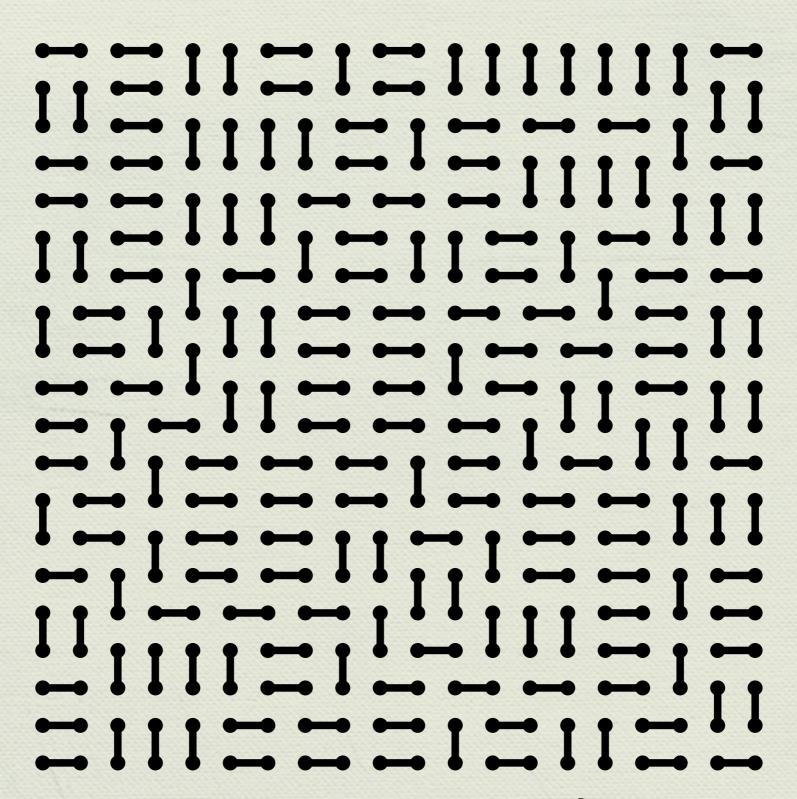
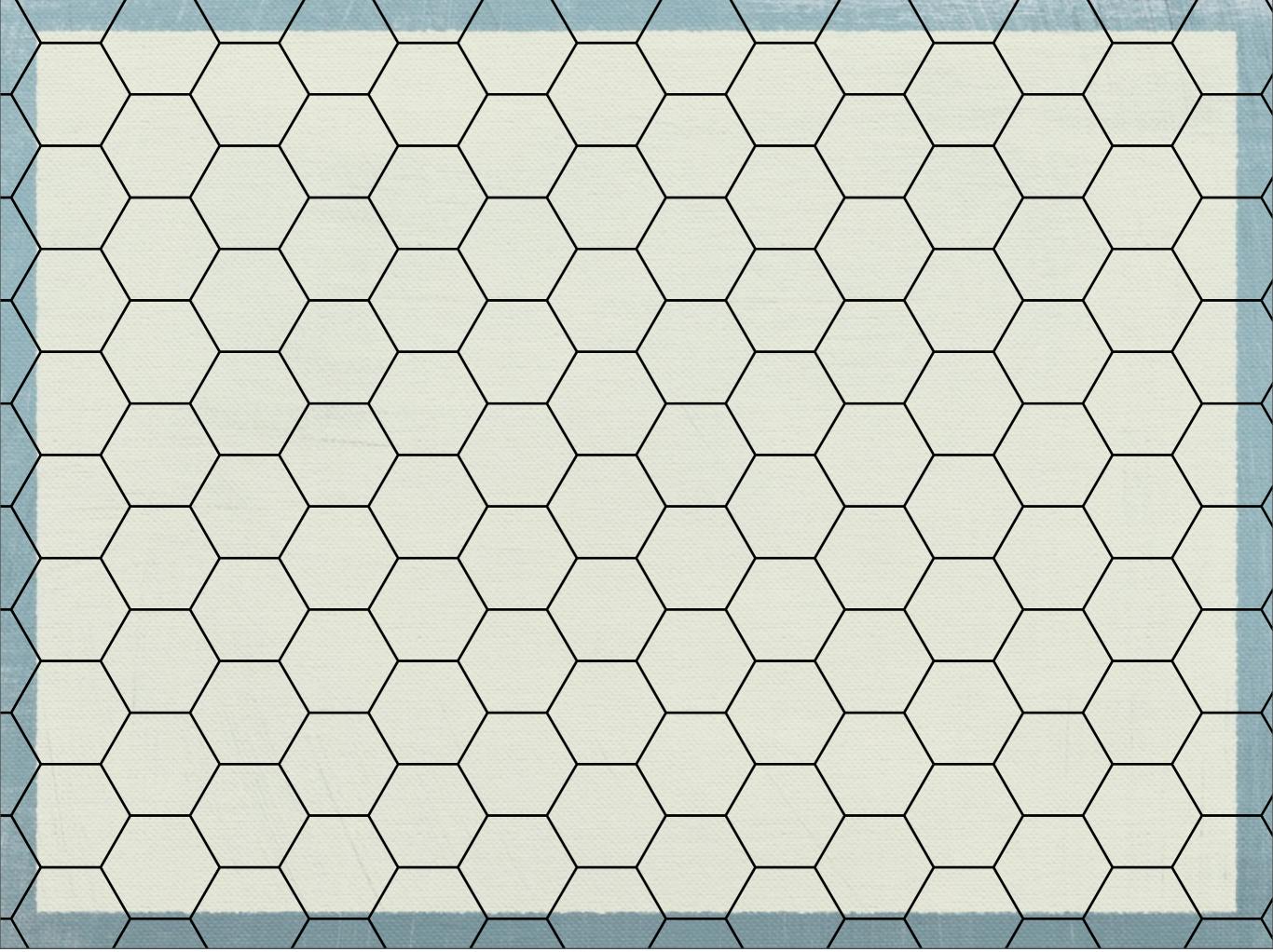
DIMERSAND INTEGRABILITY

R. Kenyon



Dimer model on \mathbb{Z}^2

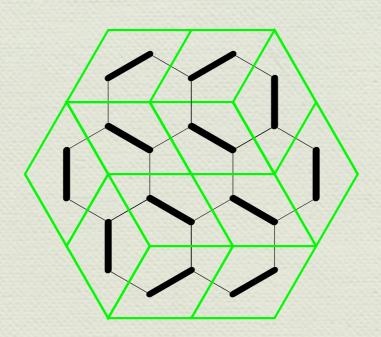
random dimer covering = random perfect matching



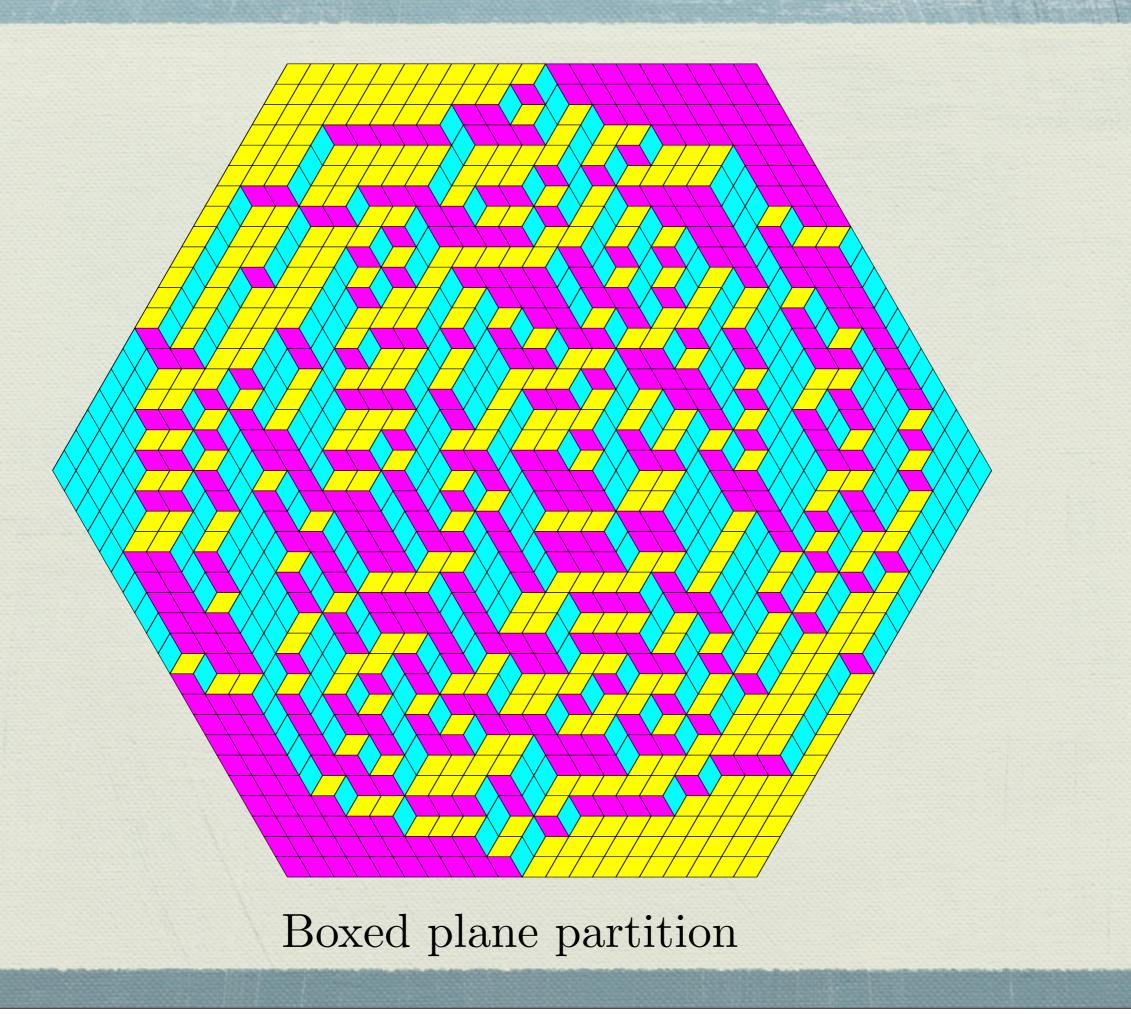
Thm (Kasteleyn 1965) For $G \subseteq \text{honeycomb}$, let K = adjacency matrix,

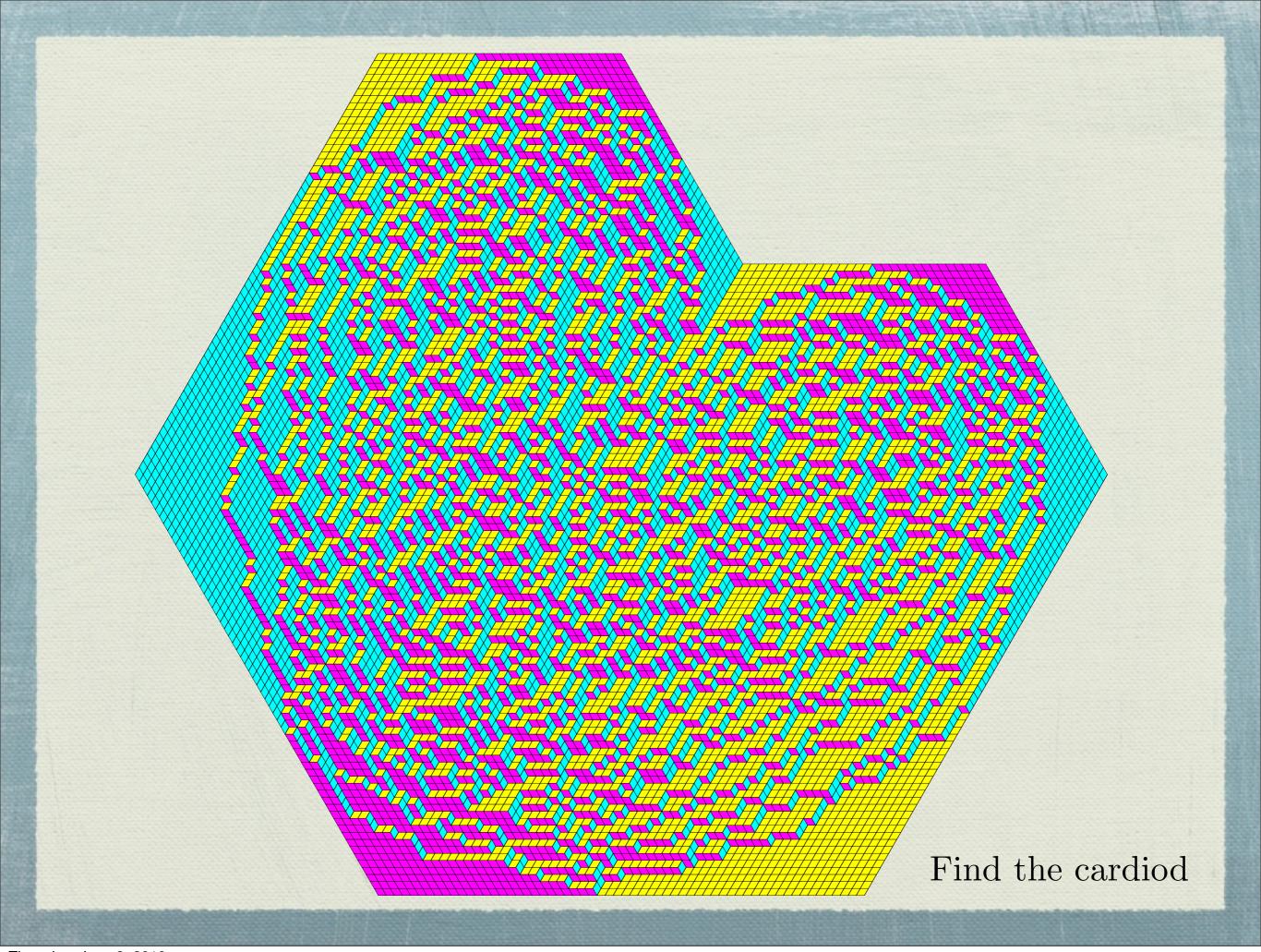
$$k_{ij} = \begin{cases} 1 & i \sim j \\ 0 & \text{else.} \end{cases}$$

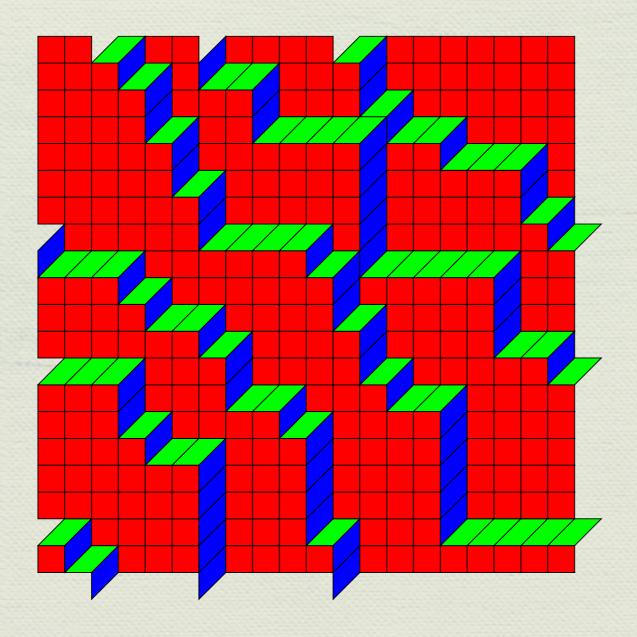
Then the number of dimer coverings is $\sqrt{\det K}$.



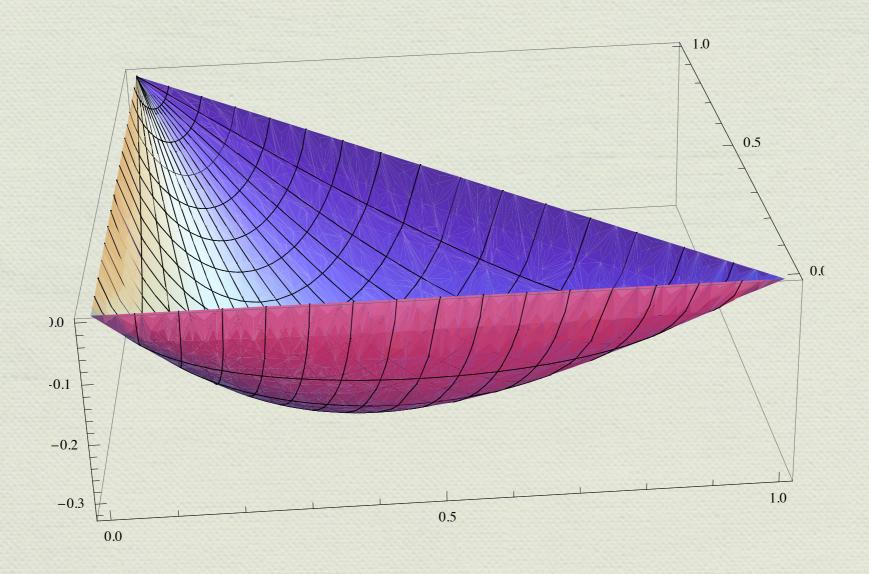
Example: K is 24×24 and $\det K = 400$.







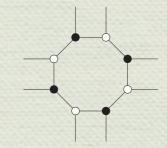
different gradients have different growth rates per unit area.

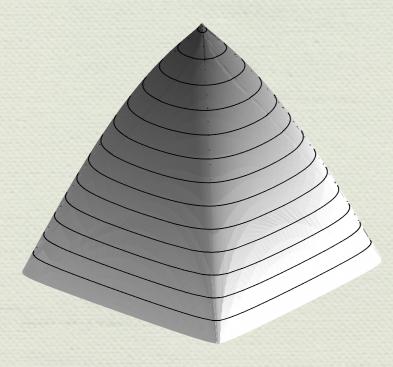


Honeycomb dimer surface tension (a function of the gradient of the height function).

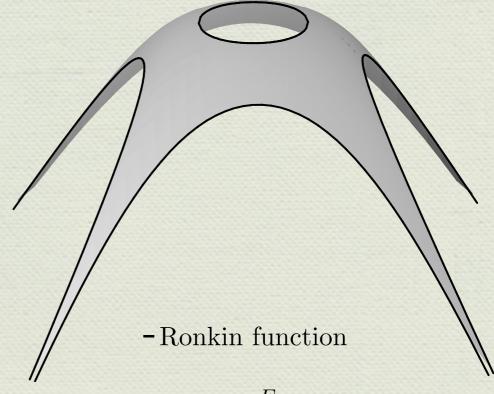
Square-octagon lattice

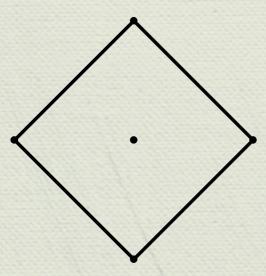
$$P(z, w) = 5 + z + 1/z + w + 1/w$$



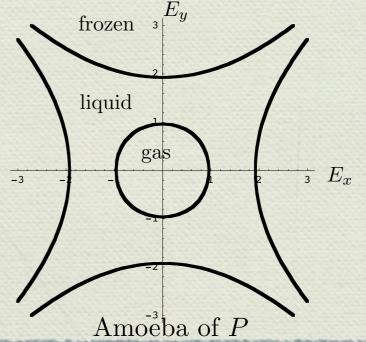


minus the surface tension



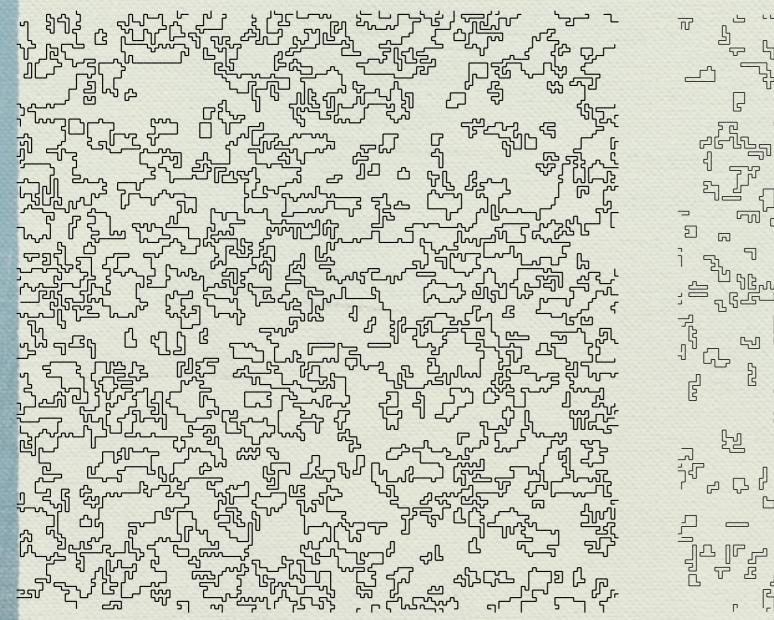


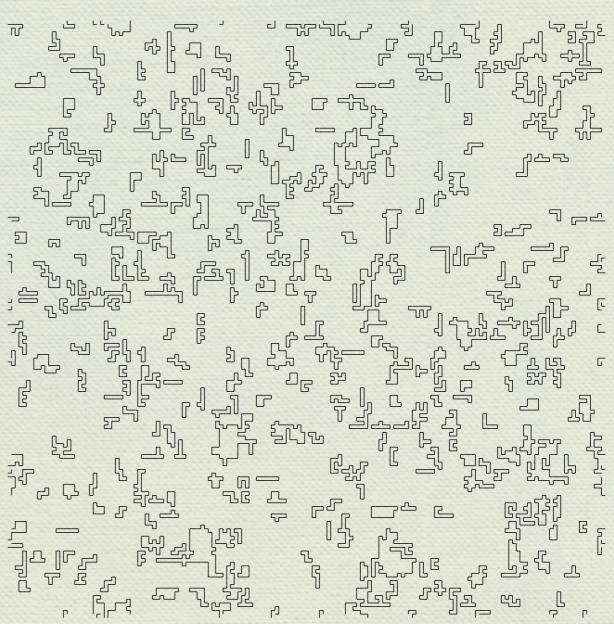
Phase space



Newton polygon = allowed slopes

Three phases of measures





liquid phase contours

Conformally invariant ([K, 2010])

gaseous phase contours

height contours

Three phases of measures

frozen phase contours

height contours

The dimer world

Combinatorics

Matching theory

Random walk random interfaces

Gibbs measures

random partitions

 $SLE_{2,3,4}$

Ronkin function

Free field

171.

Limit shapes

total positivity

Cluster algebras

Laplacian

integrability

 \mathbb{Z}^2 -actions

SU(2)

Tropical geometry

Harnack curves

non-commutative geometry

Complex Burgers'

Hamiltonian dynamics

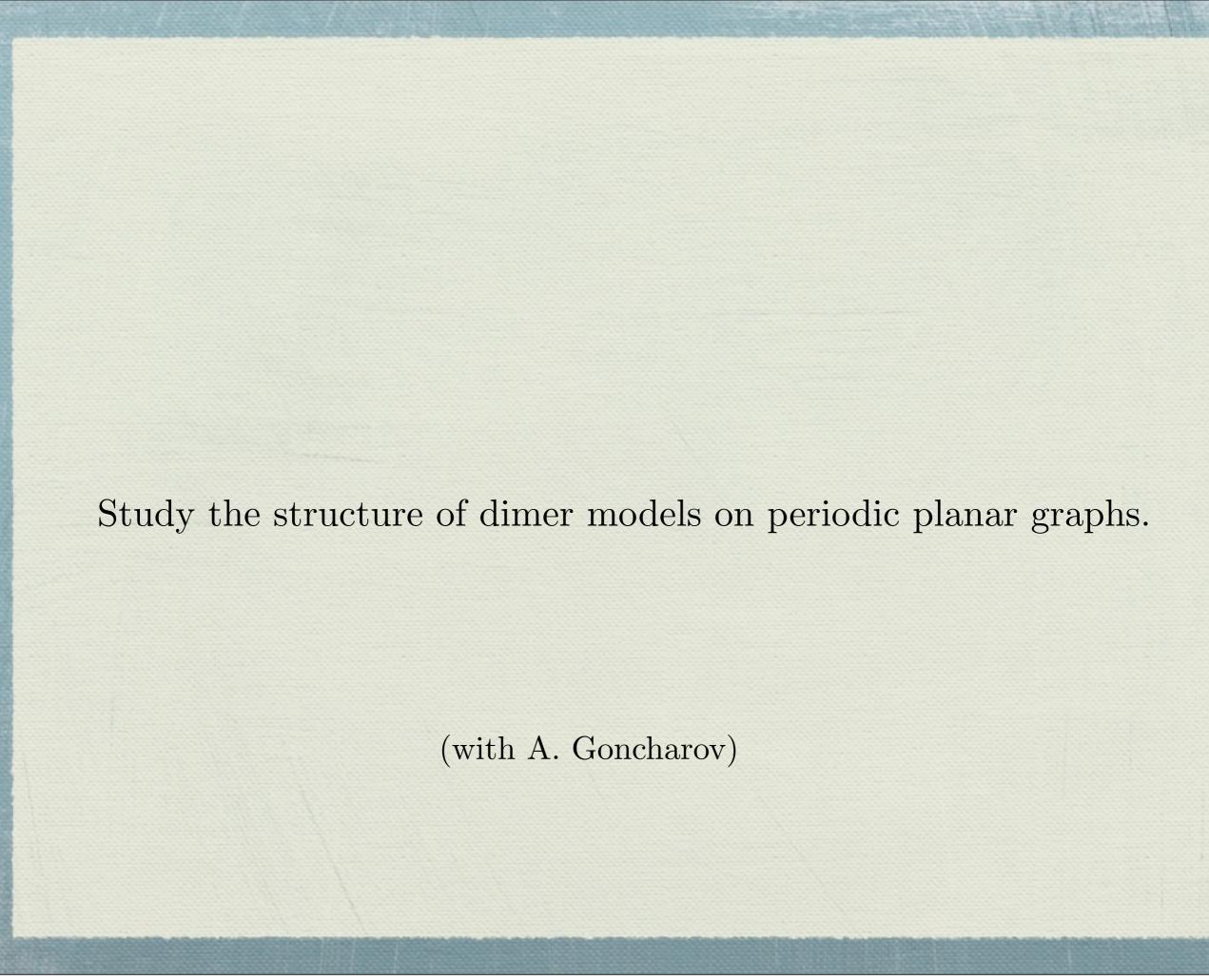
Mass transport

Strings

Gromov-Witten

Analysis

Algebraic Geometry



Dimers

Riemann Surfaces

A convex \mathbb{Z}^2 polygon

bipartite graph on torus

mutation/ urban renewal

face weights

Harnack curve + divisor

Dimer Teichmüller space

tropical Harnack curve

cluster algebra

commuting Hamiltonians

(g,n)

ideal triangulation

flip move

cross ratios

Conformal structure

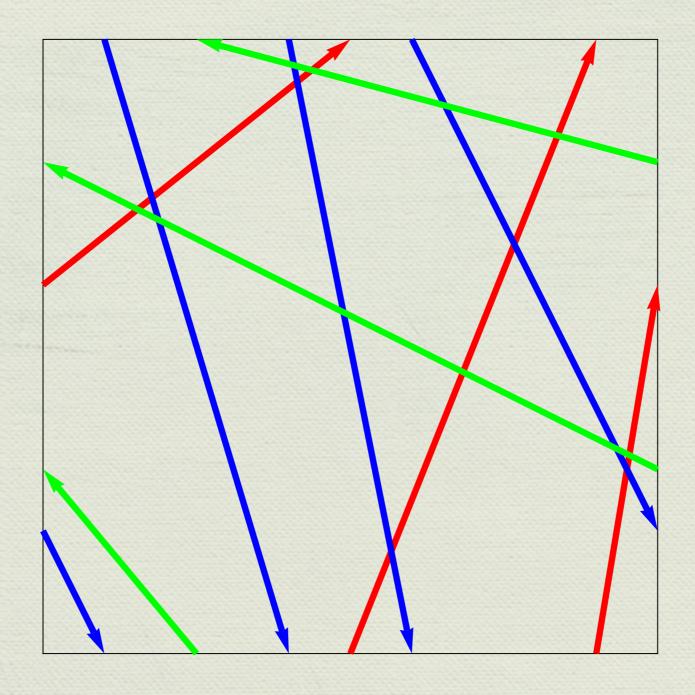
Teichmüller space $\cong \mathbb{R}^{6g-6+2n}$

measured lamination

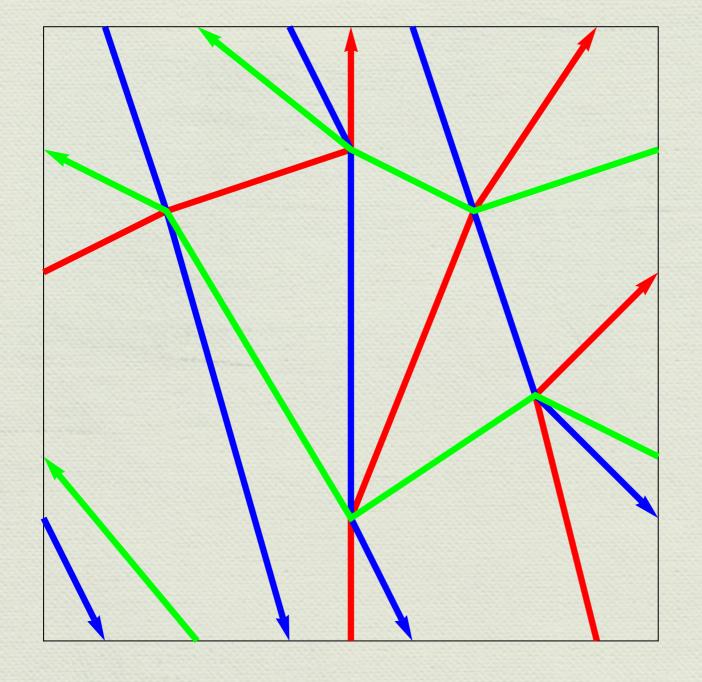
cluster algebra

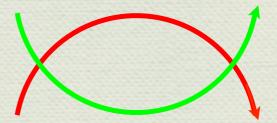


Start: a convex polygon with vertices in \mathbb{Z}^2 .

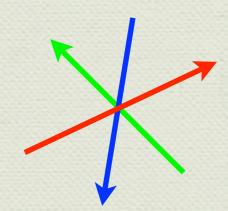


Geodesics on the torus, one for each primitive edge of N.



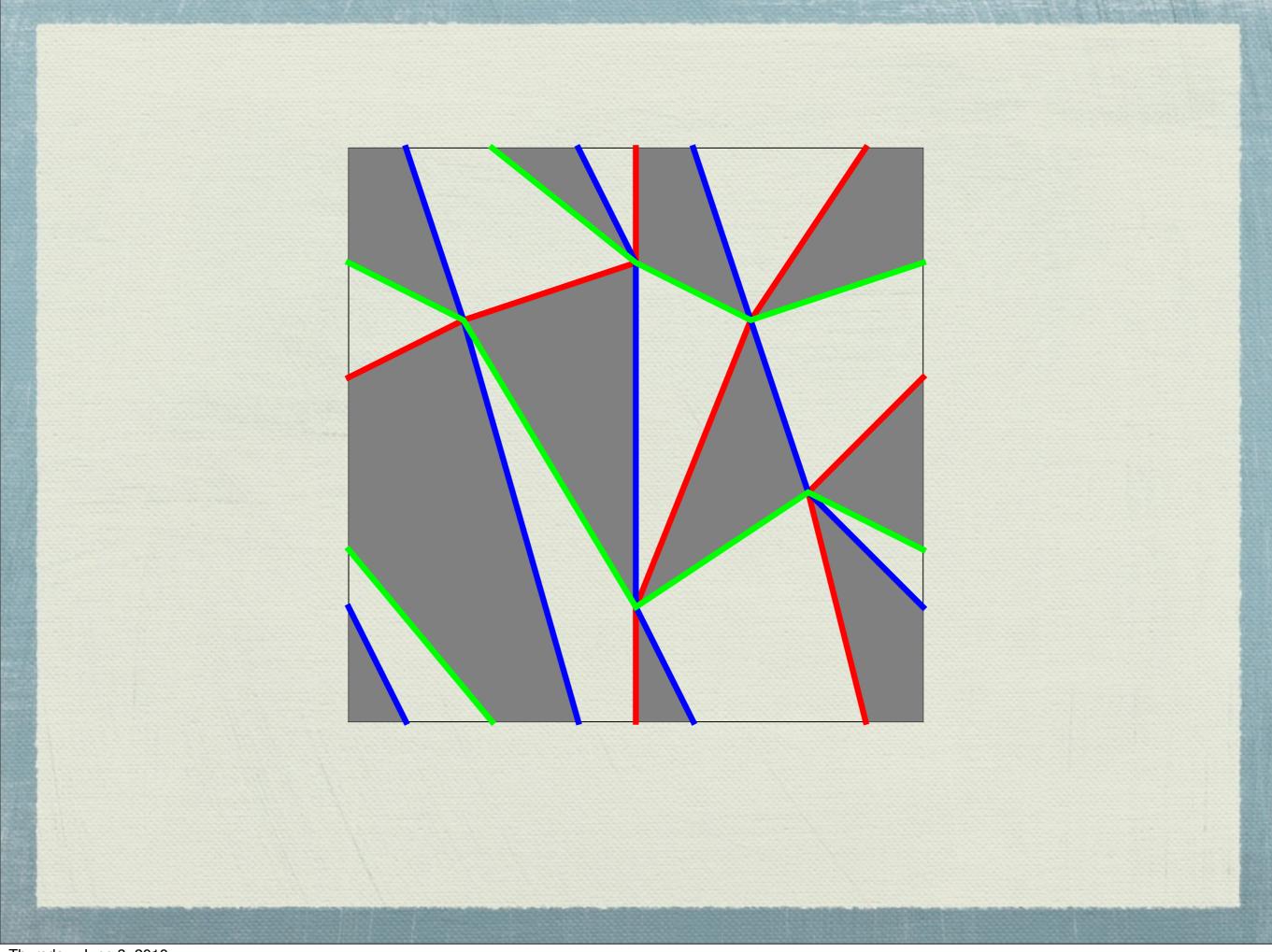


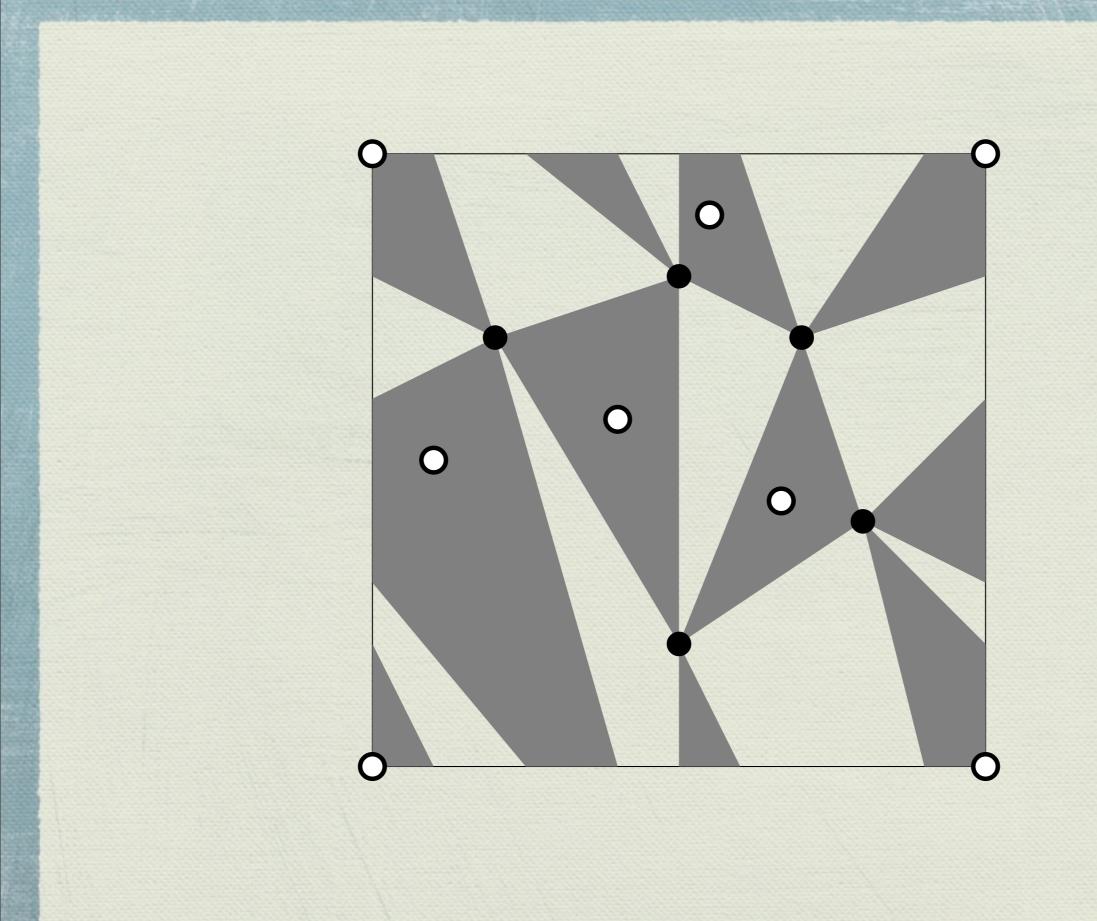
no parallel double crossings

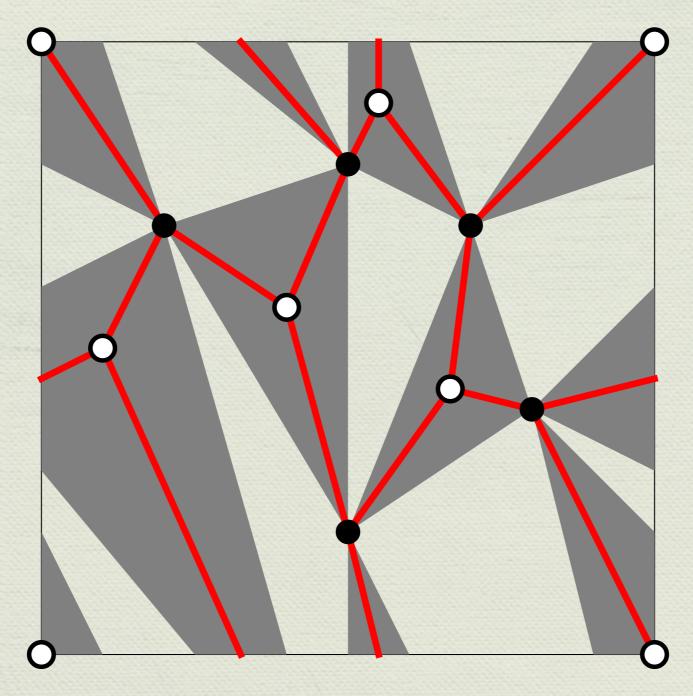


respect circular order

Isotope to a "triple-crossing diagram" [D. Thurston]

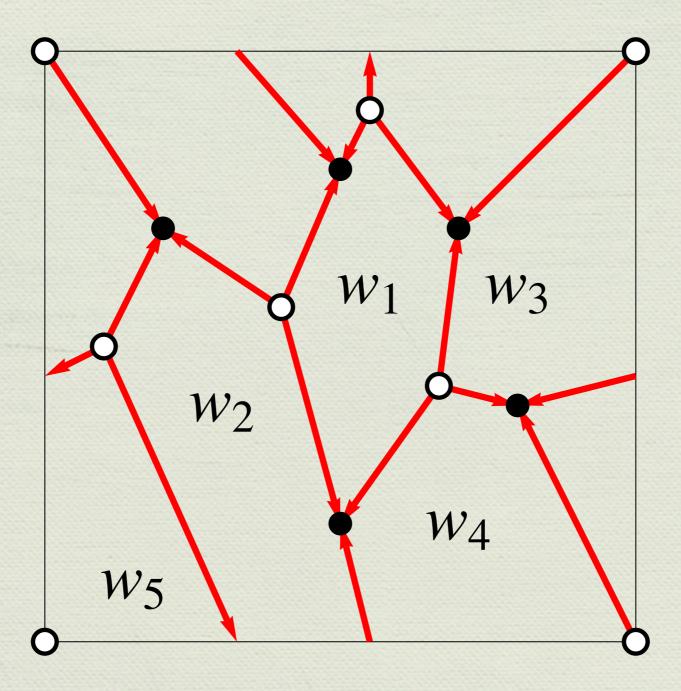






Obtain a bipartite graph

Lemma: |white vertices| = |black vertices| = |faces| = 2Area(N).



Label faces.

Matchings and homology

Let $\Omega(G) \subset [0,1]^E$ be the matching polytope.

$$f \in \Omega \implies \partial f(v) = \begin{cases} 1 & v \text{ is white} \\ -1 & v \text{ is black.} \end{cases}$$

Lemma: Vertices of Ω are dimer covers of G.

If
$$f_0, f_1 \in \Omega$$
 then $\partial(f_1 - f_0) = 0$

so defines a homology class $[f_1 - f_0]$ in $\mathbb{R}^2 = H_1(\mathbb{T}^2, \mathbb{R})$.

Lemma: The image of Ω under $f \mapsto [f - f_0]$ is (a translate of) N.

Let M(G) be the set of dimer covers of G.

Fix $m_0 \in M(G)$. For any $m \in M(G)$, $[m - m_0] \in H_1(G, \mathbb{R})$.

But $H_1(G)$ is generated by the $[w_i]$ and $[z_1], [z_2]$.

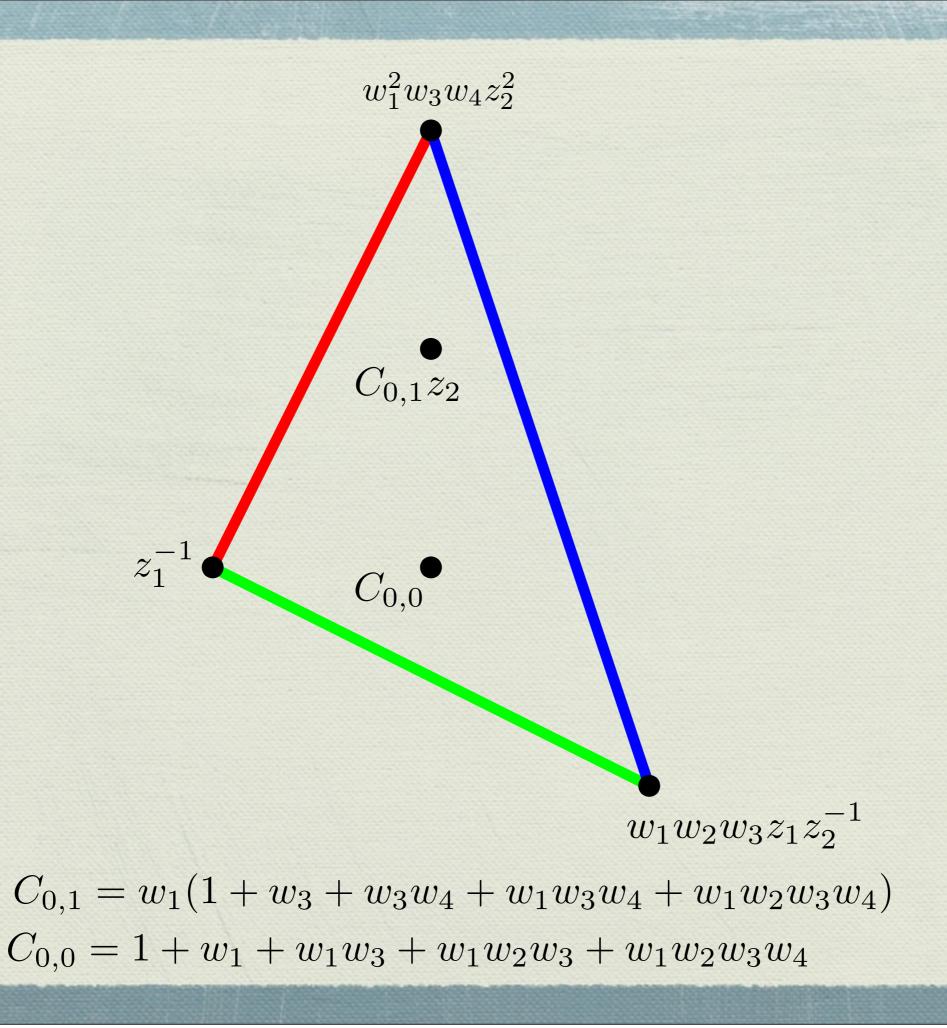
So
$$[m - m_0] = \sum \alpha_i [w_i] + h_x[z_1] + h_y[z_2].$$

Define the **weight** of m to be

$$\nu(m) = \prod w_i^{\alpha_i} z_1^{h_x} z_2^{h_y}.$$

and the "partition function"

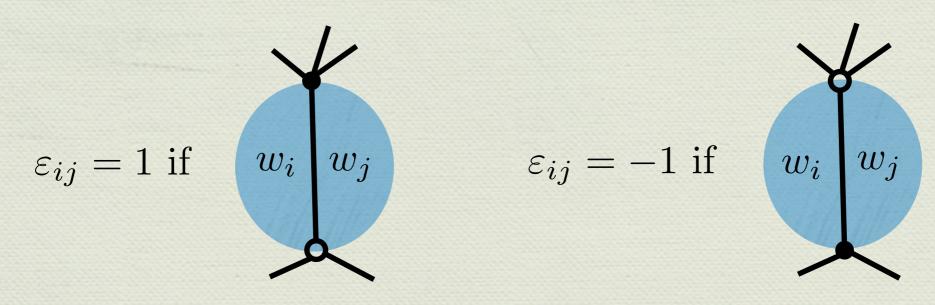
$$P(z_1, z_2; w) = \sum_{m \in M(G)} \nu(m)(-1)^{h_x h_y}.$$



Define a Poisson structure on $(\mathbb{C}^*)^{n+2}$ (a Poisson bracket on $\mathbb{C}[w_1^{\pm 1}, \dots, w_n^{\pm 1}, z_1^{\pm 1} z_2^{\pm 1}])$

$$\{w_i, w_j\} = \varepsilon_{ij} w_i w_j$$

where ε is a skew-symmetric form



$$\varepsilon_{ij} = 0$$
 else.

A similar rule for $\{w_i, z_j\}$ and $\{z_i, z_j\}$.

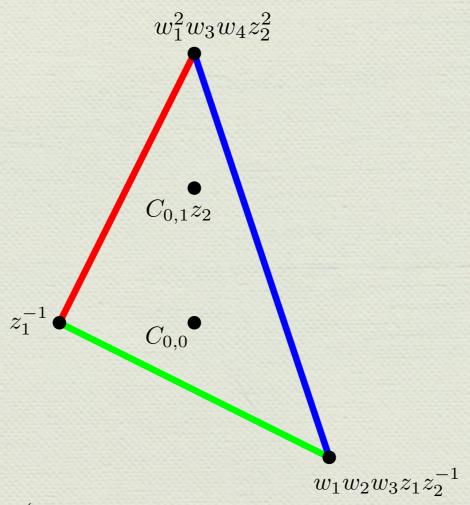
Theorem [Goncharov-K]

This Poisson bracket defines a completely integrable system of dimension $2 + 2\operatorname{Area}(N)$, with symplectic leaves of dimension $2\operatorname{int}(N)$, (twice the number of interior vertices). A basis for the Casimir elements is given by (ratios of) boundary coefficients of P.

The commuting Hamiltonians are the 'interior' coefficients of P.

A quantum integrable system can be defined using q-commuting variables:

$$w_i w_j = q^{2\varepsilon_{ij}} w_j w_i.$$



 $C_{0,1} = w_1(1 + w_3 + w_3w_4 + w_1w_3w_4 + w_1w_2w_3w_4)$ $C_{0,0} = 1 + w_1 + w_1w_3 + w_1w_2w_3 + w_1w_2w_3w_4$

Casimirs: $w_1 w_3 w_4 z_2^2 z_1$ $w_1 w_2 w_3 z_1^2 z_2^{-2}$

(commute with everything)

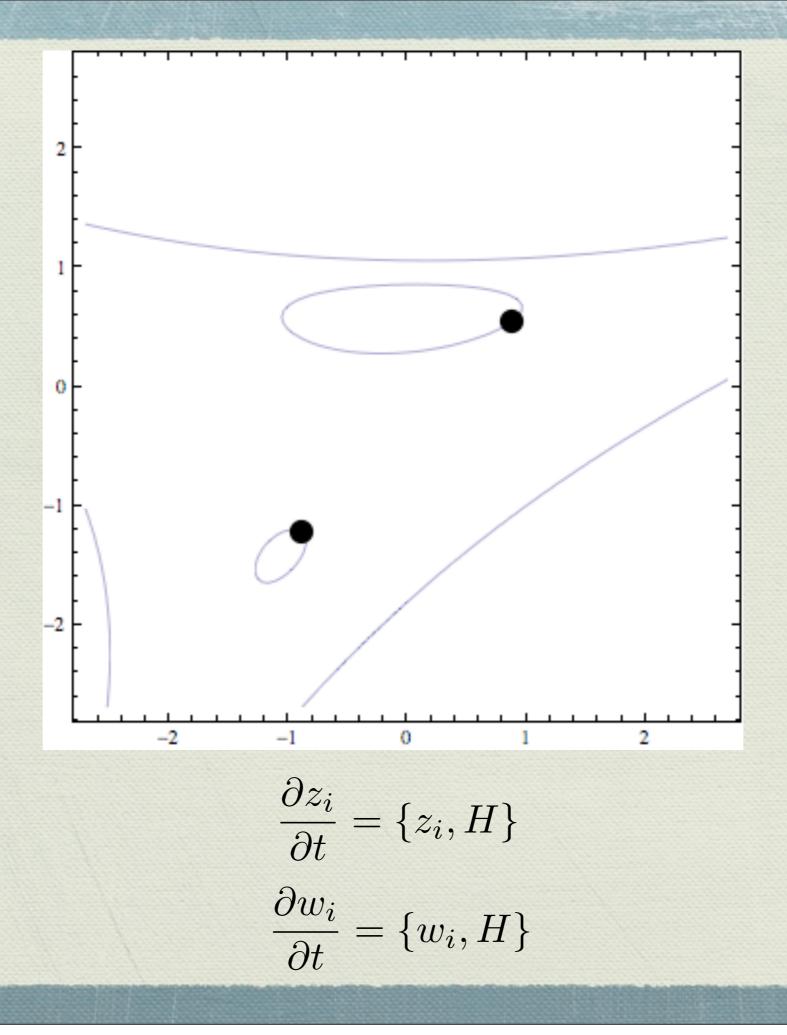
Hamiltonians: $H_0 = C_{0,0}z_1$

 $H_1 = C_{0,1} z_1$

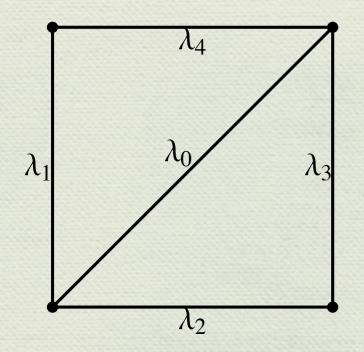
(commute with each other)

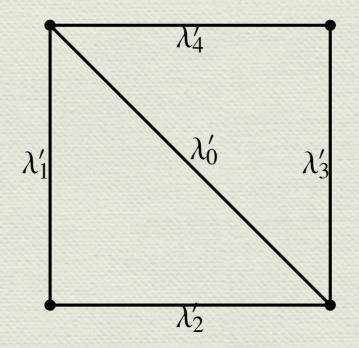
6 = 2 + 2 * 2

Complete integrability



Triangle flip





$$\lambda'_{0} = \lambda_{0}^{-1}$$

$$\lambda'_{1} = \lambda_{1}(1 + \lambda_{0})$$

$$\lambda'_{2} = \lambda_{2}(1 + \lambda_{0}^{-1})^{-1}$$

$$\lambda'_{3} = \lambda_{3}(1 + \lambda_{0})$$

$$\lambda'_{4} = \lambda_{4}(1 + \lambda_{0}^{-1})^{-1}$$

Urban renewal

