

Quasiconformal maps and harmonic measure Stanislav Smirnov

In part based on joint work with

Kari Astala & István Prause

quasiconformal maps

$$\varphi \colon \Omega \to \Omega' \ W_{loc}^{1,2}$$
-homeomorphism

Def 1
$$\bar{\partial}\varphi(z)=\mu(z)\partial\varphi(z)$$
 a.e. $z\in\Omega$

$$\|\mu\|_{\infty} \le k < 1$$

eccentricity ≤

$$K = \frac{1+k}{1-k}$$

measurable Riemann mapping theorem:

- (unique up to Möbius) solution exists
- ullet depends analytically on μ

distortion of dimension

Theorem [Astala 1994] for k – quasiconformal φ

$$\frac{1}{K} \left(\frac{1}{\dim E} - \frac{1}{2} \right) \le \frac{1}{\dim \varphi(E)} - \frac{1}{2} \le K \left(\frac{1}{\dim E} - \frac{1}{2} \right)$$

Rem result is sharp (easy from the proof)

In particular, dim E=1 \Rightarrow 1- $k \leq \dim \varphi(E) \leq 1+k$ [Becker-Pommerenke 1987] dim $\varphi(\mathbb{R}) \leq 1+37k^2$

Conjecture [Astala] dim $\varphi(\mathbb{R}) \leq 1 + k^2$

dimension of quasicircles

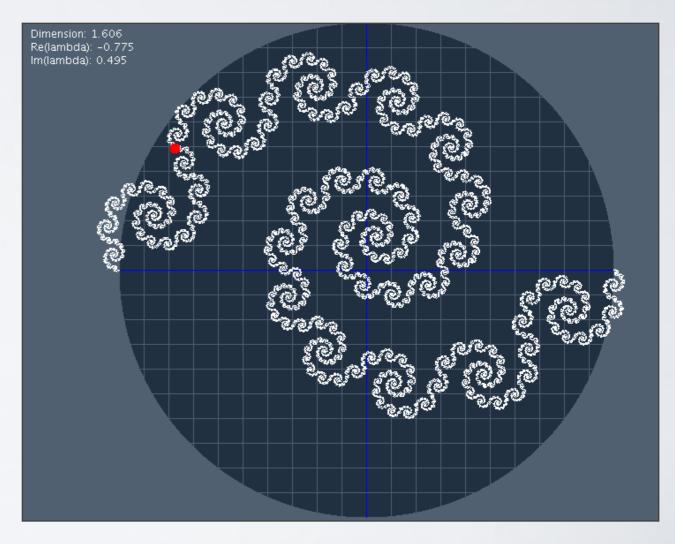
Thm [S]
$$\dim \varphi(\mathbb{R}) \leqslant 1+k^2$$

Dual statement:

 φ symmetric wrt \mathbb{R} ,

$$\left\{\begin{array}{l} \operatorname{spt} \nu \subset \mathbb{R} \\ \dim \nu = 1 \end{array}\right\} \Rightarrow \\ \dim \varphi(\nu) \geqslant 1-k^2$$

Sharpness???



a nonrectifiable quasicircle

Proof: holomorphic motion

Any k - qc map φ_k can be embedded into a holomorphic motion of qc maps φ_{λ} , $\lambda \in \mathbb{D}$:

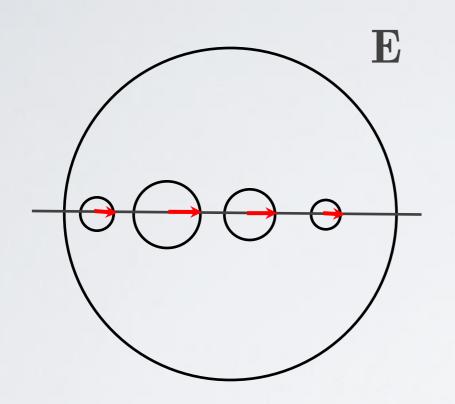
Define Beltrami coefficient $\mu = \mu_{\varphi} / \|\mu_{\varphi}\|, \|\mu\|=1$

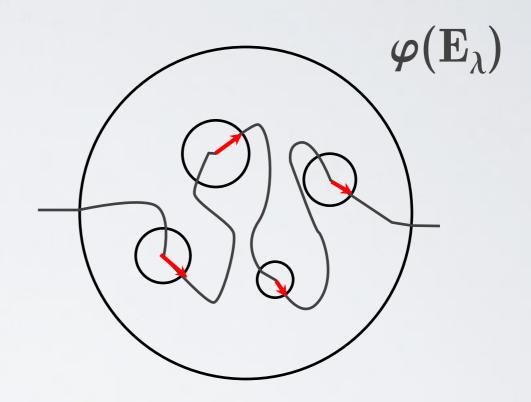
$$\lambda \in \mathbb{D} \longrightarrow \lambda \mu \longrightarrow \varphi_{\lambda}$$
 which is $|\lambda|$ -qc

Mañé-Sad-Sullivan, Slodkowski:

A holomorphic motion of a set can be extended to a holomorpic motion of qc maps

Proof: fractal approximation





a packing of disks evolves in the motion $\{B_{\lambda}\}$ "complex radii" $\{r_{\lambda}\}$

Cantor sets $C_{\lambda} \approx \varphi(E_{\lambda})$

Proof: "thermodynamics"

Pressure [Ruelle, Bowen]

$$P_{\lambda}(t) := \log(\Sigma |r_{j}(\lambda)|^{t})$$

"Entropy"
$$I_p := \sum p_j \log (1/p_j)$$



"Lyapunov exponent" $\Lambda_{\rm p}\left(\lambda\right):=\Sigma~{\rm p_j~log}~(1/|{\rm r_j}(\lambda)|)$ (harmonic in λ !)

Variational principle (Jensen's inequality)

$$P_{\lambda}(t) = \sup_{p \in \text{Prob}} \sum_{j} \log (|\mathbf{r}_{j}(\lambda)|^{t}/p_{j}) = \sup_{p \in \text{Prob}} (\mathbf{I}_{p} - t \Lambda_{p}(\lambda))$$

Bowen's formula: dim C $_{\lambda}$ = root of P $_{\lambda}$ = sup I $_{p \in Prob}$ / $\Lambda_{p}(\lambda)$

Proof: Harnack's inequality

$$\cdot \ \dim \ C_0 = 1 \Longrightarrow I_p \ / \Lambda_p(0) \leqslant 1 \Longrightarrow \Lambda_p(0) - I_p \ / 2 \geqslant I_p \ / 2$$

• dim C
$$_{\lambda} \le 2 \Longrightarrow I_{p} / \Lambda_{p}(\lambda) \le 2 \Longrightarrow \Lambda_{p}(\lambda) - I_{p} / 2 \ge 0$$

$$\begin{array}{l} \cdot \; \text{Harnack} \Longrightarrow \Lambda_{\mathrm{p}}(\,\lambda) - \frac{\mathrm{I}_{\mathrm{p}}}{2} \, \geqslant \, \frac{1 - |\lambda|}{1 + |\lambda|} \frac{\mathrm{I}_{\mathrm{p}}}{2} \\ \\ \Longrightarrow \Lambda_{\mathrm{p}}(\,\lambda) \, \geqslant \, \frac{1}{1 + |\lambda|} \, \mathrm{I}_{\mathrm{p}} \\ \\ \Longrightarrow \dim \, \mathrm{C}_{\,\lambda} = \sup_{\mathrm{p}} \, \mathrm{I}_{\mathrm{p}} \, / \Lambda_{\mathrm{p}}(\,\lambda) \, \leqslant \, 1 + |\lambda| \end{array}$$

• Quasicircle \Longrightarrow (anti)symmetric motion \Longrightarrow even Λ

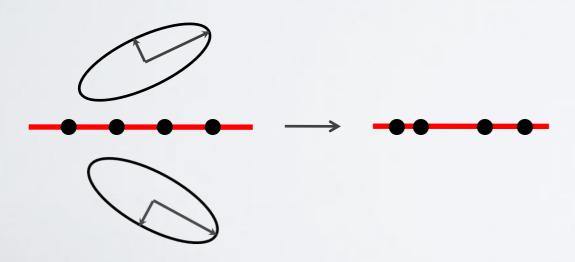
 \implies "quadratic" Harnack \implies dim C $_{\lambda} \le 1 + |\lambda|^2$

Proof: symmetrization

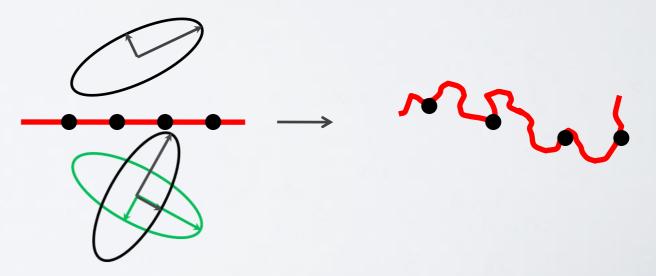
Thm [S] the following are equivalent:

- a. $\Gamma = \varphi(\mathbb{R})$ and φ is k-qc
- b. $\Gamma = \varphi(\mathbb{R})$ and φ is $\frac{2k}{1+k^2}$ qc in \mathbb{C}_+ and conformal in \mathbb{C}_-
- c. $\Gamma = \varphi(\mathbb{R})$ and φ is k-qc and antisymmetric

symmetric:



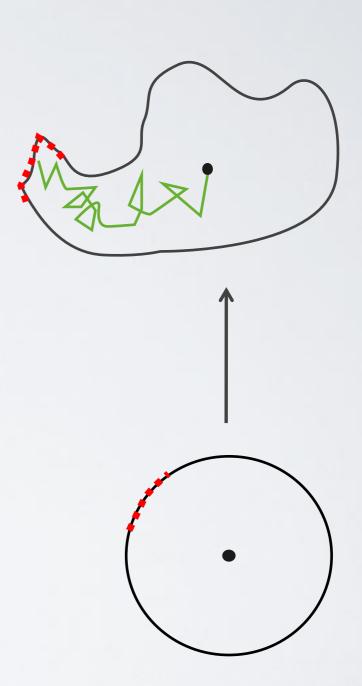
antisymmetric:



harmonic measure ω

- Brownian motion exit probability
- conformal map
 image of the length
- potential theory
 equilibrium measure
- Dirichlet problem for Δ

$$u(z_0) = \int_{\partial\Omega} u(z) d\omega(z)$$



multifractality of ω

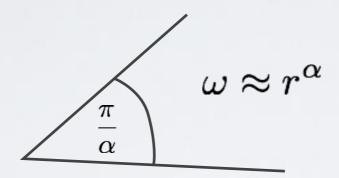
"fjords and spikes"

$$\mathcal{F}_{\alpha}$$
 scaling: $\omega B(z,r) \approx r^{\alpha}$

$$\omega B(z,r) \approx r^{\alpha}$$

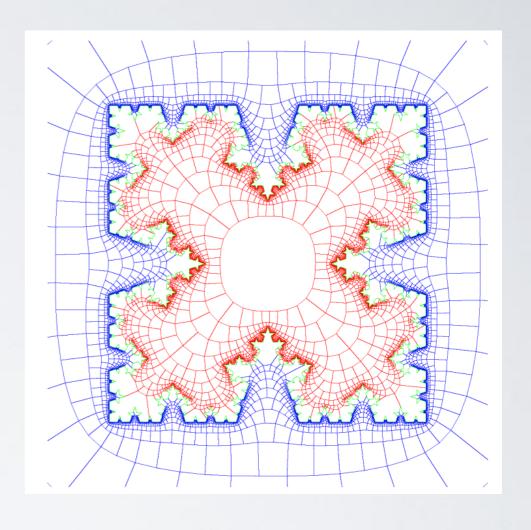
geometric

Meaning:



Beurling's theorem: $\alpha \geq 1/2$

spectrum: $f(\alpha) = \dim \mathcal{F}_{\alpha}$



Courtesy of D. Marshall

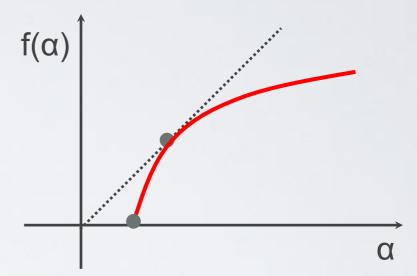
Makarov's theorem: Borel dim $\omega = 1$, f(1) = 1

Many open problems reduce to estimating the

universal spectrum

$$f(\alpha) = \sup_{\Omega} f_{\Omega}(\alpha)$$

over all simply connected domains



Conjecture :
$$f(\alpha) \stackrel{?}{=} 2 - \frac{1}{\alpha}$$

[Brennan-Carleson-Jones-Krätzer-Makarov]

Legendre transform & pressure

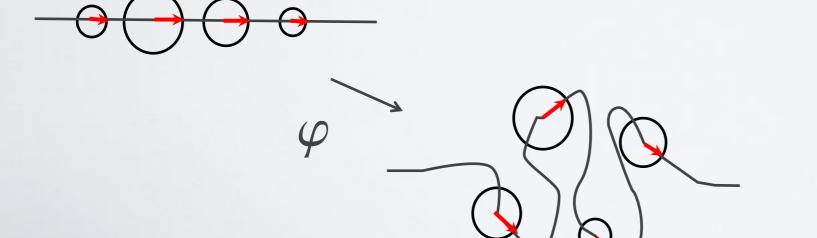
Restrict pressure to conformal maps $\varphi: \mathbb{C}_+ \to \Omega$ π_{Ω} (t) := log($\Sigma |\mathbf{r}_{\mathbf{j}}(\lambda)|^{t}$)

Universal pressure $\pi(t) := \sup_{\Omega} \pi_{\Omega}(t)$

Thm [Makarov 1998] Legendre transforms:

$$f(\alpha) = \inf_{t} \{\alpha \pi(t) + t\}$$
 $\pi(t) = \sup_{\alpha} \{(f(\alpha) - t) / \alpha\}$

Conjecture: $\pi(t) = (2-t)^2/4$





finding the universal spectrum

- no real intuition
- some numerical evidence
- only weak estimates

Example: $\pi(1)$ gives optimal

- coefficient decay rate for bounded conformal maps
- growth rate for the length of Green's lines

Conjecturally
$$\pi(1)=0.25$$
, best known estimates: $0.23\leqslant\pi(1)\leqslant0.46$

[Beliaev, Smirnov] [Hedenmalm, Shimorin]

fine structure of harmonic measure via the holomorphic motions

- I. qc deformations of conformal structure and harmonic measure
- II. motions in bi-disk
- III. welding conformal structures and Laplacian on 3-manifolds

joint work with Kari Astala and István Prause

I. deforming conf structure

Recall: spt $\nu \subset \mathbb{R} \& \dim \nu = 1 \implies \dim \varphi(\nu) \ge 1-k^2$

Thm assume that the statement above is sharp:

then the universal spectrum conjecture holds

Rem in general no sharpness (e.g. any porous σ), but we need it only for relevant "Gibbs" measures

Question: how to deform? (use φ ?)

I. proof: deforming to ω

For "Gibbs" measures the blue line is tangent to $\pi(t)$

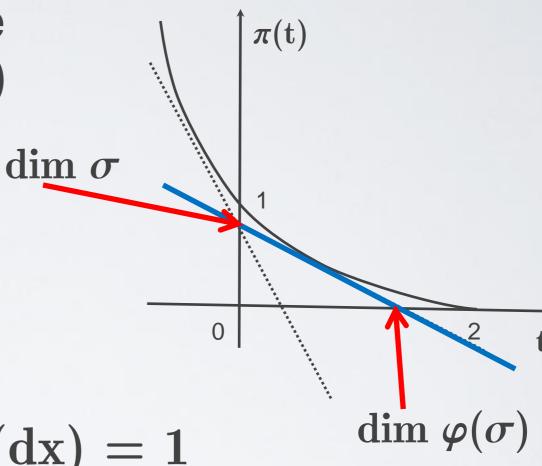
Set $1-k^2 := \dim \sigma$ and take holomorphic motion ψ such that $\psi_k(\mathrm{dx}) = \sigma$

By Makarov's theorem $\dim \varphi(\psi_k^{-1}(\sigma)) = \dim \varphi(\mathrm{dx}) = 1$

By Astala's theorem $\dim \varphi(\sigma) \leq 1+k$

$$\implies \pi(t) \leqslant (2-t)^2/4$$

 $ightharpoonup rac{arphi}{\sigma}
ightharpoonup
ho
ightharpoonup
ho
ho$ measure σ measure $arphi(\sigma)$



II. two-sided spectrum

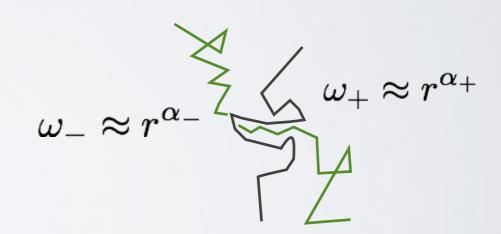
rotation [Binder]

$$f(\alpha, \gamma) = \dim \mathcal{F}_{\alpha, \gamma}$$

 $\omega \approx r^{\alpha} \& \gamma$ -spiraling

two-sided spectrum

$$f(\alpha_-, \alpha_+, \gamma) = \dim \mathcal{F}_{\alpha_-, \alpha_+, \gamma}$$



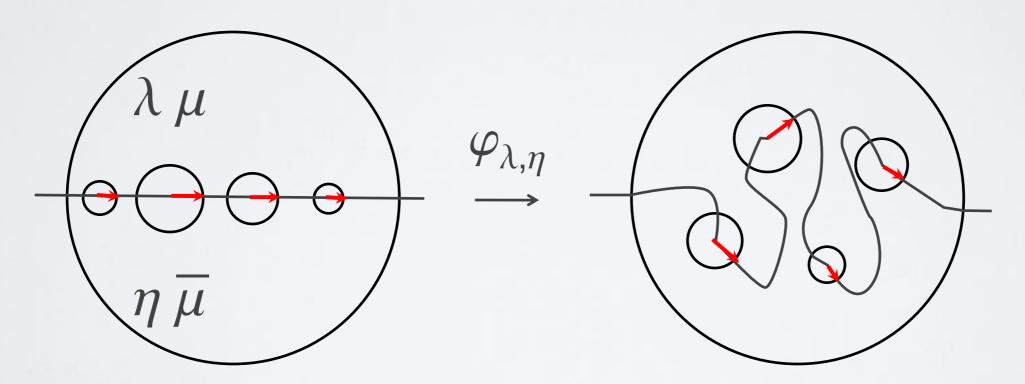
Beurling's estimate

$$\frac{1}{\alpha_{-}} + \frac{1}{\alpha_{+}} \le \frac{2}{1 + \gamma^{2}}$$

II. bidisk motion

Take Beltrami μ in \mathbb{C}_+ of norm 1, symmetrize it

$$\mu_{\lambda,\eta} = \begin{cases} \lambda \mu(z) \text{ in } \mathbb{C}_+ \\ \eta \overline{\mu(z)} \text{ in } \mathbb{C}_- \end{cases} \longrightarrow \varphi_{\lambda,\eta}(z) \quad (\lambda,\eta) \in \mathbb{D}^2$$



symmetric for $\lambda = \overline{\eta}$, antisymmetric for $\lambda = -\overline{\eta}$

II. thermodynamics

$$P_{\lambda,\eta}(t) = \log\left(\sum |r(B_{\lambda,\eta})|^t\right) = \sup_p(\mathbf{I} - t\operatorname{Re}\Lambda_{\lambda,\eta})$$

$$I = \sum p_i \log rac{1}{p_i}$$
 $\Lambda_{\lambda,\eta} = \sum p_i \log rac{1}{r_i(\lambda,\eta)}$ entropy (complex) Lyapunov exponent

$$\dim(C_{\lambda,\eta}) = \sup_{p} \dim p = \sup_{p} \frac{1}{\operatorname{Re} \Lambda_{\lambda,\eta}}$$

II. "easy" estimates

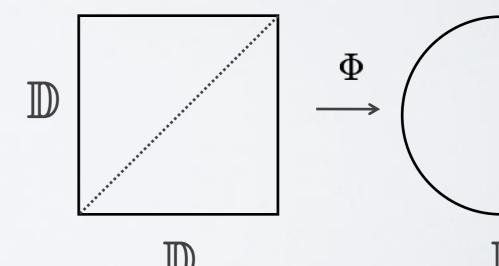
- reflection symmetry $\varphi_{\lambda,\eta}(z) = \overline{\varphi_{ar{\eta},ar{\lambda}}(ar{z})}$
- diagonal $(\lambda, \bar{\lambda})$
- projections $(\lambda,\eta)_+=(\lambda,\bar{\lambda}),\,(\lambda,\eta)_-=(\bar{\eta},\eta)$

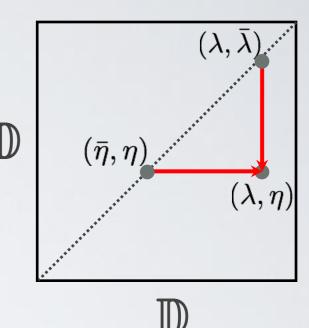
$$\Phi(\lambda, \eta) = 1 - \frac{\mathrm{I}}{\Lambda_{\lambda, \eta}}$$

$$\Phi \colon \mathbb{D}^2 \to \mathbb{D} \quad \dim C_{\lambda,\eta} \leq 2$$

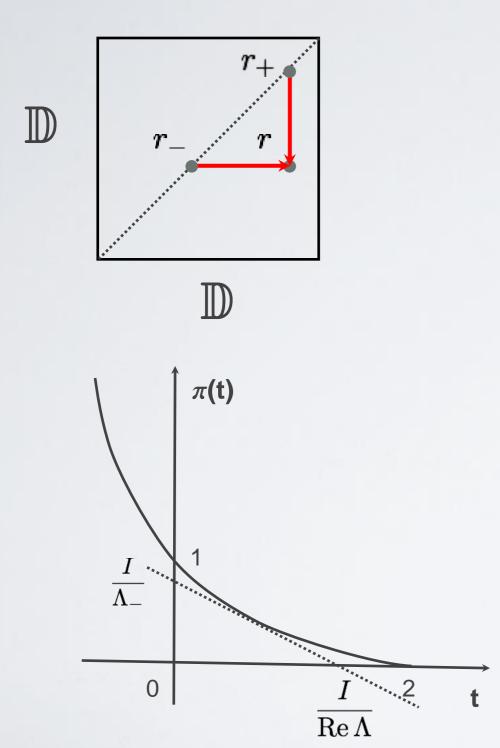
$$\Phi(\lambda, \bar{\lambda}) \ge 0 \quad \dim C_{\lambda, \bar{\lambda}} \le 1$$

$$\Phi(\lambda,\eta) = \overline{\Phi(\bar{\eta},\bar{\lambda})}$$





II. scaling relations



$$\omega_{\pm}B_{\lambda,\eta} \approx r_{\pm}$$

$$\log \frac{1}{r} = \frac{1 + i\gamma}{\alpha_{\pm}} \log \frac{1}{r_{\pm}}$$

$$rac{\mathrm{I}}{\Lambda} = rac{f}{1+i\gamma}, \quad rac{\mathrm{I}}{\Lambda_-} = rac{f}{lpha_-}, \quad rac{\mathrm{I}}{\Lambda_+} = rac{f}{lpha_+}$$

II. Beurling and Brennan

Beurling
$$\Rightarrow \frac{1}{\alpha_{-}} + \frac{1}{\alpha_{+}} \le \frac{2}{1 + \gamma^{2}} \Rightarrow 2\operatorname{Re}\Phi(\lambda, \eta) \le \Phi(\bar{\eta}, \eta) + \Phi(\lambda, \bar{\lambda})$$

Corollary: $\lambda \mapsto \Phi(\lambda, \bar{\lambda})$ is subharmonic

Brennan's conjecture: $F: \Omega \to \mathbb{D}, F' \in L^{4-\epsilon}$

Equivalent question: $f(\alpha) \le 4(\alpha - \frac{1}{2})$?

Two-sided:
$$2 \operatorname{Re} \frac{1-\Phi}{1+\Phi} \ge \frac{1-\Phi_{-}}{1+\Phi_{-}} + \frac{1-\Phi_{+}}{1+\Phi_{+}}$$
 ?

II. two-sided spectrum

Conjecture:
$$|\Phi|^2 \le \Phi_- \Phi_+$$
 or $\begin{pmatrix} \Phi(\lambda, \lambda) & \Phi(\lambda, \bar{\eta}) \\ \Phi(\eta, \bar{\lambda}) & \Phi(\eta, \bar{\eta}) \end{pmatrix} \ge 0$

Rem it is equivalent to

II. the question

We know that

$$\Phi \colon \mathbb{D}^2 \to \mathbb{D}$$

$$\Phi(\lambda, \bar{\lambda}) \geq 0$$
 and subharmonic

$$\Phi(\lambda, \eta) = \overline{\Phi(\bar{\eta}, \bar{\lambda})}$$

plus more...

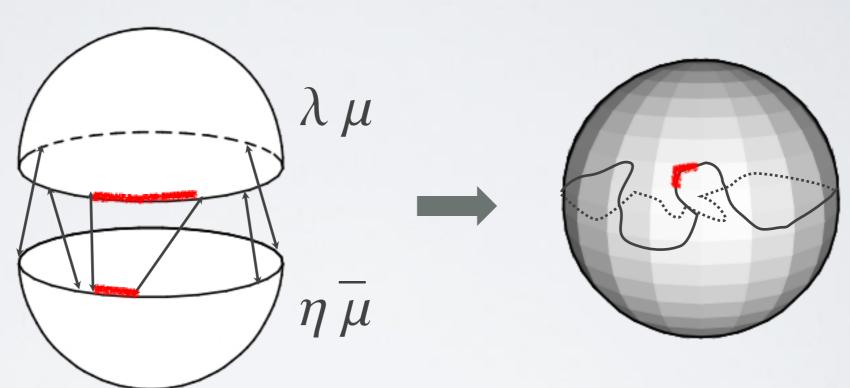
What do we need to deduce the conjecture?

$$\begin{pmatrix} \Phi(\lambda, \bar{\lambda}) & \Phi(\lambda, \bar{\eta}) \\ \Phi(\eta, \bar{\lambda}) & \Phi(\eta, \bar{\eta}) \end{pmatrix} \ge 0$$

III. conformal welding

two perturbations of

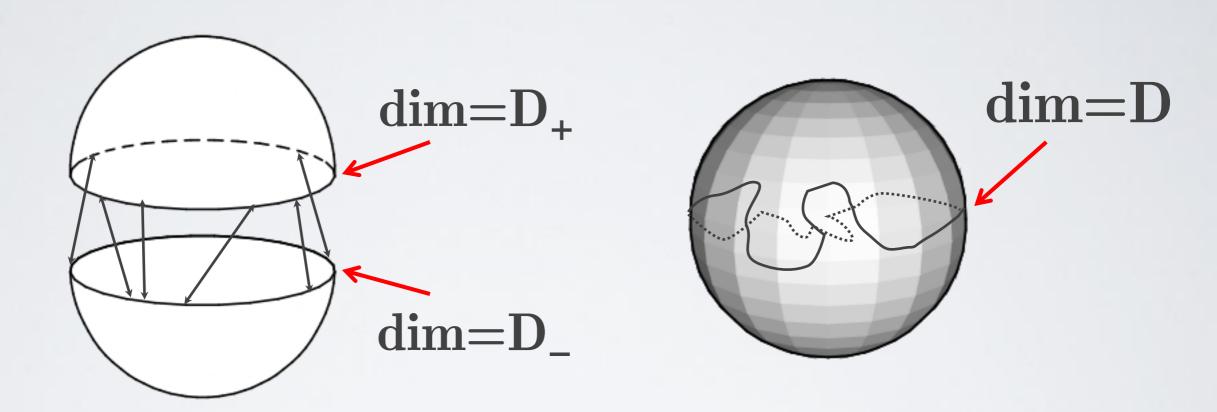
conformal structure



quasisymmetric welding --> quasicircle

III. welding and dimensions

Take three images of the linear measure dx:



Then the conjectures before are equivalent to

$$(1-D)^2 \leq (1-D_-)(1-D_+)$$

III. Questions about $(1-D)^2 \le (1-D_-)(1-D_+)$

Rem1 The inequality holds if $D_{-} = 1$.

Q1 Can one interpolate to prove it in general?

Rem2 For quasicirles arising in quasi-Fuchsian groups the base eigenvalue λ_0 of the Laplacian on the associated 3-manifold has

 $1-\lambda_0 = (1-D)^2$ for

Patterson-Sullivan measure

Q2 Can one use 3D geometry?

