The self-avoiding walk on the hexagonal lattice

Hugo Duminil-Copin
Université de Genève
Stanislav Smirnov
Université de Genève \& St. Petersburg State University

January 2011

Self-Avoiding Walks on the hexagonal lattice \mathbb{H} :

Self-Avoiding Walks on the hexagonal lattice \mathbb{H} :

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement c_{n} of SAWs of length n :

- $\left.\left.\quad\langle | \omega(n)\right|^{2}\right\rangle \sim D n^{2 \nu} \quad$ as $n \longrightarrow \infty$,
where $\nu:=3 / 4$

Self-Avoiding Walks on the hexagonal lattice \mathbb{H} :

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement and for the number c_{n} of SAWs of length n :

$$
\begin{array}{ll}
\bullet & \left.\left.\langle | \omega(n)\right|^{2}\right\rangle \sim D n^{2 \nu} \quad \text { as } n \longrightarrow \infty, \\
\bullet & c_{n} \sim A n^{\gamma-1} \mu_{c}{ }^{n} \quad \text { as } n \longrightarrow \infty \\
\text { where } \nu:= & 3 / 4 \text { and } \mu_{c}:=\sqrt{2+\sqrt{2}}, \gamma:=43 / 32 .
\end{array}
$$

Self-Avoiding Walks on the hexagonal lattice \mathbb{H} :

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement and for the number c_{n} of SAWs of length n :

$$
\begin{array}{ll}
\bullet & \left.\left.\langle | \omega(n)\right|^{2}\right\rangle \sim D n^{2 \nu} \quad \text { as } n \longrightarrow \infty, \\
\bullet & c_{n} \sim A n^{\gamma-1} \mu_{c}{ }^{n} \quad \text { as } n \longrightarrow \infty \\
\text { where } \nu:= & 3 / 4 \text { and } \mu_{c}:=\sqrt{2+\sqrt{2}}, \gamma:=43 / 32 .
\end{array}
$$

- γ and ν are universal; μ_{c} is lattice-dependent.

Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies $\mu_{c}:=\lim _{n \rightarrow \infty} c_{n}{ }^{\frac{1}{n}}=\sqrt{2+\sqrt{2}}$.

- Easy observations:

$$
\begin{aligned}
& c_{n+m}<c_{n} \cdot c_{m} \Rightarrow \exists \mu_{c}:=\lim _{n \rightarrow \infty} c_{n}^{\frac{1}{n}} \\
& 2^{n / 2} \leq c_{n} \leq 3 \cdot 2^{n-1} \Rightarrow \sqrt{2} \leq \mu_{c} \leq 2 .
\end{aligned}
$$

Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies $\mu_{c}:=\lim _{n \rightarrow \infty} c_{n}{ }^{\frac{1}{n}}=\sqrt{2+\sqrt{2}}$.

- Easy observations:

$$
\begin{aligned}
& c_{n+m}<c_{n} \cdot c_{m} \Rightarrow \exists \mu_{c}:=\lim _{n \rightarrow \infty} c_{n}^{\frac{1}{n}}, \\
& 2^{n / 2} \leq c_{n} \leq 3 \cdot 2^{n-1} \Rightarrow \sqrt{2} \leq \mu_{c} \leq 2 .
\end{aligned}
$$

- The generating function (diverges $\mu<\mu_{c}$, converges $\mu>\mu_{c}$):

$$
G(\mu):=\sum_{\omega} \mu^{-\ell(\omega)}=\sum_{n} c_{n} \cdot \mu^{-n} .
$$

Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies $\mu_{c}:=\lim _{n \rightarrow \infty} c_{n}{ }^{\frac{1}{n}}=\sqrt{2+\sqrt{2}}$.

- Easy observations:

$$
\begin{aligned}
& c_{n+m}<c_{n} \cdot c_{m} \Rightarrow \exists \mu_{c}:=\lim _{n \rightarrow \infty} c_{n}^{\frac{1}{n}}, \\
& 2^{n / 2} \leq c_{n} \leq 3 \cdot 2^{n-1} \Rightarrow \sqrt{2} \leq \mu_{c} \leq 2 .
\end{aligned}
$$

- The generating function (diverges $\mu<\mu_{c}$, converges $\mu>\mu_{c}$):

$$
G(\mu):=\sum_{\omega} \mu^{-\ell(\omega)}=\sum_{n} c_{n} \cdot \mu^{-n} .
$$

- It is expected that $G(\mu) \sim\left(\mu_{c}-\mu\right)^{-\gamma}$.

Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies $\mu_{c}:=\lim _{n \rightarrow \infty} c_{n}{ }^{\frac{1}{n}}=\sqrt{2+\sqrt{2}}$.

- Easy observations:

$$
\begin{aligned}
& c_{n+m}<c_{n} \cdot c_{m} \Rightarrow \exists \mu_{c}:=\lim _{n \rightarrow \infty} c_{n}^{\frac{1}{n}}, \\
& 2^{n / 2} \leq c_{n} \leq 3 \cdot 2^{n-1} \Rightarrow \sqrt{2} \leq \mu_{c} \leq 2 .
\end{aligned}
$$

- The generating function (diverges $\mu<\mu_{c}$, converges $\mu>\mu_{c}$):

$$
G_{a \rightarrow z}(\mu):=\sum_{\omega \subset \Omega: a \rightarrow z} \mu^{-\ell(\omega)}=\sum_{n} c_{n, a \rightarrow z} \cdot \mu^{-n} .
$$

- It is expected that $G(\mu) \sim\left(\mu_{c}-\mu\right)^{-\gamma}$.

Try to count simpler objects, bridges: Walks that never go below the first step and above the last one. The number of bridges grows at the same (exponential) speed as walks.

Definition

A self-avoiding bridge is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_{n} be the number of self-avoiding bridges of length n.

Definition

A self-avoiding bridge is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_{n} be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)
μ_{c} is the same for bottom-top bridges, bottom-bottom bridges, loops.

Definition

A self-avoiding bridge is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_{n} be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)
μ_{c} is the same for bottom-top bridges, bottom-bottom bridges, loops.

- γ is expected to be different: $9 / 16,9 / 16,-1 / 2$.

Definition

A self-avoiding bridge is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_{n} be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)
μ_{c} is the same for bottom-top bridges, bottom-bottom bridges, loops.

- γ is expected to be different: $9 / 16,9 / 16,-1 / 2$.
- $b_{n} \leq c_{n}$ for obvious reasons.

Definition

A self-avoiding bridge is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_{n} be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)

μ_{c} is the same for bottom-top bridges, bottom-bottom bridges, loops.

- γ is expected to be different: $9 / 16,9 / 16,-1 / 2$.
$b_{n} \leq c_{n}$ for obvious reasons. Moreover, $c_{n} \leq r_{n}^{2} b_{n}$ where r_{n} is the number of partitions of n into increasing positive integers. Since $r_{n} \leq C e^{c \sqrt{n}}$, we obtain that b_{n} and c_{n} are logarithmically equivalent.

Definition

The winding $\mathrm{W}_{\omega}(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

Definition

The winding $\mathrm{W}_{\omega}(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

With this definition, we can define the parafermionic operator for $a \in \partial \Omega$ and $z \in \Omega$:

$$
F(z)=F(a, z, \mu, \sigma):=\sum_{\omega \subset \Omega: a \rightarrow z} \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega}(a, z)} \mu^{-\ell(\omega)} .
$$

Definition

The winding $\mathrm{W}_{\omega}(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

With this definition, we can define the parafermionic operator for $a \in \partial \Omega$ and $z \in \Omega$:

$$
F(z)=F(a, z, \mu, \sigma):=\sum_{\omega \subset \Omega: a \rightarrow z} \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega}(a, z)} \mu^{-\ell(\omega)} .
$$

Definition

The winding $\mathrm{W}_{\omega}(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

With this definition, we can define the parafermionic operator for $a \in \partial \Omega$ and $z \in \Omega$:

$$
F(z)=F(a, z, \mu, \sigma):=\sum_{\omega \subset \Omega: a \rightarrow z} \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega}(a, z)} \mu^{-\ell(\omega)} .
$$

Lemma (Discrete integrals on elementary contours vanish)

If $\mu=\mu_{*}=\sqrt{2+\sqrt{2}}$ and $\sigma=\frac{5}{8}$, then F satisfies the following relation for every vertex $v \in V(\Omega)$,

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

where p, q, r are the mid-edges of the three edges adjacent to v.

- We write $c(\omega)$ for the contribution of the walk ω to the sum.
- We write $c(\omega)$ for the contribution of the walk ω to the sum.
- One can partition the set of walks ω finishing at p, q or r into pairs and triplets of walks:

- We write $c(\omega)$ for the contribution of the walk ω to the sum.
- One can partition the set of walks ω finishing at p, q or r into pairs and triplets of walks:

In the first case,

$$
\begin{aligned}
c\left(\omega_{1}\right)+c\left(\omega_{2}\right) & =(q-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{1}}(\mathrm{a}, q)} \mu^{-\ell\left(\omega_{1}\right)}+(r-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{2}}(\mathrm{a}, r)} \mu^{-\ell\left(\omega_{2}\right)} \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{1}}(a, p)} \mu^{-\ell\left(\omega_{1}\right)}\left(\mathrm{e}^{\left.\mathrm{i} \frac{\mathrm{i} \frac{\pi}{3}}{} \mathrm{e}^{-\mathrm{i} \sigma \cdot \frac{-4 \pi}{3}}+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \sigma \cdot \frac{4 \pi}{3}}\right)}\right.
\end{aligned}
$$

We write $c(\omega)$ for the contribution of the walk ω to the sum.

- One can partition the set of walks ω finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma=\frac{5}{8}$,

$$
\begin{aligned}
c\left(\omega_{1}\right)+c\left(\omega_{2}\right) & =(q-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{1}}(a, q)} \mu^{-\ell\left(\omega_{1}\right)}+(r-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{2}}(a, r)} \mu^{-\ell\left(\omega_{2}\right)} \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \frac{5}{8} \mathrm{~W}_{\omega_{1}}(a, p)} \mu^{-\ell\left(\omega_{1}\right)}\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-4 \pi}{3}}+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{4 \pi}{3}}\right)=0
\end{aligned}
$$

We write $c(\omega)$ for the contribution of the walk ω to the sum.

- One can partition the set of walks ω finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma=\frac{5}{8}$,

$$
\begin{aligned}
c\left(\omega_{1}\right)+c\left(\omega_{2}\right) & =(q-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{1}}(a, q)} \mu^{-\ell\left(\omega_{1}\right)}+(r-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{2}}(a, r)} \mu^{-\ell\left(\omega_{2}\right)} \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \frac{5}{8} \mathrm{~W}_{\omega_{1}}(a, p)} \mu^{-\ell\left(\omega_{1}\right)}\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-4 \pi}{3}}+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{4 \pi}{3}}\right)=0
\end{aligned}
$$

In the second case,

$$
\begin{aligned}
& c\left(\omega_{1}\right)+c\left(\omega_{2}\right)+c\left(\omega_{3}\right) \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \sigma W_{\omega_{1}}(a, p)} \mu^{-\ell\left(\omega_{1}\right)}\left(1+\mu^{-1} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-\pi}{3}}+\mu^{-1} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{\pi}{3}}\right) .
\end{aligned}
$$

- We write $c(\omega)$ for the contribution of the walk ω to the sum.
- One can partition the set of walks ω finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma=\frac{5}{8}$,

$$
\begin{aligned}
c\left(\omega_{1}\right)+c\left(\omega_{2}\right) & =(q-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{1}}(a, q)} \mu^{-\ell\left(\omega_{1}\right)}+(r-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{2}}(a, r)} \mu^{-\ell\left(\omega_{2}\right)} \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \frac{5}{8} \mathrm{~W}_{\omega_{1}}(\mathrm{a}, p)} \mu^{-\ell\left(\omega_{1}\right)}\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-4 \pi}{3}}+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{4 \pi}{3}}\right)=0
\end{aligned}
$$

In the second case, providing $\mu=\mu_{*}:=\sqrt{2+\sqrt{2}}$,

$$
\begin{aligned}
& c\left(\omega_{1}\right)+c\left(\omega_{2}\right)+c\left(\omega_{3}\right) \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{1}}(2, p)} \mu_{*}-\ell\left(\omega_{1}\right) \\
& \left(1+\mu_{*}^{-1} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-\pi}{3}}+\mu_{*}^{-1} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{\pi}{3}}\right)=0 .
\end{aligned}
$$

- We write $c(\omega)$ for the contribution of the walk ω to the sum.
- One can partition the set of walks ω finishing at p, q or r into pairs and triplets of walks:

In the first case, providing $\sigma=\frac{5}{8}$,

$$
\begin{aligned}
c\left(\omega_{1}\right)+c\left(\omega_{2}\right) & =(q-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{1}}(a, q)} \mu^{-\ell\left(\omega_{1}\right)}+(r-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{2}}(a, r)} \mu^{-\ell\left(\omega_{2}\right)} \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \frac{5}{8} \mathrm{~W}_{\omega_{1}}(\mathrm{a}, p)} \mu^{-\ell\left(\omega_{1}\right)}\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-4 \pi}{3}}+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{4 \pi}{3}}\right)=0
\end{aligned}
$$

In the second case, providing $\mu=\mu_{*}:=\sqrt{2+\sqrt{2}}$,

$$
\begin{aligned}
& c\left(\omega_{1}\right)+c\left(\omega_{2}\right)+c\left(\omega_{3}\right) \\
& =(p-v) \mathrm{e}^{-\mathrm{i} \sigma \mathrm{~W}_{\omega_{1}}(a, p)} \mu_{*}-\ell\left(\omega_{1}\right) \\
& \left(1+\mu_{*}^{-1} \mathrm{e}^{\mathrm{i} \frac{\pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{-\pi}{3}}+\mu_{*}^{-1} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \mathrm{e}^{-\mathrm{i} \frac{5}{8} \cdot \frac{\pi}{3}}\right)=0 .
\end{aligned}
$$

If $\mu=\mu_{*}$ then $\oint F(z) d z=0$ along an elementary contour

Proposition ((partial) Discrete holomorphicity)
 If Ω is simply connected, then $\oint_{\Gamma} F(z) d z=0$ for any discrete contour Γ.

Will be used to show $\mu_{c}=\mu_{*}$. Take a trapezoid contour $S_{T, L}$:

- If $\mu=\mu_{*}$ then $\oint F(z) d z=0$ along an elementary contour

Proposition ((partial) Discrete holomorphicity)

If Ω is simply connected, then $\oint_{\Gamma} F(z) d z=0$ for any discrete contour Γ.

Will be used to show $\mu_{c}=\mu_{*}$. Take a trapezoid contour $S_{T, L}$:

- If $\mu=\mu_{*}$ then $\oint F(z) d z=0$ along an elementary contour

Proposition ((partial) Discrete holomorphicity)

If Ω is simply connected, then $\oint_{\Gamma} F(z) d z=0$ for any discrete contour Γ.

Will be used to show $\mu_{c}=\mu_{*}$. Take a trapezoid contour $S_{T, L}$:

$$
0=-\sum_{z \in \alpha} F(z)+\sum_{z \in \beta} F(z)+\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \sum_{z \in \varepsilon} F(z)+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \sum_{z \in \bar{\varepsilon}} F(z)
$$

- If $\mu=\mu_{*}$ then $\oint F(z) d z=0$ along an elementary contour

Proposition ((partial) Discrete holomorphicity)

If Ω is simply connected, then $\oint_{\Gamma} F(z) d z=0$ for any discrete contour Γ.

Will be used to show $\mu_{c}=\mu_{*}$. Take a trapezoid contour $S_{T, L}$:

$$
0=-\sum_{z \in \alpha} F(z)+\sum_{z \in \beta} F(z)+\mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}} \sum_{z \in \varepsilon} F(z)+\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}} \sum_{z \in \bar{\varepsilon}} F(z)
$$

$$
\begin{aligned}
& 0=-\sum_{z \in \alpha} F(z)+\sum_{z \in \beta} F(z)+e^{i \frac{2 \pi}{3}} \sum_{z \in \varepsilon} F(z)+e^{-i \frac{2 \pi}{3} \sum_{z \in \bar{\varepsilon}} F(z), ~} F(z) \\
& 1=\cos \left(\frac{3 \pi}{8}\right) \sum_{\omega: a \rightarrow \alpha} \mu_{*}^{-\ell(\omega)}+\sum_{\omega: a \rightarrow \beta} \mu_{*}^{-\ell(\omega)}+\cos \left(\frac{\pi}{4}\right) \mu_{\omega: a \rightarrow \varepsilon \cup \bar{\varepsilon}}^{-\ell(\omega)}
\end{aligned}
$$

- We know the winding on the boundary!

So we can replace F by the sum of Boltzman weights.

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, L, \mu_{*}\right)+B\left(T, L, \mu_{*}\right)+\frac{1}{\sqrt{2}} E\left(T, L, \mu_{*}\right) .
$$

An upper bound on μ_{c} :

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, L, \mu_{*}\right)+B\left(T, L, \mu_{*}\right)+\frac{1}{\sqrt{2}} E\left(T, L, \mu_{*}\right),
$$

An upper bound on μ_{c} :

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, L, \mu_{*}\right)+B\left(T, L, \mu_{*}\right)+\frac{1}{\sqrt{2}} E\left(T, L, \mu_{*}\right),
$$

implies

$$
\frac{2}{\sqrt{2-\sqrt{2}}} \geq A\left(T, L, \mu_{*}\right)
$$

An upper bound on μ_{c} :

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, L, \mu_{*}\right)+B\left(T, L, \mu_{*}\right)+\frac{1}{\sqrt{2}} E\left(T, L, \mu_{*}\right),
$$

implies

$$
\frac{2}{\sqrt{2-\sqrt{2}}} \geq A\left(T, L, \mu_{*}\right)
$$

Send $T, L \rightarrow \infty$

$$
\infty>\frac{2}{\sqrt{2-\sqrt{2}}} \geq G_{\text {bottom-bottom bridges }}\left(\mu_{*}\right)
$$

An upper bound on μ_{c} :

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, L, \mu_{*}\right)+B\left(T, L, \mu_{*}\right)+\frac{1}{\sqrt{2}} E\left(T, L, \mu_{*}\right),
$$

implies

$$
\frac{2}{\sqrt{2-\sqrt{2}}} \geq A\left(T, L, \mu_{*}\right)
$$

Send $T, L \rightarrow \infty$

$$
\infty>\frac{2}{\sqrt{2-\sqrt{2}}} \geq G_{\text {bottom-bottom } \operatorname{bridges}}\left(\mu_{*}\right)
$$

hence $\mu_{c} \leq \mu_{*}$.

A lower bound on μ_{c} :

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, L, \mu_{*}\right)+B\left(T, L, \mu_{*}\right)+\frac{1}{\sqrt{2}} E\left(T, L, \mu_{*}\right) .
$$

A lower bound on μ_{c} :

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, L, \mu_{*}\right)+B\left(T, L, \mu_{*}\right)+\frac{1}{\sqrt{2}} E\left(T, L, \mu_{*}\right) .
$$

As $L \rightarrow \infty, A$ and B increase to their limits $A\left(T, \mu_{*}\right)$ and $B\left(T, \mu_{*}\right)$. Hence E decreases to its limit $E\left(T, \mu_{*}\right)$.

A lower bound on μ_{c} :

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, L, \mu_{*}\right)+B\left(T, L, \mu_{*}\right)+\frac{1}{\sqrt{2}} E\left(T, L, \mu_{*}\right)
$$

As $L \rightarrow \infty, A$ and B increase to their limits $A\left(T, \mu_{*}\right)$ and $B\left(T, \mu_{*}\right)$. Hence E decreases to its limit $E\left(T, \mu_{*}\right)$.

- If $E\left(T, \mu_{*}\right)>0$ for some T, then

$$
G\left(\mu_{*}\right) \geq \sum_{L} E\left(T, L, \mu_{*}\right)=\infty
$$

Therefore $\mu_{c} \geq \mu_{*}$.

A lower bound on μ_{c} :

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, L, \mu_{*}\right)+B\left(T, L, \mu_{*}\right)+\frac{1}{\sqrt{2}} E\left(T, L, \mu_{*}\right)
$$

As $L \rightarrow \infty, A$ and B increase to their limits $A\left(T, \mu_{*}\right)$ and $B\left(T, \mu_{*}\right)$.
Hence E decreases to its limit $E\left(T, \mu_{*}\right)$.

- If $E\left(T, \mu_{*}\right)>0$ for some T, then

$$
G\left(\mu_{*}\right) \geq \sum_{L} E\left(T, L, \mu_{*}\right)=\infty .
$$

Therefore $\mu_{c} \geq \mu_{*}$.

- If $E\left(T, \mu_{*}\right)=0$ for all T, then

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, \mu_{*}\right)+B\left(T, \mu_{*}\right) .
$$

A lower bound on μ_{c} (continued):

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, \mu_{*}\right)+B\left(T, \mu_{*}\right) .
$$

A lower bound on μ_{c} (continued):

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, \mu_{*}\right)+B\left(T, \mu_{*}\right) .
$$

Also clearly

$$
A\left(T+1, \mu_{*}\right) \leq A\left(T, \mu_{*}\right)+B\left(T, \mu_{*}\right)^{2} .
$$

A lower bound on μ_{c} (continued):

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, \mu_{*}\right)+B\left(T, \mu_{*}\right) .
$$

Also clearly

$$
A\left(T+1, \mu_{*}\right) \leq A\left(T, \mu_{*}\right)+B\left(T, \mu_{*}\right)^{2} .
$$

We conclude that

$$
B\left(T+1, \mu_{*}\right) \geq B\left(T, \mu_{*}\right)-\frac{\sqrt{2-\sqrt{2}}}{2} \cdot B\left(T, \mu_{*}\right)^{2},
$$

A lower bound on μ_{c} (continued):

$$
1=\frac{\sqrt{2-\sqrt{2}}}{2} A\left(T, \mu_{*}\right)+B\left(T, \mu_{*}\right) .
$$

Also clearly

$$
A\left(T+1, \mu_{*}\right) \leq A\left(T, \mu_{*}\right)+B\left(T, \mu_{*}\right)^{2} .
$$

We conclude that

$$
B\left(T+1, \mu_{*}\right) \geq B\left(T, \mu_{*}\right)-\frac{\sqrt{2-\sqrt{2}}}{2} \cdot B\left(T, \mu_{*}\right)^{2},
$$

hence

$$
B\left(T, \mu_{*}\right) \geq \frac{\text { const }}{\text { const }+T}
$$

Therefore $G\left(\mu_{*}\right) \geq \sum_{T} B\left(T, \mu_{*}\right)=\infty$ and $\mu_{c} \geq \mu_{*}$.

- Determined the connective constant.
- Introduced a discrete holomorphic parafermion.
- Determined the connective constant.
- Introduced a discrete holomorphic parafermion.

TO DO

- What to do next?
- What not to do next?

What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

- Combinatorial question: Up to $n^{o(1)}$ (up to a multiplicative constant?) we have:

where $\gamma=43 / 32$ should be universal.

What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

- Combinatorial question: Up to $n^{\circ(1)}$ (up to a multiplicative constant?) we have:

$$
c_{n} \sim n^{\gamma-1}(\sqrt{2+\sqrt{2}})^{n} \text { as } n \longrightarrow \infty
$$

where $\gamma=43 / 32$ should be universal.

- Geometric question: Let $\omega(N)$ be the N-th point of the walk, and $|\cdot|$ denote the Euclidean distance, then there exists D such that:

$$
\mathbb{E}_{n}\left[|\omega(n)|^{2}\right] \sim D n^{2 \nu} \text { as } n \longrightarrow \infty
$$

where $\nu=3 / 4$.

What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

- Combinatorial question: Up to $n^{\circ(1)}$ (up to a multiplicative constant?) we have:

where $\gamma=43 / 32$ should be universal.
- Geometric question: Let $\omega(N)$ be the N-th point of the walk, and $|\cdot|$ denote the Euclidean distance, then there exists D such that:

$$
\mathbb{E}_{n}\left[|\omega(n)|^{2}\right] \sim D n^{2 \nu} \text { as } n \longrightarrow \infty
$$

where $\nu=3 / 4$.
Would follow from the following conjecture

Conjecture (Lawler, Schramm, Werner, 2001)
The SAW has a conformally invariant scaling limit - SLE(8/3).

Conjecture (Lawler, Schramm, Werner, 2001)
The SAW has a conformally invariant scaling limit - SLE(8/3).

Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit - SLE (8/3).

- For $\delta>0$, we define a probability measure on self-avoiding paths from a_{δ} to b_{δ} by assigning a weight proportional to $\mu_{c}^{-\ell(\omega)}$. When $\delta \rightarrow 0$, the sequence converges to a random continuous curve.

Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit - SLE (8/3).

- For $\delta>0$, we define a probability measure on self-avoiding paths from a_{δ} to b_{δ} by assigning a weight proportional to $\mu_{c}^{-\ell(\omega)}$. When $\delta \rightarrow 0$, the sequence converges to a random continuous curve.

Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit - SLE (8/3).

- For $\delta>0$, we define a probability measure on self-avoiding paths from a_{δ} to b_{δ} by assigning a weight proportional to $\mu_{c}^{-\ell(\omega)}$. When $\delta \rightarrow 0$, the sequence converges to a random continuous curve.

Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit - SLE(8/3).

- For $\delta>0$, we define a probability measure on self-avoiding paths from a_{δ} to b_{δ} by assigning a weight proportional to $\mu_{c}^{-\ell(\omega)}$. When $\delta \rightarrow 0$, the sequence converges to a random continuous curve.

A strategy to tackle this problem?

(1) Precompactness of the family of curves
(2) Conformally invariant martingales which are given by the ratio of two parafermionic observables: $F(a, z, \Omega) / F(a, b, \Omega)$.

Main missing point: show that F is fully discrete holomorphic

What to do next? $O(n)$ models (1).

The $O(n)$ model is a model on closed loops lying on a finite subgraph of the hexagonal lattice. The probability of a configuration is equal to

$$
\frac{x^{\# \text { edges }} n^{\# \text { loops }}}{Z_{x, n, G}}
$$

What to do next? $O(n)$ models (1).

The $O(n)$ model is a model on closed loops lying on a finite subgraph of the hexagonal lattice. The probability of a configuration is equal to

$$
\frac{x^{\# \text { edges }} n^{\# \text { loops }}}{Z_{x, n, G}}
$$

- Representation of the spin $O(n)$ model.
- Physicist Nienhuis studied the model for $n \in(0,2]$ and suggested the following phase diagram

What to do next? $O(n)$ models (1).

The $O(n)$ model is a model on closed loops lying on a finite subgraph of the hexagonal lattice. The probability of a configuration is equal to

$$
\frac{x^{\# \text { edges }} n^{\# \text { loops }}}{Z_{x, n, G}}
$$

- Representation of the spin $O(n)$ model.
- Physicist Nienhuis studied the model for $n \in(0,2]$ and suggested the following phase diagram

What to do next? $O(n)$ models (2).

- In the case $n=1$ of the Ising model, a similar fermionic observable F is discrete holomorphic at criticality:

So far only partial discrete holomorphicity observed.

What to do next? $O(n)$ models (2).

- In the case $n=1$ of the Ising model, a similar fermionic observable F is discrete holomorphic at criticality:

$$
F(a, z, x)=\quad e^{-i \frac{1}{2} W_{\omega}(a, z)} x^{\# \text { edges }}
$$

ω with a curve ω from a to z

So far only partial discrete holomorphicity observed.

What to do next? $O(n)$ models (2).

- In the case $n=1$ of the Ising model, a similar fermionic observable F is discrete holomorphic at criticality:

$$
F(a, z, x)=\sum^{-i \frac{1}{2} W_{\omega}(a, z)} x^{\# \text { edges }}
$$

ω with a curve ω from a to z

For $O(n)$ models, the parafermionic observable

$$
F(a, z, x, \sigma):=\sum_{\omega \text { with a curve } \omega \text { from } a \text { to } z} e^{-i \sigma W_{\omega}(a, z)} x^{\# \text { edges }} n^{\# \text { loops }}
$$

should be discrete holomorphic for $x=x_{c}$ and $2 \cos \left(\frac{4 \sigma \pi}{3}\right)=-n$.
So far only partial discrete holomorphicity observed.

What to do next? $O(n)$ models (3).

What to do next? $O(n)$ models (3).

Conjecture
For $n \in[0,2]$ and $x=x_{c}(n)$, the interface between two points a and b (on the boundary) converges, as the lattice step goes to zero, to $\operatorname{SLE}(\kappa)$ where

$$
\kappa=\frac{4 \pi}{2 \pi-\arccos (-n / 2)} .
$$

What to do next? $O(n)$ models (3).

Conjecture

For $n \in[0,2]$ and $x=x_{c}(n)$, the interface between two points a and b (on the boundary) converges, as the lattice step goes to zero, to $\operatorname{SLE}(\kappa)$ where

$$
\kappa=\frac{4 \pi}{2 \pi-\arccos (-n / 2)} .
$$

Known only for the Ising model, $n=1$ (Chelkak \& Smirnov). In this case, Discrete Holomorphicity + Boundary Conditions determine F.

What to do next? $O(n)$ models (3).

Conjecture

For $n \in[0,2]$ and $x=x_{c}(n)$, the interface between two points a and b (on the boundary) converges, as the lattice step goes to zero, to $\operatorname{SLE}(\kappa)$ where

$$
\kappa=\frac{4 \pi}{2 \pi-\arccos (-n / 2)} .
$$

Known only for the Ising model, $n=1$ (Chelkak \& Smirnov). In this case, Discrete Holomorphicity + Boundary Conditions determine F.

Conjecture

For $n \in[0,2]$ and $x>x_{c}(n)$, the interface between two points a and b (on the boundary) converges, as the lattice step goes to zero, to $\operatorname{SLE}(\kappa)$ where

$$
\kappa=\frac{4 \pi}{\arccos (-n / 2)} .
$$

Known only for the critical percolation, $n=1, x=1$ (Smirnov) via a different observable.

- Determined the connective constant.
- Introduced a holomorphic parafermion.
- What to do next?
- Determined the connective constant.
- Introduced a holomorphic parafermion.
- What to do next?

TO DO

- What not to do next?

What not to do next? $O(n)$ models (3).

Do not work with the square lattice self-avoiding walk!
Consider a more general model on the square lattice, with the following weights

What not to do next? $O(n)$ models (3).

\triangleDo not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following weights

- There are only two families of solutions: one possesses negative weights, the other is exactly equivalent to the hexagonal $O(n)$ model at criticality.

4Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following weights

- There are only two families of solutions: one possesses negative weights, the other is exactly equivalent to the hexagonal $O(n)$ model at criticality.
- The solutions correspond to integrable points of the model (when the Yang-Baxter condition applies).

Conclusion

Conclusion

- We can introduce parafermionic observables for a wide variety of models: $O(n)$-models, random-cluster models, self-avoiding walks...

Conclusion

- We can introduce parafermionic observables for a wide variety of models: $O(n)$-models, random-cluster models, self-avoiding walks...
- We can extract information from these operators in order to study the critical phase (example of the connective constant of the hexagonal lattice).

Conclusion

- We can introduce parafermionic observables for a wide variety of models: $O(n)$-models, random-cluster models, self-avoiding walks...
- We can extract information from these operators in order to study the critical phase (example of the connective constant of the hexagonal lattice).
- In some cases, the information is total - universality class of the Ising model - and we can derive conformal invariance.

Question: Can we do the same for other models?

Thank you

