ,

Set xk+1
i = x∗

i , i = 1, 2, . . . , k = 0, 1, 2, . . . ,
(3.1)

as well as the nonlinear Jacobi process :

Solve ri(x
k
1 , . . . , xk

i−1, x
∗
i , x

k
i+1, x

k
i+2, . . .) = 0 for x∗

i ,

Set xk+1
i = x∗

i , i = 1, 2, . . . , k = 0, 1, 2, . . . .
(3.2)

The only difference between (3.1)/(3.2) and classical Gauss-Seidel/Jacobi processes
is that each Gauss-Seidel/Jacobi “sweep” now involves infinitely many variables and
equations. To ensure that the iterations (3.1)/(3.2) make sense, we need the following
assumptions on the residual function R:

Assumption 2 (Preservation of bounded sets). R : `∞(N) → `∞(N) is a mapping
between bounded sequences for which there exists an increasing function ζ : [0,∞) →
[0,∞) such that ‖x‖∞ ≤ B implies ‖R(x)‖ ≤ ζ(B).

Assumption 3 (Finite number of dependencies). For each i, the residual function
ri(x1, x2, . . .) is non-constant with respect to at most a finite number of xj.

In other words, the residual functions must come from a compact stencil and
must preserve boundedness. Assumption 3 ensures that the iterative processes are
well-defined, since it guarantees that for any given i, k ∈ N, the value of xk+1

i can be
calculated using a finite number of univariate solves. It also guarantees that whenever
R is continuous and (3.1)/(3.2) converges, the limit point x∗ must satisfies R(x∗) = 0.
Assumption 2 then allows us to extend Rheinboldt’s analysis [11] to the infinite-
dimensional case and prove that (3.1)/(3.2) converges to a unique bounded solution
when R is an M -function.
Remark. Even though the nonlinear iteration (3.1)/(3.2) are well-defined in theory, a
practical implementation would require that we either solve a finite-dimensional prob-
lem by supplying appropriate boundary conditions, or that we use delayed evaluation
[1] to compute only those values of xk

i that are needed.

3.2. M-function theory. M -functions are essentially generalizations of M -
matrices in linear algebra. In the linear setting, it is well known [13] that the Gauss-
Seidel method applied to Ax = b converges for any right-hand side b and starting
point x0 if A is a non-singular M -matrix. M -functions have similar properties with
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respect to the nonlinear Gauss-Seidel process, which is the subject of investigation in
[11]. Here we provide extensions to the relevant definitions and theorems in [11] that
would allow us to prove the existence and uniqueness of bounded solutions to (2.1).

For the remainder of the section, the natural partial ordering on `∞(N) is written
as x ≤ y, i.e., x ≤ y iff xi ≤ yi for all i ∈ N. We denote by ei the unit basis
vectors with the i-th component one and all others zero. The following definitions are
essentially identical to those in [11], except the domain of definition has been changed
from R

n to `∞(N) to handle vectors of infinite length:
Definition 3.1. Let R : `∞(N) → `∞(N).
1. R is isotone (or antitone) if, for all x, y ∈ `∞(N), x ≤ y implies R(x) ≤

R(y) (or R(x) ≥ R(y)). It is strictly isotone (or antitone) if x < y implies
R(x) < R(y) (or R(x) > R(y)).

2. R is inverse isotone if, for all x, y ∈ `∞(N), R(x) ≤ R(y) implies x ≤ y.
3. R is (strictly) diagonally isotone if, for all x ∈ `∞(N), the functions

ρii : R → R, ρii(t) = ri(x + tei), i = 1, 2, . . . (3.3)

are (strictly) isotone.
4. R is off-diagonally antitone if, for any x ∈ `∞(N) the functions

ρij : R → R, ρij(t) = ri(x + tej), i 6= j, i, j = 1, 2, . . . (3.4)

are antitone.
5. R is an M -function if R is inverse isotone and off-diagonally antitone.

One characterization of M -functions is given by the following theorem:
Theorem 3.2. Let R : `∞(N) → `∞(N) be off-diagonally antitone and satisfy

Assumption 2 and 3. Then R is an M -function if, for each B > 0, there exists a
positive sequence {wB

i } such that:
1.

∑∞
i=1 wB

i < ∞,
2. for any ‖x‖∞ < B, the function Q(t) = (q1(t), q2(t), . . .) defined by

qi(t) =

∞
∑

j=1

wB
j rj(x + tei)

is strictly isotone over the interval t ∈ (tmin, tmax), where tmin = −B − infi xi and
tmax = B − supi xi.

Proof. The proof is based on [11, Theorem 5.1], suitably modified to handle the
infinite-dimensional case. Suppose R(x) ≤ R(y) for some x, y ∈ `∞(N). Define the
sets

N− = {i ∈ N | yi < xi}; N+ = {i ∈ N | yi ≥ xi}.

Suppose N− is non-empty. For each i ∈ N−, let γi = (xi − yi)e
i. We consider two

cases:
1. If |N−| < ∞ , let i1 < i2 < · · · < im be the elements of N−, and define

z0 = y, z1 = y + γi1 , . . . , zm = y + γi1 + · · · + γim
,

and let zk = zm = z for all k > m.
2. If |N−| = ∞, let i1 < i2 < · · · be the elements of N−, and define

z0 = y, z1 = y + γi1 , . . . , zk = y + γi1 + · · · + γik
, . . .

and let z = {zi} be such that zi = max{xi, yi}.
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Define Rk := R(zk) and R∞ = R(z). In either case, we have the following properties:
1. ‖zk‖∞ < B and ‖z‖∞ < B, where B = max{‖x‖∞, ‖y‖∞}. Hence, by

Assumption 2, ‖Rk‖∞ ≤ ζ(B) for all k (similarly for R∞).
2. For each i, zk

i = zi for large enough k, so by Assumption 3, Rk
j → R∞

j

pointwise for each j.
Thus, the sequence Rk = (Rk

j )∞j=1 is dominated by G = (ζ(B), ζ(B), . . .) for each

k ∈ N. Moreover
∑∞

j=1 wB
j Gj < ∞, so by the dominated convergence theorem [12],

∞
∑

j=1

wB
j Rk

j →

∞
∑

j=1

wB
j R∞

j as k → ∞.

By the strict isotonicity of Q, we have

∞
∑

j=1

wB
j R0

j ≤

∞
∑

j=1

wB
j R1

j ≤ · · ·

with at least one strict inequality (since N− is non-empty). Thus, we must have

∞
∑

j=1

wB
j rj(y) =

∞
∑

j=1

wB
j R0

j <
∞
∑

j=1

wB
j R∞

j =
∞
∑

j=1

wB
j rj(z). (3.5)

Now split the last sum into two parts

∞
∑

j=1

wB
j rj(z) =

∑

j∈N−

wB
j rj(z) +

∑

j∈N+

wB
j rj(z), (3.6)

where the summation over N+ may be empty. Then by off-diagonal antitonicity of R
(and invoking the dominated convergence theorem whenever necessary), we can show
similarly that

∑

j∈N−

wB
j rj(z) ≤

∑

j∈N−

wB
j rj(x),

∑

j∈N+

wB
j rj(z) ≤

∑

j∈N+

wB
j rj(y), (3.7)

using the fact that z − x and z − y vanish on N− and N+ respectively. Combining
equations (3.5)–(3.7) gives

∞
∑

j=1

wB
j rj(y) <

∑

j∈N−

wB
j rj(x) +

∑

j∈N+

wB
j rj(y), (3.8)

which implies
∑

j∈N− wB
j rj(y) <

∑

j∈N− wB
j rj(x). Thus, we must have rj(y) < rj(x)

for some j ∈ N−, which contradicts the hypothesis R(x) ≤ R(y). Hence N− must be
empty, so x ≤ y.

Corollary 3.3. Let R satisfy the hypotheses of Theorem 3.2. Let z ∈ `∞(N).
Then there is at most one bounded solution to the equation R(x) = z.

Remark. In the context of discretized PDEs one normally assumes tacitly that the
solution of interest must be bounded; this can be regarded as a boundary condition
“at infinity”. However, since such boundary conditions are not explicitly stated in the
definition of M -functions, one must be careful to exclude any parasitic unbounded
solutions that may arise. In fact, the solution is not necessarily unique if we allow
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unbounded solutions. Consider the linear function R = (r1, r2, . . .) defined by ri(x) =
xi − αxi+1 for |α| < 1. Then for any ‖x‖∞ < ∞, we have ‖R(x)‖∞ ≤ (1 + α)‖x‖∞,
so that Assumption 2 is satisfied. Assumption 3 (finitely many dependencies) is also
satisfied because each ri is only non-constant with respect to two components of x.
Finally, if we let wB

j = βj for any |α| < β < 1, then
∑

j βj < ∞ and

qi(t) =
∞
∑

j=1

βj
[

xj + tδij −α(xj+1 + tδi,j+1)
]

= (β−α)βi−1t+βx1 +(β−α)
∞
∑

j=2

βj−1xj ,

so qi(t) is well-defined and is strictly increasing with respect to t whenever ‖x‖∞ < ∞.
So the hypotheses of Theorem 3.2 are satisfied, and hence x = 0 is the only bounded
solution of R(x) = 0. However, unbounded solutions of the form y = {Kα−i}, K 6= 0
also satisfy R(y) = 0, so the theorem does not preclude these possibilities.

3.3. Convergence of nonlinear Jacobi and Gauss-Seidel. It turns out the
hypotheses of Theorem 3.2 are enough to ensure convergence of nonlinear Jacobi and
Gauss-Seidel for certain starting points, which will be described below. The following
result is essentially Theorem 3.1 in [11], with modified hypotheses to accommodate
`∞-bounded vectors with infinitely many components. The proof in [11] goes through
verbatim, but is reproduced here because similar arguments also appear in the proof
of Theorem 3.7. Note that by Assumption 3, each ri depends on only finitely many
arguments, so the standard arguments on limits, continuity and antitonicity hold
without additional complications when they are used on individual components of R.

Theorem 3.4 (Rheinboldt). Let R : `∞(N) → `∞(N) satisfy the hypotheses of
Theorem 3.2. Suppose for some z ∈ `∞(N) there exist x0, y0 ∈ `∞(N) such that

x0 ≤ y0, R(x0) ≤ z ≤ R(y0).

Then the nonlinear Gauss-Seidel and Jacobi iterates {yk} and {xk}, given by (3.1)
and (3.2), and starting from y0 and x0, respectively, are uniquely defined and satisfy

x0 ≤ xk ≤ xk+1 ≤ yk+1 ≤ yk ≤ y0, R(xk) ≤ z ≤ R(yk) (3.9)

for k = 0, 1, . . .. In addition, the pointwise limits

lim
k→∞

xk = lim
k→∞

yk = x∗ (3.10)

exist, and R(x∗) = z.
First we need the following lemma (which is part of Theorem 2.10 in [11]):
Lemma 3.5. Let R : `∞(N) → `∞(N) be an M -function. Then R is strictly

diagonally isotone.
Proof. Suppose that for some x ∈ `∞(N), s, t ∈ R, s > t and index i we have

ri(x + sei) ≤ ri(x + tei). Off-diagonal antitonicity then implies that

rj(x + sei) ≤ rj(x + tei), j 6= i,

or, altogether, that R(x + sei) ≤ R(x + tei). By inverse isotonicity, this leads to the
contradiction s ≤ t, which shows that R must be strictly diagonally isotone.

Proof. (Theorem 3.4) We only present the proof for convergence of Gauss-Seidel;
the proof for Jacobi is similar. We proceed by induction and suppose that for some
k ≥ 0 and i ≥ 1

x0 ≤ xk ≤ yk ≤ y0, R(xk) ≤ z ≤ R(yk), (3.11a)

xk
j ≤ xk+1

j ≤ yk+1
j ≤ yk

j , j = 1, . . . , i− 1, (3.11b)
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where for i = 1 the relation (3.11b) is vacuous. Clearly, (3.11) is valid for k = 0 and
i = 1. Define the functions

α(s) = ri(x
k+1
1 , . . . , xk+1

i−1 , s, xk
i+1, x

k
i+2, . . .),

β(s) = ri(y
k+1
1 , . . . , yk+1

i−1 , s, yk
i+1, x

k
i+2, . . .)

for s ∈ [x0
i , y

0
i ]. Then (3.11) and the off-diagonal antitonicity of R yield

β(s) ≤ α(s), s ∈ [x0
i , y

0
i ], (3.12)

β(xk
i ) ≤ α(xk

i ) ≤ ri(x
k) ≤ zi ≤ ri(y

k) ≤ β(yk
i ) ≤ α(yk

i ). (3.13)

Since R is strictly diagonally isotone, α and β are both continuous and strictly
increasing, so (3.13) implies the existence of unique ŷk

i and x̂k
i for which

β(ŷk
i ) = zi = α(x̂k

i ), xk
i ≤ x̂k

i ≤ ŷk
i ≤ yk

i ,

where the relation x̂k
i ≤ ŷk

i is a consequence of (3.12). But xk+1
i = x̂k

i and yk+1
i = ŷk

i

by definition, so we have proved (3.11b) for j = 1, . . . , i. Hence by induction (3.11b)
holds for all i ∈ N, and hence xk ≤ xk+1 ≤ yk+1 ≤ yk. From this it follows again
from off-diagonal antitonicity that

ri(y
k+1) ≥ ri(y

k+1
1 , . . . , yk+1

i , yk
i+1, y

k
i+2 . . .) = zi

and similarly that

ri(x
k+1) ≤ ri(x

k+1
1 , . . . , xk+1

i , xk
i+1, x

k
i+2 . . .) = zi.

This completes the induction on k and hence the proof of (3.9). Applying the mono-
tone convergence theorem for sequences, we conclude that the pointwise limits

lim
k→∞

xk
j = x∗

j ≤ y∗
j = lim

k→∞
yk

j

exist for each j, which allows us to define x∗ = {x∗
j} and y∗ = {y∗

j }. Since each
ri is continuous and depends on only finitely many arguments, the definition of the
Gauss-Seidel process then implies ri(x

∗) = ri(y
∗) = zi for each i, and hence R(x∗) =

R(y∗) = z. Since both x∗ and y∗ are bounded, Corollary 3.3 implies that they are
equal, completing the proof.

3.4. Well-definedness of implicit monotone schemes. Using the theory in
the last two sections, we can now prove that implicit monotone schemes (i.e, implicit
schemes whose flux functions satisfy Assumption 1) are well-defined for bounded initial
conditions. What we need to show is that the residual functions satisfy the hypotheses
of Theorem 3.4. In the interest of clarity, in this section we only show convergence
of the iterative schemes for problems whose coefficients do not vary in space (i.e.,
corresponding to the conservation law ut +f(u)x = 0, discretized on a uniform spatial
grid). In the next section, we state the additional assumptions on φi and Fi+1/2 that
are required for the spatially-varying case.

Theorem 3.6. Consider the numerical scheme (2.1) with

Fn+1
i+1/2 = F (un+1

i , un+1
i+1 ),

where F : R× R → R is locally Lipschitz continuous and satisfies Assumption 1, i.e.,
non-decreasing in the first argument and non-increasing in the second. Assume that
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the initial condition {u0
i }

∞
i=−∞ is bounded. Then (2.1) has a unique bounded solution

{un+1
i } for n = 0, 1, 2, . . .. Moreover, this bounded solution satisfies the estimate

inf
j∈Z

un
j ≤ un+1

i ≤ sup
j∈Z

un
j , ∀i ∈ Z. (3.14)

Proof. First, we need to define an ordering for the Gauss-Seidel sweeps, i.e.,
to permute the equations and variables so that the spatial indices go from 1 to ∞
rather than from −∞ to ∞. After that, it suffices to check that all the hypotheses of
Theorem 3.4 are satisfied for this ordering.

1. For j = 1, 2, . . ., define σ(j) = (−1)jbj/2c, i.e. σ maps {1, 2, 3, 4, 5, . . .} to
{0, 1,−1, 2,−2, . . .}. Let τ be the inverse map, such that τ(σ(j)) = j. Define R :
`∞(N) → `∞(N) to be the reordered (and rescaled) set of residual equations, i.e.,

rj(v) =
vj − un

σ(j)

λ
+ F (vj , vτ(σ(j)+1)) − F (vτ(σ(j)−1), vj), (3.15)

where vj = un+1
σ(j) .

2. Since F is locally Lipschitz continuous, it is Lipschitz continuous over any
compact set, so for any B > 0 there exists KB (which can be chosen to be increasing
with B) such that for any (x, y) ∈ [−B, B] × [−B, B],

|F (x, y) − F (0, 0)| ≤ KB(|x| + |y|) ≤ 2KB · B.

Thus, for any ‖v‖∞ ≤ B, we have |rj(v)| ≤ ζ(B) for all j, where

ζ(B) =
( 1

λ
+ 4KB

)

B +
1

λ
‖un‖∞.

Hence Assumption 2 is satisfied. Moreover, since each rj depends only on vj , vτ(σ(j)−1)

and vτ(σ(j)+1), Assumption 3 (finite number of dependencies) is also satisfied.
3. By Assumption 1 (monotonic fluxes), F is clearly off-diagonally antitone. To

satisfy the remaining hypotheses of Theorem 3.2, let {wB
j } take the form wB

j = β|σ(j)|

for some 0 < β < 1, so that
∑∞

j=1 wB
j < ∞. An easy calculation shows that

qi(t) :=
∞
∑

j=1

wB
j rj(v + tei) = q̃i(t) +

∞
∑

j=1

wB
j rj(v),

where

q̃i(t) = wB
i t/λ + (wB

i − wB
τ(σ(i)+1))

[

F (vi + t, vτ(σ(i)+1)) − F (vi, vτ(σ(i)+1))
]

+ (wB
τ(σ(i)−1) − wB

i )
[

F (vτ(σ(i)−1), vi + t) − F (vτ(σ(i)−1), vi)
]

.

By the definition of wB
i , we see that

|wB
i − wB

τ(σ(i)±1)| ≤ β|σ(i)|−1(1 − β),

which, when combined with the local Lipschitz continuity of F , gives

β|σ(i)|−1
[

βt/λ − 2(1 − β)KB|t|
]

≤ q̃i(t) ≤ β|σ(i)|−1
[

βt/λ + 2(1 − β)KB |t|
]

.

Hence, q̃i(t) is strictly isotone whenever β/λ > 2(1 − β)KB, so picking

2λKB

1 + 2λKB
< β < 1 (3.16)

ensures isotonicity for q̃i(t) (and hence qi(t)) for all i, as required in Theorem 3.2.
(Note that the choice of β depends on B.)
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4. We need to choose starting points x0 and y0 that satisfy the requirements of
Theorem 3.4. Let x0 and y0 both be constant sequences with

x0
i = inf

j∈Z

un
j , y0

i = sup
j∈Z

uj , ∀i ∈ N.

Then clearly x0 ≤ y0, and for all i ∈ N,

ri(x
0) =

1

λ

(

x0
i − un

σ(i)

)

=
1

λ

(

inf
j∈Z

un
j − un

σ(i)

)

≤ 0,

ri(y
0) =

1

λ

(

y0
i − un

σ(i)

)

=
1

λ

(

sup
j∈Z

un
j − un

σ(i)

)

≥ 0,

so R(x0) ≤ 0 ≤ R(y0). Thus, by Theorem 3.4, the nonlinear Gauss-Seidel iterates
{yk} and {xk} both converge (pointwise) to the unique solution x∗ with R(x∗) = 0;
hence, a unique solution to (2.1) exists, i.e., un+1

i = x∗
τ(i). Moreover, we know that

x0 ≤ x∗ ≤ y0, which immediately implies (3.14).
Remark. The initial condition {u0

i }
∞
i=−∞ is not assumed to be in `1 nor in BV ,

so this result is somewhat more general than results that use Crandall-Liggett theory.
Remark. The definition of an M -function is invariant under symmetric permuta-

tions, i.e., R(x) is an M -function if and only if σR(σx) is also an M -function for any
permutation σ : N → N. Thus, the Gauss-Seidel process must converge regardless of
the way the ordering is chosen in step 1 of the proof. However, the rate of convergence
is sensitive to the ordering [8].

In fact, one can show that the nonlinear Jacobi and Gauss-Seidel processes con-

verge for any starting point {z
(0)
i } that is bounded by the initial data {un

i }. (In the
sequel, superscripts in brackets indicate iterates within the Gauss-Seidel process, and
superscripts without brackets indicate the time level in the numerical scheme.)

Theorem 3.7. Assume the hypotheses of Theorem 3.6. Suppose the initial guess

{z
(0)
i } satisfies

inf
j∈Z

un
j ≤ z

(0)
i ≤ sup

j∈Z

un
j (3.17)

for all i ∈ Z. Then the nonlinear Jacobi and Gauss-Seidel processes (3.1) and (3.2)
are well-defined and converge to the unique bounded solution of (2.1).

Proof. Again we only show convergence for the Gauss-Seidel process, since the
proof for Jacobi is similar. Denote u = infj∈Z un

j and u = supj∈Z
un

j . First, we show

that the Gauss-Seidel iterates are well-defined and that u ≤ z
(k)
j ≤ u for all j, k. At

each step we need to solve

rj(z
∗
j ) =

1

λ

(

z∗j − un
j

)

+ F (z∗j , zj+1) − F (zj−1, z
∗
j ) = 0, (3.18)

where zj±1 = z
(k)
j±1 or z

(k+1)
j±1 depending on the ordering of the Gauss-Seidel sweep,

which by induction must lie between u and u. But

rj(u) =
1

λ

(

u − un
j

)

+ F (u, zj+1) − F (zj−1, u)

≤ 0 + F (u, u) − F (u, u) = 0,



Implicit Monotone Schemes in Multiphase Flow 13

where the inequality follows from Assumption 1. Similarly one obtains rj(u) ≥ 0,
so by continuity of F (and hence rj) there must exist a solution z∗j to (3.18), which
by Lemma 3.5 must be unique. Hence, by induction, the Gauss-Seidel iterates are
well-defined and are bounded above and below by u and u respectively.

Now consider the Gauss-Seidel iterates {x
(k)
j } and {y

(k)
j } with initial guess x

(0)
j =

u and y
(0)
j = u for all j. By Theorem 3.6 these iterates converge pointwise to the

same solution {x∗
j}. We show inductively that x(k) ≤ z(k) ≤ y(k) for all k, which

would imply that z
(k)
j → x∗

j pointwise. Using the same reordering as in Theorem 3.6,
assume that for some k ≥ 0 and i ≥ 1 we have

y(k) ≥ z(k) ≥ x(k), y
(k+1)
j ≥ z

(k+1)
j ≥ x

(k+1)
j , j = 1, . . . , i − 1,

which is valid for k = 0 and i = 1. Then by the same boundedness and antitonicity
arguments as in Theorem 3.4, we have

ri(y
(k+1)
1 , . . . , y

(k+1)
i−1 , y

(k+1)
i , y

(k)
i+1, . . .) = 0 = ri(z

(k+1)
1 , . . . , z

(k+1)
i−1 , z

(k+1)
i , z

(k)
i+1, . . .)

≥ ri(y
(k+1)
1 , . . . , y

(k+1)
i−1 , z

(k+1)
i , y

(k)
i+1, . . .),

which, together with the strict diagonal isotonicity of ri, implies that y
(k+1)
i ≥ z

(k+1)
i .

Similarly it follows that z
(k+1)
i ≤ x

(k+1)
i . This completes the induction, and hence

z
(k)
j → x∗

j pointwise.
In particular, the nonlinear Gauss-Seidel and Jacobi processes converge if we use

{un
j } (i.e. the solution from the previous time step) as an initial guess. For small to

moderate time-step sizes, one generally expects the solutions between consecutive time
steps to be close to each other, so using {un

j } often results in much faster convergence
than either u or u as an initial guess.

3.5. Extensions. In this section we show how to extend the results of Theorems
3.6 and 3.7 to deal with conservation laws with non-uniform spatial grids and/or
spatially-varying flux functions, as well as flux functions that are only defined over a
closed interval I ⊂ R.

3.5.1. Non-uniform grids and spatially-varying flux functions. Consider
again the fully-implicit discretization (2.1):

φi(u
n+1
i − un

i ) + λ(Fn+1
i+1/2 − Fn+1

i−1/2) = 0, λ = ∆t/∆x, i ∈ Z,

where φi and Fi+1/2 can vary over the spatial index i. We assume that 0 < φi ≤ 1.
Note that the non-uniform grid case is automatically included: for any non-uniform
discretization of the form

φ̃i(u
n+1
i − un

i )

∆t
+

Fn+1
i+1/2 − Fn+1

i−1/2

∆xi
= 0, (3.19)

we can multiply (3.19) by ∆t∆xi/∆xmax to recover the form of (2.1) with

φi = φ̃i∆xi/∆xmax, λ = ∆t/∆xmax.

To ensure convergence of the Jacobi and Gauss-Seidel processes, we need the following
assumptions:
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1. The family of flux functions {Fi+1/2}
∞
i=−∞ is equicontinuous (cf. [12]) with

the same local Lipschitz constant KB;
2. {φi} is uniformly bounded away from zero, i.e. there exists φmin > 0 such

that φi ≥ φmin for all i ∈ Z.
While the equicontinuity condition may appear severe, it is usually satisfied in practice
because the spatially-varying coeffients (e.g. K(x) in (1.11)) tend to be uniformly
bounded, ensuring equicontinuity in the flux functions. With the above assumptions,
we can mimic Theorem 3.6 exactly by replacing λ with λ/φi. Then the proof goes
through verbatim, except for (3.16), which must be modified to

2λKB

φmin + 2λKB
< β < 1. (3.20)

3.5.2. Bounded admissible solutions. Formally, Theorem 3.6 requires the
discrete flux function F (ui, ui+1) to be defined on R×R. In practice one may want to
solve problems for which the flux function f is defined only on an interval [umin, umax]
rather than on all of R, because states outside these bounds are unphysical. For
instance, in the two-phase flow problem, we must have Si ∈ [0, 1] for all i, and
the flux function f(S) in (1.11) is not even defined outside this range. Fortunately,
the estimate (3.14) ensures that as long as the initial conditions are within physical
bounds, so will the solution for subsequent time steps n > 0, as well as any intervening
Jacobi or Gauss-Seidel iterate. Thus, to apply Theorem 3.6 to these problems, one
can formally extend the domain of the flux function f to R by defining, for instance,

f̃(u) =











f(umin), u < umin,

f(u), umin ≤ u ≤ umax,

f(umax), u > umax,

and similarly for the discrete flux F (u, v). Since all Gauss-Seidel iterates {yk} and
{xk} satisfy the bound x0 ≤ xk ≤ yk ≤ y0, the exact manner in which the extension
is defined is unimportant as long as Assumption 1 (monotonicity) is valid.

4. Applications to Porous Media Flow.

4.1. 1D Buckley-Leverett problem with gravity. Consider a 1D incom-
pressible two-phase flow problem with a constant-rate injection boundary condition
on the left, a pressure boundary condition on the right, and no internal sources or
sinks:

φ(x)
∂Sj

∂t
+

∂vj

∂x
= 0, (x, t) ∈ (xL, xR) × R

+, (4.1)

S1(x, 0) = S0(x), x ∈ (xL, xR), (4.2)

vj(xL, t) = vj,L, p(xR, t) = xR, t ∈ R
+ (4.3)

for j = 1, 2, where vj = −K(x)λj(S1)
( dp

dx
− ρjg · i

)

, p ≡ p1 = p2 (i.e., zero capillary

pressure), and i is the unit vector along the x-direction. We assume that the injection
velocities v1,L and v2,L are non-negative, and that the total velocity vT,L := v1,L+v2,L

is strictly positive. (These assumptions cover the most interesting cases, such as oil
recovery by water flooding.) This formulation, which contains pressure variables, is
known as the parabolic form of the problem, since it represents the incompressible
limit of a parabolic problem. We can also derive the hyperbolic or “fractional flow”
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form of the problem by eliminating the pressure variables as follows. The discretized
PDEs can be written as

φi(S1,i − Sold
1,i )

∆t
+

F1,i+1/2 − F1,i−1/2

∆x
= 0, (4.4a)

φi(S
old
1,i − S1,i)

∆t
+

F2,i+1/2 − F2,i−1/2

∆x
= 0, (4.4b)

where

Fj,i+1/2 = Ki+1/2λj,i+1/2

(

pi − pi+1

∆x
+ ρjg

)

(4.5)

for j = 1, 2, i = 1, . . . , N , with g = g · i. The numerical boundary conditions become

Fj,1/2 = vj,L (j = 1, 2), pN+1 = 2pR − pN . (4.6)

Assume without loss of generality that g(ρ1 − ρ2) ≥ 0. To eliminate the pressure
variables pi, first note that summing equations (4.4a) and (4.4b) and rearranging
gives

F1,i+1/2 + F2,i+1/2 = F1,i−1/2 + F2,i−1/2 = v1 + v2 =: vT .

In other words, the total flux vT is constant across any interface, which must then be
equal to vT,L. We can express the pressure gradient (pi − pi+1)/∆x in terms of vT by
summing (4.5) through j = 1, 2:

vT = Ki+1/2

[

λT,i+1/2
pi − pi+1

∆x
+ (λ1,i+1/2 ρ1g + λ2,i+1/2 ρ2g)

]

,

where λT,i+1/2 = λ1,i+1/2 + λ2,i+1/2. Thus,

pi − pi+1

∆x
=

vT − Ki+1/2(λ1,i+1/2 ρ1g + λ2,i+1/2 ρ2g)

Ki+1/2(λ1,i+1/2 + λ2,i+1/2)
. (4.7)

Substituting into (4.5) for j = 1 gives

F1,i+1/2 =
λ1,i+1/2

λT,i+1/2

[

vT + Ki+1/2λ2,i+1/2(ρ1 − ρ2)g
]

= F1,i+1/2(S1,i, S1,i+1),

(4.8)

This, together with (4.4a):

φi(S1,i − Sold
1,i ) +

∆t

∆x

(

F1,i+1/2 − F1,i−1/2

)

= 0, (4.9)

leads to a numerical scheme that is identical to (2.1) except for the boundary con-
ditions. Clearly, the treatment of boundary conditions will significantly affect the
stability and accuracy of the numerical scheme. However, in order to understand
the behavior of the numerical scheme at interior points, we will simply replace the
initial-boundary value problem (4.1)–(4.3) with an initial value problem on an infi-
nite domain with appropriate initial conditions. In particular, we replace the injection
boundary condition with

S0
1(x) = S1,L, x < xL, (4.10)
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where S1,L satisfies f1(xL, S1,L) = v1,L/vT , with f1(x, S1) given by (1.10). We also
replace the pressure boundary condition with

S0
1(x) = S0

1(xR), x > xR. (4.11)

The modified continuous problem will yield a solution identical to (4.1)–(4.3) for
0 < t < TBT , where TBT is the breakthrough time (i.e., the time at which the shock
front arrives at the pressure boundary). Note that f1 is one-to-one over the interval
I = {S : 0 ≤ f1(S) < 1} (see Figure 1.1), and v1,L ≤ vT by assumption; thus, (4.10)
is well-defined unless v2,L = 0. (If v2,L = 0, we define S0

1(x) = inf f−1
1 (vT ), where

f−1
1 denotes the inverse image.) For the remainder of this section, we will drop the

phase subscript and denote S1,i and F1,i+1/2 by Si and Fi+1/2 respectively.

Phase-based upstreaming. Recall from section 1 (cf. Equation (1.9)) that the
mobilities λj,i+1/2 are evaluated using the upstream saturations with respect to the
flow direction of phase j:

λj,i+1/2 =

{

λj(Si) if 1
∆x(pi − pi+1) + ρjg ≥ 0,

λj(Si+1) otherwise.
(4.12)

In light of (4.7), we can rewrite the upstream conditions as

λj,i+1/2 =

{

λj(Si) if vT + Ki+1/2λj′,i+1/2(ρj − ρj′)g ≥ 0,

λj(Si+1) otherwise,
(4.13)

where the subscript j′ := 3 − j denotes the phase other than phase j. Even though
pressure dependence has been eliminated, Equation (4.13) still does not explicitly
define the upstream direction for λj , since the latter is defined in terms of the (yet
undetermined) mobility of the other phase λj′,i+1/2. For explicit numerical schemes,
Brenier and Jaffré has shown in [3] how to explicitly determine the upstream direction
for each phase for a given saturation profile {Sn

i }. In the special case of two-phase
flow, they define the following quantities:

θ1,i+1/2 = vT + Ki+1/2g(ρ1 − ρ2)λ2(S
n
i+1),

θ2,i+1/2 = vT − Ki+1/2g(ρ1 − ρ2)λ1(S
n
i ).

These quantities correspond precisely to the condition in (4.13), but the condition is
evaluated at Sn

i+1 for θ1 and Sn
i for θ2. Clearly θ1,i+1/2 > 0, since g(ρ1 − ρ2) ≥ 0.

The correct upstream directions are then given by

λn
1,i+1/2 = λ1(S

n
i ) λn

2,i+1/2 = λ2(S
n
i ), if 0 ≤ θ2,i+1/2 ≤ θ1,i+1/2,

λn
1,i+1/2 = λ1(S

n
i ) λn

2,i+1/2 = λ2(S
n
i+1), if θ2,i+1/2 ≤ 0 ≤ θ1,i+1/2.

Thus, the numerical fluxes are well defined if one uses an explicit method with
respect to saturation. However, this analysis does not address implicit-saturation
schemes (such as FIM), which require the upstream directions to be consistent with
saturation values at the end of the time step, i.e. with the saturation profile {Sn+1

i }.
Because of this consistency requirement, it is not clear a priori that a solution to the
parabolic form of the problem (4.4) even exists. Our approach to proving existence is
to rely on the hyperbolic form of the problem (4.8)–(4.11). From the above derivation,
it is evident that if {(Si, pi)}

N
i=1 is any solution to the parabolic form (4.4)–(4.6), then
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{Si}
N
i=1 must be a solution to the hyperbolic problem. Thus, the key idea is to first

find the correct saturation profile {Si} using (4.8)–(4.11) with a numerical flux that
automatically ensures consistency with the upstream directions; once the {Si} are
known, we can easily solve for the pressure part because the pressure equation is
linear. We distinguish two cases:

1. If Ki+1/2g(ρ1 − ρ2)λ1,max ≤ vT , then θ2,i+1/2 ≥ 0 always, so we revert to a
single-point upstream scheme Fi+1/2 = Fi+1/2(Si);

2. If Ki+1/2g(ρ1 − ρ2)λ1,max > vT , then by the monotonicity of λ1(S), there
exists a unique 0 < Sc < 1 such that Ki+1/2g(ρ1 − ρ2)λ1(Sc) = vT . Then the
numerical flux, which is to be evaluated at time tn+1, is defined as

Fi+1/2(Si, Si+1) =















λ1(Si)
[

vT + Ki+1/2g(ρ1 − ρ2)λ2(Si)
]

λ1(Si) + λ2(Si)
if 0 ≤ Si ≤ Sc,

λ1(Si)
[

vT + Ki+1/2g(ρ1 − ρ2)λ2(Si+1)
]

λ1(Si) + λ2(Si+1)
if Sc < Si ≤ 1.

(4.14)
Figure 4.1 shows a plot of F (Si, Si+1) in the latter case, which corresponds to the
continuous flux function in Figure 1.1(b). Note that we are able to recover f(S) from
the numerical flux F (Si, Si+1) because consistency implies F (S, S) = f(S). Even
though f(S) itself is non-monotonic, the plot clearly shows that F (Si, Si+1) is an
increasing function of Si and a decreasing function of Si+1, as predicted by Theorem
2.1. Also, the numerical flux is independent of the downstream saturation Si+1 inside
the cocurrent region (0 ≤ Si ≤ Sc ≈ 0.27), but becomes a function of both variables
when Si > Sc. Finally, F (Si, Si+1) is Lipschitz continuous, but non-differentiable
along the line Si = Sc due to the upstream condition (4.14). Since the numerical flux
satisfies the monotonicity assumption, the analysis in the last two sections shows that
the hyperbolic problem with implicit time-stepping has a unique solution {Sn+1

i },
which must also be the correct saturation profile for the parabolic problem. To solve
for pressure, we use (4.7) and (4.6):

pi − pi+1

∆x
=

vT − Ki+1/2(λ1,i+1/2 gρ1 + λ2,i+1/2 gρ2)

Ki+1/2(λ1,i+1/2 + λ2,i+1/2)
, i = 1, . . . , N, (4.15)

pN+1 = 2pR − pN . (4.16)

Since {Sn+1
i } is now known, the right-hand side of (4.7) is also completely deter-

mined. Thus, the vector p of pressures satisfies Ap = b, where A is an N × N upper
triangular matrix with a non-zero diagonal. So A is non-singular, which means there
is a unique pressure profile {pn+1

i } that satisfies (4.7) and (4.6). It is easy to see
that this pressure profile is consistent with the upstream condition (4.12): because
of (4.7), this upstream condition is equivalent to (4.13), and the conditions therein
are precisely the ones we use to define the numerical flux function (4.14) for the hy-
perbolic problem. Hence, we have shown that the parabolic form (4.4)–(4.6) has a
unique solution, given by the above {(Sn+1

i , pn+1
i )}.

4.2. Multidimensional considerations. In multiple dimensions, one can no
longer eliminate pressure variables as shown above, because the total velocity vT is
generally a function of space and time. Thus, the system of PDEs (1.1), (1.2) does
not reduce to a purely hyperbolic problem, which means we cannot directly apply our
existence and uniqueness results to the fully-implicit method in this case. Nonetheless,
our analysis does apply to a related numerical scheme known as the sequential-implicit
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Fig. 4.1. The numerical flux function F (u, v) corresponding to the fractional flow in Figure
1.1(b). The black curve along the diagonal indicates the value of F (u, u) = f(u).

method (SEQ). At each time step in SEQ, we first solve the discrete version of the
(linear) elliptic equation (1.5), in which the saturation-dependent coefficients are taken
at time tn. In other words, we solve for pn+1 via:

−∇ ·
[

KλT (Sn)∇pn+1 − Kg
∑

j ρjλj(S
n)

]

=
∑

j qj . (4.17)

Next, we compute the total velocity

v∗
T =

∑

j v∗
j = −

∑

j Kλj(S
n)(∇pn+1 − ρjg). (4.18)

Finally, we compute the saturations Sn+1
j (j = 1, . . . , n − 1) by solving the discrete

version of (1.6) and (1.7) with implicit time-stepping:

φ
∂Sj

∂t
+ ∇ · vj(x, S1, . . . , Sn) = 0, (4.19)

vj =
λj

λT
(v∗

T − Kg
∑

`λ`(ρ` − ρj)) . (4.20)

Essentially, the SEQ method decouples the system into an elliptic and a hyperbolic
subproblem. For two-phase flow problems, one can readily extend the convergence
results of Theorems 3.6 and 3.7 to the hyperbolic subproblem above, as long as the
spatial grid satisfies certain shape and connectivity requirements. Discretizing (4.19)
yields the multidimensional analog of (2.1):

φi(S
n+1
i − Sn

i ) +
∑

l∈adj(i)

λilFil(S
n+1
i , Sn+1

l ) = 0. (4.21)

Here, Fil is the flux (or velocity) from cell i to cell l, and λil = ∆t|∂Vil|/|Vi|, where
|∂Vil| is the area of the surface separating cell i and l, |Vi| is the volume of cell i and ∆t
is the time step. For a conservative scheme we must have Fil(Si, Sl) = −Fli(Sl, Si),
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and for monotonicity we require that Fil be non-decreasing with respect to the first
argument and non-increasing with respect to the second. This requirement is satisfied
for two-phase flow problems, since we can reproduce the derivation in section 4.1 to
obtain the flux function

Fil =
λ1,il

λT,il
[vil + Kilgil(ρ1 − ρ2)λ2,il]

and the upstream condition

λj,il =

{

λj(Si) if vil + Kilgil(ρj − ρj′ )λj′,il ≥ 0,

λj(Sl) otherwise,

for j = 1, 2, where vil = v∗
T · nil and gil = g · nil. In order to mimic the proof of

Theorem 3.6, we need the following assumptions on the grid:
1. The number of cells (control volumes) adjacent to cell i is bounded for all i;
2. The ratio |∂Vil|/|Vi| is bounded for all pairs of adjacent cells (i, l);
3. The quantity φi|Vi| is uniformly bounded away from zero for all i;
4. For any cell i, the total number of cells reachable from i in k steps is O(kp)

for some fixed p > 0 (i.e. grows at most polynomially in k).
The above assumptions are easily satisfied by regular Cartesian grids, and also by
most unstructured grids of practical interest. We also need the following assumption
on the numerical flux Fil (which is analogous to the assumption in section 3.5.1):

5. Fil is equicontinuous with the same Lipschitz constant for all pairs of adjacent
cells (i, l).

These assumptions ensure that the residual functions are all bounded and have the
same Lipschitz constant over the set {u ∈ `∞(N) | ‖u‖∞ < B}. The polynomial
growth assumption (4) allows us to assign the weights {wB

i } to each cell i in the
following manner: pick any node i0 and let wB

i = βd(i0,i), where d(i, j) is the shortest
distance between node i and j in the graph-theoretic sense. Since the number of
cells within k steps of i0 grows polynomially in k, the series

∑

i wB
i converges for any

0 < β < 1, so β can be chosen the same way as in step 3 of Theorem 3.6 and the same
argument will hold. Hence, we can conclude that the hyperbolic subproblem in the
SEQ method is well-defined for any time-step size ∆t, and the nonlinear Gauss-Seidel
and Jacobi processes are guaranteed to converge for these problems.

5. Accuracy of Phase-based Upstreamed Solutions. In this section, we
investigate the accuracy of the numerical solution obtained from implicit phase-based
upstreaming when we vary the spatial and temporal grid. Our 1D test case consists
of a countercurrent flow problem inside the domain Ω = [0, 1], and our 2D example
is a cocurrent flow problem in a heterogeneous reservoir. For the 1D problem, water
is injected at the boundary x = 0 and a pressure boundary condition is maintained
at x = 1. The hyperbolic form of the problem is described by (1.10), (1.11). The
flux function f1(S), which is independent of x, is shown in Figure 1(b), with a sonic
point at S = 0.49; countercurrent flow occurs whenever S ≥ Sc ≈ 0.27. The initial
saturation profile is a step function with

S0(x) =

{

1, 0 ≤ x < 0.2,

0, 0.2 < x ≤ 1.

The numerical solution is compared with the analytical solution at time t = 0.15.
Because of the sonic point, the solution contains two shocks connected by a rarefaction;
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one shock moves to the right with a velocity of 3.9, and the other travels to the left
with a velocity of −1.2. When considering the accuracy of a numerical solution, two
error measures are shown:

• The L1-error, which is the difference between the numerical and the analytical
solution in the L1-norm;

• The front dispersion, which is the distance between analytical shock front and
the leftmost point for which the numerical solution becomes zero.

We also measure how difficult the nonlinear problem is by showing, for each test case,
the average number of nonlinear Gauss-Seidel iterations required to converge each
time step. We remark that this measure is only useful for problems with counter-
current flow; in the cocurrent case, the flux function Fi+1/2 is a function of Si only,
which means Gauss-Seidel will always converge in one iteration if we solve the single-
cell equations in the order 1, 2, . . . , N (i.e., from upstream to downstream). In the
countercurrent case, convergence is generally linear, and the rate of convergence is a
function of the time step [8].

5.1. Refinement under fixed mesh ratio. Here we refine the grid at a fixed
mesh ratio ∆x/∆t to maintain a fixed CFL number of 4.10, which is above the CFL
limit for explicit schemes. Figure 5.1 shows the plots for N = 50, 100, 200, 400, and
Table 5.1 shows the L1-error and front dispersion data. The plots show that the
numerical solution converges to the analytical solution even though the CFL number
is greater than 1, which confirms our analysis. Moreover, both the L1-error and the
front dispersion are decreasing to zero a bit worse than linearly, with a ratio of about
0.61 and about 0.58 respectively for every refinement by a factor of two. Also note the
poor resolution near the left boundary for N = 50, 100, where instead of approaching
S = 1, the solution is closer to Sc ≈ 0.27 at the left boundary. For these coarser
grids, the numerical solution cannot decide whether the left-moving wave has reached
the boundary, which is maintained at S(0, t) = Sc (see Equation (4.10)). For higher
resolutions (N = 200, 400), the artifact has disappeared and the numerical solution
reproduces the back end of the saturation profile quite accurately. The average number
of Gauss-Seidel iterations required for convergence are all similar, so refining the grid
at a fixed mesh ratio does not increase the difficulty of the problem for the nonlinear
solver.

5.2. Spatial refinement for fixed time steps. Here, we refine the spatial grid
only while fixing the time-step size. Figure 5.2 and Table 5.2 show the results for N =
25, 50, 100, 200, 400 and a time-step size of ∆t = 0.0075, i.e., we use 20 time steps to
integrate up to t = 0.15. We see that even though the N = 25 case has a CFL number
close to 1, the grid is clearly too coarse, and the shock fronts are very poorly resolved.
The accuracy increases substantially when the spatial grid is refined to N = 50, 100,
even though the CFL number becomes progressively larger; thus, the CFL number
by itself is not a good measure of solution quality. However, the improvement due
to spatial grid refinement becomes negligible for N > 100, since errors due to time
discretization is now the dominant source of error. In addition, the average number of
iterations required to attain convergence increases with each refinement: as we refine
the grid, we are solving increasingly difficult problems, even though the improvement
in solution accuracy will stagnate beyond a certain point. Thus, even though the fully-
implicit method can tolerate arbitrarily large CFL numbers, one should not expect the
solution accuracy to improve indefinitely simply by using a finer spatial grid, without
making a corresponding reduction in time-step size.



Implicit Monotone Schemes in Multiphase Flow 21

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
 

S
 

N = 50, T/dt = 10, CFL = 4.0956

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
 

S
 

N = 100, T/dt = 20, CFL = 4.0956

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
 

S
 

N = 200, T/dt = 40, CFL = 4.0956

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
 

S
 

N = 400, T/dt = 80, CFL = 4.0956

(d)

Fig. 5.1. Numerical solution at different resolutions, CFL = 4.10, t = 0.15.

5.3. Non-uniform grids. The real advantage of the fully-implicit method over
an explicit scheme lies in its efficiency when applied to a heterogeneous problem, where
the porosity φ(x) and permeability K(x) can vary by orders of magnitude over the
domain. In these problems, the CFL condition is determined by the minimum porosity
in the domain, which can be much smaller than the average porosity. To illustrate
this point, we show an example in which the spatial grid is non-uniform (which, from
section 3.5.1, is equivalent to the spatially-varying porosity case). The non-uniform
grid contains 50 gridblocks, with ∆xmax/∆xmin = 96. Figure 5.3 and Table 5.3
compare the numerical solutions obtained from this grid to the uniform-grid solutions.
We see that the solutions are qualitatively (from the plots) and quantitatively (from
the L1-error and front dispersion) not very different, even though the CFL number
is 50 times larger in the non-uniform case. Thus, an explicit integrator would have
to take unacceptably small time steps, whereas an implicit method allows time steps
that are much more reasonable. In addition, the average number of iterations required
for convergence is roughly the same for both cases, so the equations resulting from a
non-uniform grid are not harder to solve, despite the large CFL numbers.

5.4. 2D example. The goal of this example is to compare the unconditionally
stable SEQ method with the implicit-pressure-explicit-saturation (IMPES) method,
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Fig. 5.2. Numerical solution for different spatial grids, 20 time steps, t = 0.15. The N = 100
case is identical to Figure 5.1(b) and hence omitted.

which carries a time-step restriction ∆t = O(∆x). We use a 110×30 grid to discretize
a 2D horizontal reservoir (i.e., no gravity). The porosity φ is constant throughout the
reservoir, whereas the permeability field K(x) is taken from the SPE 10 test set [4]
and ranges from a minimum of 0.0052 to a maximum of 1219 (see Figure 5.4(b)).
The reservoir is initially saturated with oil. Starting from t = 0, water is injected
at a constant rate into cell (1, 1), and fluid is produced at constant pressure from
cell (110, 30). We simulate the reservoir until t = 30 (0.182 pore volumes injected),
which is roughly when breakthrough occurs at the outlet boundary. For IMPES, we
take the largest time step allowed by the CFL criterion, whereas for SEQ we use two
time-stepping strategies:

• Small ∆t: t = 1, 2, 3, 4; after t = 4, ∆t = 2 until t = 30;
• Large ∆t: t = 1, 3, 6, 10; after t = 10, ∆t = 5 until t = 30.

Figures 5.4(a), (c) and (e) show the saturation profiles obtained from IMPES and
SEQ for the two time-step sizes, and Table 5.4 shows the error and running times
for each case. Note that all three solutions are very similar; the largest discrepancies
occur near flood fronts, where the SEQ solutions are noticeably more diffuse than the
IMPES solution. However, the IMPES profile is sharp only because the method is
forced to take tiny time steps to satisfy a very severe CFL condition. As a result,
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Fig. 5.3. Numerical solutions obtained from a non-uniform grid ((a) and (b)) and their
uniform-grid counterparts ((c) and (d)), t = 0.15.

Table 5.1
Accuracy of numerical solutions for a fixed CFL number.

N t/∆t CFL L1-error Front dispersion Average # iterations
50 10 4.10 0.0665 > 0.215 4.9

100 20 4.10 0.0444 0.116 4.4
200 40 4.10 0.0273 0.066 4.2
400 80 4.10 0.0168 0.039 4.1

Table 5.2
Accuracy of numerical solutions for a fixed time step size.

N t/∆t CFL L1-error Front dispersion Average # iterations
25 20 1.02 0.0673 > 0.215 2.6
50 20 2.05 0.0529 0.156 3.3

100 20 4.10 0.0444 0.116 4.4
200 20 8.20 0.0378 0.101 6.4
400 20 16.40 0.0366 0.094 9.2
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Fig. 5.4. Permeability of the 2D reservoir, as well as saturation profiles that produced by the
different numerical methods.

Table 5.3
Accuracy of numerical solutions for a non-uniform grid.

N tD/∆t CFL L1-error Front disp. Avg. # iters
Non-uniform 50 20 105.80 0.0566 0.180 3.2

50 50 42.30 0.0475 0.132 2.2
Uniform 50 20 2.05 0.0529 0.156 3.3

50 50 0.82 0.0435 0.116 2.1

Table 5.4
Performance of different numerical methods on the 2D example.

IMPES SEQ (large ∆t) SEQ (small ∆t)
No. of time steps 1350 8 17
Maximum ∆t 0.0222 5 2
Maximum CFL 1 225 90
Breakthrough time (days) 29.1 24.6 27.7
‖SIMPES − SSEQ‖

L1(Ω) – 0.0188 0.0091

‖SIMPES − SSEQ‖L∞(Ω) – 0.2348 0.2004
Solution time (sec) 66017 1016 2130
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IMPES runs 65 times slower than SEQ for the large ∆t case, and 31 times slower
for the small ∆t case. Table 5.4 indicates that the maximum difference between the
IMPES and SEQ solutions remains nearly constant when the time step is reduced.
This is not surprising, because the numerical solution cannot converge uniformly when
discontinuities are present in the solution. However, we do observe a decrease in the
L1-error, as well as a later breakthrough time, when ∆t is reduced. This is consistent
with our 1D results, where refining the grid reduces the L1 and front dispersion errors,
but the L∞-error does not go to zero because of smearing across the shock front. This
example shows that, for problems of practical interest, an implicit method can produce
solutions of comparable quality at much lower computational costs than an explicit
method.

6. Conclusion. We have shown that, for any residual function that arises from
the implicit monotone discretization of a scalar hyperbolic conservation law, the non-
linear Gauss-Seidel and Jacobi processes converge to the unique bounded solution
whenever the initial guess is bounded. This provides an alternate, constructive proof
of the well-definedness of monotone implicit schemes, for which a solution algorithm
is easily implementable. Convergence to the entropy solution for arbitrary CFL num-
bers follows immediately from the properties of the flux functions. These results are
applicable to the fully-coupled two-phase flow problem in one-dimension, and to the
hyperbolic subproblem in the sequential-implicit method in higher dimensions. Fi-
nally, we studied the accuracy of phase-based upstream solutions under different grid
refinement schemes, and the importance of unconditional stability became evident
when a non-uniform grid and/or a variable porosity field is used.
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