The self-avoiding walk on the hexagonal lattice

Hugo Duminil-Copin
Université de Genève

Stanislav Smirnov
Université de Genève & St. Petersburg State University

January 2011
Self-Avoiding Walks on the hexagonal lattice \mathbb{H}:

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement and for the number c_n of SAWs of length n:

$$\langle |\omega(n)|^2 \rangle \sim D_n^{2\nu} \text{ as } n \to \infty,$$

$$c_n \sim A_n^{\gamma - 1} \mu n \text{ as } n \to \infty,$$

where $\nu := \frac{3}{4}$ and $\mu_c := \sqrt{2 + \sqrt{2}}$.

γ and ν are universal; μ_c is lattice-dependent.
Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement c_n of SAWs of length n:

$$\langle |\omega(n)|^2 \rangle \sim Dn^{2\nu} \quad \text{as} \quad n \to \infty,$$

where $\nu := 3/4$.

\[\nu := 3/4\]
Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement and for the number c_n of SAWs of length n:

- $\langle |\omega(n)|^2 \rangle \sim Dn^{2\nu}$ as $n \to \infty$,
- $c_n \sim An^{\gamma-1}\mu_c^n$ as $n \to \infty$.

where $\nu := 3/4$ and $\mu_c := \sqrt{2 + \sqrt{2}}$, $\gamma := 43/32$.

ν and γ are universal; μ_c is lattice-dependent.
Self-Avoiding Walks on the hexagonal lattice \mathbb{H}:

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement and for the number c_n of SAWs of length n:

- $\langle |w(n)|^2 \rangle \sim Dn^{2\nu}$ as $n \to \infty$,
- $c_n \sim An^{\gamma^{-1}\mu_c^n}$ as $n \to \infty$

where $\nu := 3/4$ and $\mu_c := \sqrt{2 + \sqrt{2}}$, $\gamma := 43/32$.

γ and ν are universal; μ_c is lattice-dependent.
The connective constant satisfies $\mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}} = \sqrt{2 + \sqrt{2}}$.

- Easy observations:

 $$c_{n+m} < c_n \cdot c_m \Rightarrow \exists \mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}},$$

 $$2^{n/2} \leq c_n \leq 3 \cdot 2^{n-1} \Rightarrow \sqrt{2} \leq \mu_c \leq 2.$$
Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies \(\mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}} = \sqrt{2 + \sqrt{2}} \).

• Easy observations:

\[
c_{n+m} < c_n \cdot c_m \quad \Rightarrow \quad \exists \ \mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}},
\]

\[
2^{n/2} \leq c_n \leq 3 \cdot 2^{n-1} \quad \Rightarrow \quad \sqrt{2} \leq \mu_c \leq 2.
\]

• The generating function (diverges \(\mu < \mu_c \), converges \(\mu > \mu_c \)):

\[
G(\mu) := \sum_{\omega} \mu^{-\ell(\omega)} = \sum_{n} c_n \cdot \mu^{-n}.
\]
Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies \(\mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}} = \sqrt{2 + \sqrt{2}} \).

- Easy observations:
 \[
 c_{n+m} < c_n \cdot c_m \implies \exists \mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}},
 \]

 \[
 2^{n/2} \leq c_n \leq 3 \cdot 2^{n-1} \implies \sqrt{2} \leq \mu_c \leq 2.
 \]

- The generating function (diverges \(\mu < \mu_c \), converges \(\mu > \mu_c \)):
 \[
 G(\mu) := \sum_{\omega} \mu^{-\ell(\omega)} = \sum_n c_n \cdot \mu^{-n}.
 \]

 It is expected that \(G(\mu) \sim (\mu_c - \mu)^{-\gamma} \).
Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies $\mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}} = \sqrt{2 + \sqrt{2}}$.

- Easy observations:

 $$c_{n+m} < c_n \cdot c_m \Rightarrow \exists \mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}} ,$$

 $$2^{n/2} \leq c_n \leq 3 \cdot 2^{n-1} \Rightarrow \sqrt{2} \leq \mu_c \leq 2 .$$

- The generating function (diverges $\mu < \mu_c$, converges $\mu > \mu_c$):

 $$G_{a \to z}(\mu) := \sum_{\omega \subset \Omega: a \to z} \mu^{-\ell(\omega)} = \sum_n c_{n,a \to z} \cdot \mu^{-n} .$$

 It is expected that $G(\mu) \sim (\mu_c - \mu)^{-\gamma}$.

Try to count simpler objects, **bridges**: Walks that never go below the first step and above the last one.

The number of bridges grows at the same (exponential) speed as walks.
Definition

A **self-avoiding bridge** is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_n be the number of self-avoiding bridges of length n.

![Diagram of self-avoiding bridge](image-url)
Definition

A **self-avoiding bridge** is a SAW ω such that the **first** site is of **minimal** second coordinate and the **last** one of **maximal** second coordinate. Let b_n be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)

μ_c is the same for bottom-top bridges, bottom-bottom bridges, loops.
Definition

A **self-avoiding bridge** is a SAW \(\omega \) such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let \(b_n \) be the number of self-avoiding bridges of length \(n \).

Proposition (Hammersley 1961)

\(\mu_c \) is the same for bottom-top bridges, bottom-bottom bridges, loops.

\(\gamma \) is expected to be different: 9/16, 9/16, \(-1/2\).
Definition

A **self-avoiding bridge** is a SAW ω such that the **first** site is of **minimal** second coordinate and the **last** one of **maximal** second coordinate. Let b_n be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)

μ_c is the same for bottom-top bridges, bottom-bottom bridges, loops.

γ is expected to be different: $9/16$, $9/16$, $-1/2$.

\bullet $b_n \leq c_n$ for obvious reasons.
Definition

A **self-avoiding bridge** is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_n be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)

μ_c is the same for bottom-top bridges, bottom-bottom bridges, loops.

γ is expected to be different: $9/16$, $9/16$, $-1/2$.

$b_n \leq c_n$ for obvious reasons. Moreover, $c_n \leq r_n^2 b_n$ where r_n is the number of **partitions** of n into increasing positive integers. Since $r_n \leq Ce^{c\sqrt{n}}$, we obtain that b_n and c_n are logarithmically equivalent.
Definition

The **winding** $W_\omega(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

![Diagram](image)

$W_\gamma(a, b) = 0$

$W_\gamma(a, b) = 2\pi$
Definition

The **winding** \(W_\omega(a, b) \) of a curve \(\omega \) between \(a \) and \(b \) is the rotation (in radians) of the curve between \(a \) and \(b \).

\[
W_\gamma(a, b) = 0 \quad \text{and} \quad W_\gamma(a, b) = 2\pi
\]

With this definition, we can define the **parafermionic operator** for \(a \in \partial \Omega \) and \(z \in \Omega \):

\[
F(z) = F(a, z, \mu, \sigma) := \sum_{\omega \subset \Omega: \ a \rightarrow z} e^{-i\sigma W_\omega(a, z)} \mu^{-\ell(\omega)}.
\]
Definition

The winding $W_\omega(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

$$W_\gamma(a, b) = 0 \quad W_\gamma(a, b) = 2\pi$$

With this definition, we can define the parafermionic operator for $a \in \partial \Omega$ and $z \in \Omega$:

$$F(z) = F(a, z, \mu, \sigma) := \sum_{\omega \subset \Omega: \ a \rightarrow z} e^{-i\sigma W_\omega(a, z)} \mu^{-\ell(\omega)}.$$
Definition

The **winding** $W_\omega(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

![Diagram of winding](image)

$W_\gamma(a, b) = 0$

$W_\gamma(a, b) = 2\pi$

With this definition, we can define the **parafermionic operator** for $a \in \partial \Omega$ and $z \in \Omega$:

$$F(z) = F(a, z, \mu, \sigma) := \sum_{\omega \subset \Omega: a \to z} e^{-i\sigma W_\omega(a, z)} \mu^{-\ell(\omega)}.$$

Lemma (Discrete integrals on elementary contours vanish)

If $\mu = \mu_* = \sqrt{2 + \sqrt{2}}$ and $\sigma = \frac{5}{8}$, then F satisfies the following relation for every vertex $v \in V(\Omega)$,

$$(p - v)F(p) + (q - v)F(q) + (r - v)F(r) = 0$$

where p, q, r are the mid-edges of the three edges adjacent to v.

Hugo Duminil-Copin & Stanislav Smirnov

The self-avoiding walk on the hexagonal lattice
We write \(c(\omega) \) for the contribution of the walk \(\omega \) to the sum.

One can partition the set of walks \(\omega \) finishing at \(p \), \(q \) or \(r \) into pairs and triplets of walks:

In the first case,

\[
\begin{align*}
 c(\omega_1) + c(\omega_2) &= (q - v) e^{-i\sigma W_{\omega_1}(a, q)} - \ell(\omega_1) \\
 (r - v) e^{-i\sigma W_{\omega_2}(a, r)} - \ell(\omega_2)
\end{align*}
\]

In the second case,

\[
\begin{align*}
 c(\omega_1) + c(\omega_2) + c(\omega_3) &= (p - v) e^{-i\sigma W_{\omega_1}(a, p)} - \ell(\omega_1) \\
 (1 + \mu - 1) e^{i\frac{2\pi}{3}} e^{-i\frac{5\pi}{8}} - \pi e^{-i\frac{2\pi}{3}} e^{-i\frac{5\pi}{8}}
\end{align*}
\]
We write $c(\omega)$ for the contribution of the walk ω to the sum.

One can partition the set of walks ω finishing at p, q or r into pairs and triplets of walks:

In the first case,

$$c(\omega_1) + c(\omega_2) = (q - v) e^{-i \sigma W \omega_1(a, q)} \mu - \ell(\omega_1) + (r - v) e^{-i \sigma W \omega_2(a, r)} \mu - \ell(\omega_2).$$

In the second case,

$$c(\omega_1) + c(\omega_2) + c(\omega_3) = (p - v) e^{-i \sigma W \omega_1(a, p)} \mu - \ell(\omega_1) + \left(1 + \mu - \frac{1}{e^{i 2 \pi/3}} e^{-i \frac{5\pi}{3}} \cdot -\frac{\pi}{3} \right).$$
We write $c(\omega)$ for the contribution of the walk ω to the sum.

One can partition the set of walks ω finishing at p, q or r into **pairs** and **triplets** of walks:

In the first case,

$$c(\omega_1) + c(\omega_2) = (q - v)e^{-i\sigma W_{\omega_1}(a,q)}\mu^{-\ell(\omega_1)} + (r - v)e^{-i\sigma W_{\omega_2}(a,r)}\mu^{-\ell(\omega_2)}$$

$$= (p - v)e^{-i\sigma W_{\omega_1}(a,p)}\mu^{-\ell(\omega_1)} \left(e^{i\frac{2\pi}{3}} e^{-i\sigma \cdot \frac{4\pi}{3}} + e^{-i\frac{2\pi}{3}} e^{-i\sigma \cdot \frac{4\pi}{3}} \right)$$
We write $c(\omega)$ for the contribution of the walk ω to the sum.

One can partition the set of walks ω finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma = \frac{5}{8}$,

$$c(\omega_1) + c(\omega_2) = (q - \nu)e^{-i\sigma W_{\omega_1}(a,q)}\mu^{-\ell(\omega_1)} + (r - \nu)e^{-i\sigma W_{\omega_2}(a,r)}\mu^{-\ell(\omega_2)}$$
$$= (p - \nu)e^{-i\frac{5}{8}}W_{\omega_1}(a,p)\mu^{-\ell(\omega_1)} \left(e^{i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{-4\pi}{3}} + e^{-i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{4\pi}{3}} \right) = 0$$
We write $c(\omega)$ for the contribution of the walk ω to the sum.

One can partition the set of walks ω finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma = \frac{5}{8}$,

$$c(\omega_1) + c(\omega_2) = (q - \nu)e^{-i\sigma W_{\omega_1}(a,q)}\mu^{-\ell(\omega_1)} + (r - \nu)e^{-i\sigma W_{\omega_2}(a,r)}\mu^{-\ell(\omega_2)}$$

$$= (p - \nu)e^{-\frac{5}{8}W_{\omega_1}(a,p)}\mu^{-\ell(\omega_1)} \left(e^{i\frac{2\pi}{3}} e^{-\frac{i5}{8} - \frac{4\pi}{3}} + e^{i\frac{2\pi}{3}} e^{-\frac{i5}{8} \cdot \frac{4\pi}{3}} \right) = 0$$

In the second case,

$$c(\omega_1) + c(\omega_2) + c(\omega_3)$$

$$= (p - \nu)e^{-i\sigma W_{\omega_1}(a,p)}\mu^{-\ell(\omega_1)} \left(1 + \mu^{-1}e^{i\frac{2\pi}{3}} e^{-\frac{i5}{8} \cdot \frac{\pi}{3}} + \mu^{-1}e^{-i\frac{2\pi}{3}} e^{-\frac{i5}{8} \cdot \frac{\pi}{3}} \right).$$
We write $c(\omega)$ for the contribution of the walk ω to the sum.

One can partition the set of walks ω finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma = \frac{5}{8}$,

$$c(\omega_1) + c(\omega_2) = (q - \nu)e^{-i\sigma W_{\omega_1}(a,q)}\mu^{-\ell(\omega_1)} + (r - \nu)e^{-i\sigma W_{\omega_2}(a,r)}\mu^{-\ell(\omega_2)}$$

$$= (p - \nu)e^{-i\frac{5}{8} W_{\omega_1}(a,p)}\mu^{-\ell(\omega_1)} \left(e^{i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{4\pi}{3}} + e^{-i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{4\pi}{3}} \right) = 0$$

In the second case, providing $\mu = \mu_* := \sqrt{2 + \sqrt{2}}$,

$$c(\omega_1) + c(\omega_2) + c(\omega_3) = (p - \nu)e^{-i\sigma W_{\omega_1}(a,p)}\mu_*^{-\ell(\omega_1)} \left(1 + \mu_*^{-1} e^{i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{4\pi}{3}} + \mu_*^{-1} e^{-i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{4\pi}{3}} \right) = 0.$$
We write \(c(\omega) \) for the contribution of the walk \(\omega \) to the sum.

One can partition the set of walks \(\omega \) finishing at \(p, q \) or \(r \) into pairs and triplets of walks:

In the first case, providing \(\sigma = \frac{5}{8} \),

\[
c(\omega_1) + c(\omega_2) = (q - v) e^{-i\sigma W_{\omega_1}(a,q)} \mu^{-\ell(\omega_1)} + (r - v) e^{-i\sigma W_{\omega_2}(a,r)} \mu^{-\ell(\omega_2)}
\]

\[
= (p - v) e^{-i\frac{5}{8} W_{\omega_1}(a,p)} \mu^{-\ell(\omega_1)} \left(e^{i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{4\pi}{3}} + e^{-i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{4\pi}{3}} \right) = 0
\]

In the second case, providing \(\mu = \mu_* := \sqrt{2 + \sqrt{2}} \),

\[
c(\omega_1) + c(\omega_2) + c(\omega_3)
\]

\[
= (p - v) e^{-i\sigma W_{\omega_1}(a,p)} \mu_*^{-\ell(\omega_1)} \left(1 + \mu_*^{-1} e^{i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{4\pi}{3}} + \mu_*^{-1} e^{-i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{4\pi}{3}} \right) = 0.
\]
If $\mu = \mu_*$ then $\oint F(z) dz = 0$ along an elementary contour.

Proposition ((partial) Discrete holomorphicity)

*If Ω is simply connected, then $\oint_{\Gamma} F(z) dz = 0$ for any discrete contour Γ.***

Will be used to show $\mu_c = \mu_*$. Take a trapezoid contour $S_{T,L}$:
If $\mu = \mu_*$ then $\oint F(z)\,dz = 0$ along an elementary contour.

Proposition ((partial) Discrete holomorphicity)

*If Ω is simply connected, then $\oint_\Gamma F(z)\,dz = 0$ for any discrete contour Γ.***

Will be used to show $\mu_c = \mu_*$. Take a trapezoid contour $S_{T,L}$:
If $\mu = \mu_*$ then $\oint F(z)dz = 0$ along an elementary contour.

Proposition ((partial) Discrete holomorphicity)

If Ω is simply connected, then $\oint \Gamma F(z)dz = 0$ for any discrete contour Γ.

Will be used to show $\mu_c = \mu_*$. Take a trapezoid contour $S_{T,L}$:

$$0 = -\sum_{z \in \alpha} F(z) + \sum_{z \in \beta} F(z) + e^{i \frac{2\pi}{3}} \sum_{z \in \varepsilon} F(z) + e^{-i \frac{2\pi}{3}} \sum_{z \in \bar{\varepsilon}} F(z)$$
If $\mu = \mu_*$ then $\oint F(z) \, dz = 0$ along an elementary contour

Proposition ((partial) Discrete holomorphicity)

*If Ω is simply connected, then $\oint_{\Gamma} F(z) \, dz = 0$ for any discrete contour Γ.***

Will be used to show $\mu_c = \mu_*$. Take a trapezoid contour $S_{T,L}$:

$$0 = -\sum_{z \in \alpha} F(z) + \sum_{z \in \beta} F(z) + e^{i \frac{2\pi}{3}} \sum_{z \in \varepsilon} F(z) + e^{-i \frac{2\pi}{3}} \sum_{z \in \bar{\varepsilon}} F(z)$$
0 = - \sum_{z \in \alpha} F(z) + \sum_{z \in \beta} F(z) + e^{i \frac{2\pi}{3}} \sum_{z \in \epsilon} F(z) + e^{-i \frac{2\pi}{3}} \sum_{z \in \bar{\epsilon}} F(z)
0 = - \sum_{z \in \alpha} F(z) + \sum_{z \in \beta} F(z) + e^{i \frac{2\pi}{3}} \sum_{z \in \epsilon} F(z) + e^{-i \frac{2\pi}{3}} \sum_{z \in \bar{\epsilon}} F(z)

1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\omega: a \to \alpha} \mu_{\omega}^{-\ell(\omega)} + \sum_{\omega: a \to \beta} \mu_{\omega}^{-\ell(\omega)} + \cos\left(\frac{\pi}{4}\right) \sum_{\omega: a \to \epsilon \cup \bar{\epsilon}} \mu_{\omega}^{-\ell(\omega)}.

💡 We know the winding on the boundary!
So we can replace F by the sum of Boltzmann weights.

1 = \frac{\sqrt{2 - \sqrt{2}}}{2} A(T, L, \mu_{\omega}) + B(T, L, \mu_{\omega}) + \frac{1}{\sqrt{2}} E(T, L, \mu_{\omega}).
An upper bound on μ_c:

$$1 = \frac{\sqrt{2} - \sqrt{2}}{2} A(T, L, \mu^*) + B(T, L, \mu^*) + \frac{1}{\sqrt{2}} E(T, L, \mu^*),$$
An upper bound on μ_c:

$$1 = \frac{\sqrt{2} - \sqrt{2}}{2} A(T, L, \mu_*) + B(T, L, \mu_*) + \frac{1}{\sqrt{2}} E(T, L, \mu_*),$$

implies

$$\frac{2}{\sqrt{2} - \sqrt{2}} \geq A(T, L, \mu_*) .$$
An upper bound on μ_c:

$$1 = \frac{\sqrt{2 - \sqrt{2}}}{2} A(T, L, \mu_*) + B(T, L, \mu_*) + \frac{1}{\sqrt{2}} E(T, L, \mu_*),$$

implies

$$\frac{2}{\sqrt{2 - \sqrt{2}}} \geq A(T, L, \mu_*).$$

Send $T, L \to \infty$

$$\infty > \frac{2}{\sqrt{2 - \sqrt{2}}} \geq G_{\text{bottom-bottom bridges}}(\mu_*),$$
An upper bound on μ_c:

$$1 = \frac{\sqrt{2} - \sqrt{2}}{2} A(T, L, \mu_*) + B(T, L, \mu_*) + \frac{1}{\sqrt{2}} E(T, L, \mu_*),$$

implies

$$\frac{2}{\sqrt{2} - \sqrt{2}} \geq A(T, L, \mu_*).$$

Send $T, L \to \infty$

$$\infty > \frac{2}{\sqrt{2} - \sqrt{2}} \geq G_{\text{bottom-bottom bridges}}(\mu_*),$$

hence $\mu_c \leq \mu_*$.

A lower bound on μ_c:

$$1 = \frac{\sqrt{2} - \sqrt{2}}{2} A(T, L, \mu_*) + B(T, L, \mu_*) + \frac{1}{\sqrt{2}} E(T, L, \mu_*)$$
A lower bound on μ_c:

$$1 = \frac{\sqrt{2} - \sqrt{2}}{2} A(T, L, \mu_*) + B(T, L, \mu_*) + \frac{1}{\sqrt{2}} E(T, L, \mu_*).$$

As $L \to \infty$, A and B increase to their limits $A(T, \mu_*)$ and $B(T, \mu_*)$. Hence E decreases to its limit $E(T, \mu_*)$.
A lower bound on μ_c:

$$1 = \frac{\sqrt{2} - \sqrt{2}}{2} A(T, L, \mu_*) + B(T, L, \mu_*) + \frac{1}{\sqrt{2}} E(T, L, \mu_*) + 1.$$

As $L \to \infty$, A and B increase to their limits $A(T, \mu_*)$ and $B(T, \mu_*)$. Hence E decreases to its limit $E(T, \mu_*)$.

💡 If $E(T, \mu_*) > 0$ for some T, then

$$G(\mu_*) \geq \sum_L E(T, L, \mu_*) = \infty.$$

Therefore $\mu_c \geq \mu_*$.

Hugo Duminil-Copin & Stanislav Smirnov
The self-avoiding walk on the hexagonal lattice
A lower bound on μ_c:

$$1 = \frac{\sqrt{2 - \sqrt{2}}}{2} A(T, L, \mu_*) + B(T, L, \mu_*) + \frac{1}{\sqrt{2}} E(T, L, \mu_*) .$$

As $L \to \infty$, A and B increase to their limits $A(T, \mu_*)$ and $B(T, \mu_*)$. Hence E decreases to its limit $E(T, \mu_*)$.

💡 If $E(T, \mu_*) > 0$ for some T, then

$$G(\mu_*) \geq \sum_L E(T, L, \mu_*) = \infty .$$

Therefore $\mu_c \geq \mu_*$.

💡 If $E(T, \mu_*) = 0$ for all T, then

$$1 = \frac{\sqrt{2 - \sqrt{2}}}{2} A(T, \mu_*) + B(T, \mu_*) .$$
A lower bound on μ_c (continued):

\[1 = \frac{\sqrt{2} - \sqrt{2}}{2} A(T, \mu_*) + B(T, \mu_*) . \]
A lower bound on μ_c (continued):

$$1 = \frac{\sqrt{2} - \sqrt{2}}{2} A(T, \mu_*) + B(T, \mu_*) .$$

Also clearly

$$A(T + 1, \mu_*) \leq A(T, \mu_*) + B(T, \mu_*)^2 .$$
A lower bound on μ_c (continued):

$$1 = \frac{\sqrt{2} - \sqrt{2}}{2} A(T, \mu_*) + B(T, \mu_*) .$$

Also clearly

$$A(T + 1, \mu_*) \leq A(T, \mu_*) + B(T, \mu_*)^2 .$$

We conclude that

$$B(T + 1, \mu_*) \geq B(T, \mu_*) - \frac{\sqrt{2} - \sqrt{2}}{2} \cdot B(T, \mu_*)^2 .$$
A lower bound on μ_c (continued):

$$1 = \frac{\sqrt{2} - \sqrt{2}}{2} A(T, \mu_*) + B(T, \mu_*) .$$

Also clearly

$$A(T + 1, \mu_*) \leq A(T, \mu_*) + B(T, \mu_*)^2 .$$

We conclude that

$$B(T + 1, \mu_*) \geq B(T, \mu_*) - \frac{\sqrt{2} - \sqrt{2}}{2} \cdot B(T, \mu_*)^2 ,$$

hence

$$B(T, \mu_*) \geq \frac{\text{const}}{\text{const} + T} ,$$

Thus $G(\mu_*) \geq \sum T B(T, \mu_*) = \infty$ and $\mu_c \geq \mu_*$.

Hugo Duminil-Copin & Stanislav Smirnov
The self-avoiding walk on the hexagonal lattice
Determined the connective constant.

Introduced a discrete holomorphic parafermion.
DONE

- Determined the connective constant.
- Introduced a discrete holomorphic parafermion.

TO DO

- What to do next?
- What not to do next?
What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

- **Combinatorial question:** Up to $n^{o(1)}$ (up to a multiplicative constant?) we have:

 $$c_n \sim n^{\gamma - 1} \left(\sqrt{2 + \sqrt{2}} \right)^n$$

 as $n \to \infty$

 where $\gamma = \frac{43}{32}$ should be universal.
Conjecture (Nienhuis, 1982; Flory, 1948)

- **Combinatorial question:** Up to $n^{o(1)}$ (up to a multiplicative constant?) we have:

 $$c_n \sim n^{\gamma - 1} \left(\sqrt{2} + \sqrt{2}\right)^n$$

 as $n \to \infty$

 where $\gamma = 43/32$ should be *universal*.

- **Geometric question:** Let $\omega(N)$ be the N-th point of the walk, and $|\cdot|$ denote the Euclidean distance, then there exists D such that:

 $$\mathbb{E}_n[|\omega(n)|^2] \sim Dn^{2\nu}$$

 as $n \to \infty$

 where $\nu = 3/4$.
What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

- **Combinatorial question:** Up to $n^{o(1)}$ (up to a multiplicative constant?) we have:

 $$c_n \sim n^{\gamma-1} \left(\sqrt{2} + \sqrt{2}\right)^n \text{ as } n \rightarrow \infty$$

 where $\gamma = 43/32$ should be *universal*.

- **Geometric question:** Let $\omega(N)$ be the N-th point of the walk, and $|\cdot|$ denote the Euclidean distance, then there exists D such that:

 $$\mathbb{E}_n[|\omega(n)|^2] \sim Dn^{2\nu} \text{ as } n \rightarrow \infty$$

 where $\nu = 3/4$.

Would follow from the following conjecture
Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a **conformally invariant** scaling limit – SLE(8/3).
Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a **conformally invariant** scaling limit – SLE(8/3).

For \(\delta > 0 \), we define a probability measure on self-avoiding paths from \(a_\delta \) to \(b_\delta \) by assigning a weight proportional to \(\mu^{-\ell(\omega)} \). When \(\delta \to 0 \), the sequence converges to a random continuous curve.

A strategy to tackle this problem?

1. Precompactness of the family of curves
2. Conformally invariant martingales which are given by the ratio of two parafermionic observables: \(F(a, z, \Omega)/F(a, b, \Omega) \).

Main missing point: show that \(F \) is fully discrete holomorphic.
For $\delta > 0$, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to $\mu_c^{-\ell(\omega)}$. When $\delta \to 0$, the sequence converges to a random continuous curve.
Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a **conformally invariant** scaling limit – **SLE(8/3)**.

For $\delta > 0$, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a **weight proportional to** $\mu_c^{-\ell(\omega)}$. When $\delta \to 0$, the sequence converges to a **random continuous curve**.
Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a **conformally invariant** scaling limit – SLE(8/3).

For $\delta > 0$, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to $\mu_c^{-\ell(\omega)}$. When $\delta \to 0$, the sequence converges to a **random continuous curve**.
Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a **conformally invariant** scaling limit – **SLE(8/3)**.

For $\delta > 0$, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to $\mu_c^{-\ell(\omega)}$. When $\delta \to 0$, the sequence converges to a **random continuous curve**.

A strategy to tackle this problem?

1. **Precompactness** of the family of curves
2. **Conformally invariant martingales** which are given by the ratio of two parafermionic observables: $F(a, z, \Omega)/F(a, b, \Omega)$.

Main missing point: show that F is fully discrete holomorphic.
What to do next? \(O(n) \) models (1).

The \(O(n) \) model is a model on \textbf{closed loops} lying on a finite subgraph of the hexagonal lattice. The probability of a configuration is equal to

\[
\frac{\chi \# \text{edges} \cdot n \# \text{loops}}{Z_{\chi,n,G}}.
\]
What to do next? $O(n)$ models (1).

The $O(n)$ model is a model on **closed loops** lying on a finite subgraph of the hexagonal lattice. The probability of a configuration is equal to

$$\frac{x^\# \text{ edges} \cdot n^\# \text{ loops}}{Z_{x,n,G}}.$$

- Representation of the spin $O(n)$ model.
- Physicist Nienhuis studied the model for $n \in (0, 2]$ and suggested the following phase diagram
What to do next? $O(n)$ models (1).

The $O(n)$ model is a model on closed loops lying on a finite subgraph of the hexagonal lattice. The probability of a configuration is equal to

$$\frac{x^\# \text{ edges} \cdot n^\# \text{ loops}}{Z_{x,n,G}}.$$

- Representation of the spin $O(n)$ model.
- Physicist Nienhuis studied the model for $n \in (0, 2]$ and suggested the following phase diagram

$$z = \frac{1}{\sqrt{2 + \sqrt{2 - n}}}$$

Critical phase 2: $\text{SLE} \left(\frac{4\pi}{\arccos \left(-\frac{n}{2} \right)} \right)$

Critical phase 1: $\text{SLE} \left(\frac{4\pi}{2\pi - \arccos \left(-\frac{n}{2} \right)} \right)$

Sub-critical phase

Hugo Duminil-Copin & Stanislav Smirnov

The self-avoiding walk on the hexagonal lattice
What to do next? \(O(n) \) models (2).

💡 In the case \(n = 1 \) of the **Ising model**, a similar fermionic observable \(F \) is discrete holomorphic at criticality:

\[
F(a, z, x) = \sum_{\omega} \text{with a curve } \omega \text{ from } a \text{ to } z \cdot e^{-i \frac{W(\omega)(a, z)}{2}} x^{\text{#edges}}.
\]

For \(O(n) \) models, the **parafermionic observable**

\[
F(a, z, x, \sigma) := \sum_{\omega} \text{with a curve } \omega \text{ from } a \text{ to } z \cdot e^{-i \sigma W(\omega)(a, z)} x^{\text{#edges}} n^{\text{#loops}}.
\]

should be discrete holomorphic for \(x = x_c \) and

\[
2 \cos\left(\frac{4 \sigma \pi}{3}\right) = -n.
\]

So far only partial discrete holomorphicity observed.
What to do next? \(O(n)\) models (2).

💡 In the case \(n = 1\) of the Ising model, a similar fermionic observable \(F\) is discrete holomorphic at criticality:

\[
F(a, z, x) = \sum e^{-i\frac{1}{2} W_\omega(a, z)} x^{\#\text{edges}}.
\]

\(\omega\) with a curve \(\omega\) from \(a\) to \(z\)

⚠️ So far only partial discrete holomorphicity observed.
What to do next? $O(n)$ models (2).

In the case $n = 1$ of the Ising model, a similar fermionic observable F is discrete holomorphic at criticality:

$$F(a, z, x) = \sum_{\omega \text{ with a curve } \omega \text{ from } a \text{ to } z} e^{-i\frac{1}{2} W_\omega(a,z)} x^{\# \text{edges}}.$$

For $O(n)$ models, the parafermionic observable

$$F(a, z, x, \sigma) := \sum_{\omega \text{ with a curve } \omega \text{ from } a \text{ to } z} e^{-i\sigma W_\omega(a,z)} x^{\# \text{edges}} n^{\# \text{loops}}$$

should be discrete holomorphic for $x = x_c$ and $2 \cos\left(\frac{4\sigma\pi}{3}\right) = -n$.

So far only partial discrete holomorphicity observed.
What to do next? $O(n)$ models (3).
What to do next? $O(n)$ models (3).

Conjecture

For $n \in [0, 2]$ and $x = x_c(n)$, the interface between two points a and b (on the boundary) converges, as the lattice step goes to zero, to SLE(κ) where

$$\kappa = \frac{4\pi}{2\pi - \arccos(-n/2)}.$$
What to do next? $O(n)$ models (3).

Conjecture

For $n \in [0,2]$ and $x = x_c(n)$, the interface between two points a and b (on the boundary) converges, as the lattice step goes to zero, to SLE(κ) where

$$
\kappa = \frac{4\pi}{2\pi - \arccos(-n/2)}.
$$

Known only for the Ising model, $n = 1$ (Chelkak & Smirnov). In this case, **Discrete Holomorphicity + Boundary Conditions** determine F.
Conjecture

For \(n \in [0, 2] \) and \(x = x_c(n) \), the interface between two points \(a \) and \(b \) (on the boundary) converges, as the lattice step goes to zero, to SLE(\(\kappa \)) where

\[
\kappa = \frac{4\pi}{2\pi - \arccos(-n/2)}.
\]

Known only for the Ising model, \(n = 1 \) (Chelkak & Smirnov). In this case, **Discrete Holomorphicity + Boundary Conditions** determine \(F \).

Conjecture

For \(n \in [0, 2] \) and \(x > x_c(n) \), the interface between two points \(a \) and \(b \) (on the boundary) converges, as the lattice step goes to zero, to SLE(\(\kappa \)) where

\[
\kappa = \frac{4\pi}{\arccos(-n/2)}.
\]

Known only for the critical percolation, \(n = 1, x = 1 \) (Smirnov) via a different observable.
Determined the connective constant.

Introduced a holomorphic parafermion.

What to do next?
Determined the connective constant.
Introduced a holomorphic parafermion.
What to do next?

What not to do next?
What not to do next? $O(n)$ models (3).

⚠️ Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following weights

\[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \]

There are only two families of solutions: one possesses negative weights, the other is exactly equivalent to the hexagonal $O(n)$ model at criticality. The solutions correspond to integrable points of the model (when the Yang-Baxter condition applies).
What not to do next? $O(n)$ models (3).

⚠️ Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following weights

![Graphical representation of weights]

There are only two families of solutions: one possesses negative weights, the other is exactly equivalent to the hexagonal $O(n)$ model at criticality.
What not to do next? $O(n)$ models (3).

⚠️ Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following weights

$x_1 x_2 x_3 x_4 x_5 x_6$

- There are only two families of solutions: one possesses negative weights, the other is exactly equivalent to the hexagonal $O(n)$ model at criticality.

- The solutions correspond to integrable points of the model (when the Yang-Baxter condition applies).
Conclusion

We can introduce parafermionic observables for a wide variety of models: $O(n)$-models, random-cluster models, self-avoiding walks...

We can extract information from these operators in order to study the critical phase (example of the connective constant of the hexagonal lattice).

In some cases, the information is total – universality class of the Ising model – and we can derive conformal invariance.

Question: Can we do the same for other models?
Conclusion

- We can introduce parafermionic observables for a wide variety of models: $O(n)$-models, random-cluster models, self-avoiding walks...
Conclusion

- We can introduce parafermionic observables for a wide variety of models: $O(n)$-models, random-cluster models, self-avoiding walks...

- We can extract information from these operators in order to study the critical phase (example of the connective constant of the hexagonal lattice).

Question: Can we do the same for other models?
Conclusion

- We can introduce parafermionic observables for a wide variety of models: $O(n)$-models, random-cluster models, self-avoiding walks...

- We can extract information from these operators in order to study the critical phase (example of the connective constant of the hexagonal lattice).

- In some cases, the information is total – universality class of the Ising model – and we can derive conformal invariance.

Question: Can we do the same for other models?
Thank you