Self-similar families of groups

Volodymyr Nekrashevych

March 14, 2008,
Les Diablerets

\mathcal{D}_{w} as Iterated Monodromy Groups

Let C_{i} be planes and let $\mathrm{A}_{i}, \mathrm{~B}_{i}, \Gamma_{i} \in C_{i}$. Let $f_{i}: C_{i} \rightarrow C_{i-1}$ by 2 -fold branched coverings such that

Let α, β and γ be loops around A_{0}, B_{0} and Γ_{0}, respectively.
Then the trees of orbits of the corresponding automorphisms of the rooted tree are

Hence they are conjugate to $\alpha=\sigma, \beta=(\alpha, \gamma)$ and $\gamma=(1, \beta)$.

α, β, γ

The Family \mathcal{D}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$.
Define

$$
\begin{aligned}
\alpha_{w} & =\sigma, \\
\beta_{w} & =\left(\alpha_{\bar{w}}, \gamma_{\bar{w}}\right), \\
\gamma_{w} & = \begin{cases}\left(\beta_{\bar{w}}, 1\right) & \text { if } x=0, \\
\left(1, \beta_{\bar{w}}\right) & \text { if } x=1 .\end{cases}
\end{aligned}
$$

Let $\mathcal{D}_{w}=\left\langle\alpha_{w}, \beta_{w}, \gamma_{w}\right\rangle$.
$\mathcal{D}_{00 \ldots}=\operatorname{IMG}\left(z^{2}+i\right)$
$\mathcal{D}_{11 \ldots}=G_{0101 \ldots}$ (a Grigorchuk group).

Proposition

Suppose that h_{0}, h_{1}, h_{2} are conjugate to α, β, γ in $\operatorname{Aut}\left(X^{*}\right)$. Then there exists a unique $w \in\{0,1\}^{\infty}$ such that h_{0}, h_{1}, h_{2} are simultaneously conjugate to $\alpha_{w}, \beta_{w}, \gamma_{w}$.

Corollary
The iterated monodromy group of any backward iteration of the given form is isomorphic to \mathcal{D}_{w} for some w.

Proposition

For any $w \in\{0,1\}^{\infty}$ the set of $w^{\prime} \in\{0,1\}^{\infty}$ such that \mathcal{D}_{w} is conjugate with $\mathcal{D}_{w^{\prime}}$ is at most countable.

Theorem

Groups $\mathcal{D}_{w_{1}}$ and $\mathcal{D}_{w_{2}}$ are isomorphic if and only if they are conjugate in $\operatorname{Aut}\left(X^{*}\right)$.

The Family \mathcal{R}_{w}

Let $w \in\{0,1\}^{\infty}$ and $w=x \bar{w}$.
Define

$$
\begin{aligned}
\alpha_{w} & =\sigma\left(1, \gamma_{\bar{w}}\right), \\
\beta_{w} & = \begin{cases}\left(\alpha_{\bar{w}}, 1\right) & \text { if } x=0, \\
\left(1, \alpha_{\bar{w}}\right) & \text { if } x=1,\end{cases} \\
\gamma_{w} & =\left(1, \beta_{\bar{w}}\right) .
\end{aligned}
$$

Let $\mathcal{R}_{w}=\left\langle\alpha_{w}, \beta_{w}, \gamma_{w}\right\rangle$.
$\mathcal{R}_{11 \ldots}=\operatorname{IMG}\left(z^{2}+(-0.1226 \ldots+0.7449 \ldots i)\right)$ and
$\mathcal{R}_{00 \ldots}=\operatorname{IMG}\left(z^{2}-1.7549 \ldots\right)$.

Grigorchuk groups

Let $w \in\{0,1,2\}^{\infty}$ and $w=x \bar{w}$.
Define

$$
\begin{aligned}
& a_{w}=\sigma, \\
& b_{w}=\left\{\begin{aligned}
\left(1, b_{\bar{w}}\right) & \text { if } x=0, \\
\left(a_{\bar{w}}, b_{\bar{w}}\right) & \text { otherwise, },
\end{aligned}\right. \\
& c_{w}=\left\{\begin{aligned}
\left(1, c_{\bar{w}}\right) & \text { if } x=1, \\
\left(a_{\bar{w}}, c_{\bar{w}}\right) & \text { otherwise, },
\end{aligned}\right. \\
& d_{w}=\left\{\begin{aligned}
\left(1, d_{\bar{w}}\right) & \text { if } x=2, \\
\left(a_{\bar{w}}, d_{\bar{w}}\right) & \text { otherwise, },
\end{aligned}\right.
\end{aligned}
$$

Denote $G_{w}=\left\langle a_{w}, b_{w}, c_{w}, d_{w}\right\rangle$.

The Space of Finitely Generated Groups

Let $F_{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n} \mid \emptyset\right\rangle$.
The set \mathfrak{G}_{n} of quotients of F_{n}, i.e., the set of marked n-generated groups

$$
\mathfrak{G}_{n}=\left\{\left(G, a_{1}, \ldots, a_{n}\right):\left\langle a_{1}, \ldots, a_{n}\right\rangle=G\right\}
$$

is identified with the set of normal subgroups of F_{n}, which has a natural topology of a subset of $2^{F_{n}}$.
Two groups are close if their Cayley graphs coincide on a large ball.

Theorem
The $\operatorname{map}\{0,1\}^{\infty} \rightarrow \mathfrak{G}_{3}$

$$
w \mapsto\left(\mathcal{R}_{w}, \alpha_{w}, \beta_{w}, \gamma_{w}\right)
$$

is a homeomorphic embedding.
Let $\Omega \subset\{0,1\}^{\infty}$ be the set of sequences which have infinitely many zeros. Denote by D_{w} the limit of $\mathcal{D}_{w_{n}}$ for $w_{n} \in \Omega$ and $w_{n} \rightarrow w$.

Theorem
We have $D_{w}=\mathcal{D}_{w}$ for $w \in \Omega$. The $\operatorname{map}\{0,1\}^{\infty} \rightarrow \mathfrak{G}_{3}$

$$
w \mapsto\left(D_{w}, \alpha_{w}, \beta_{w}, \gamma_{w}\right)
$$

is a homeomorphic embedding.
Similar result holds also for the family of Grigorchuk groups. The exceptional groups in this case are G_{w} for eventually constant w.

Theorem
Two groups $D_{w_{1}}, D_{w_{2}}$ are isomorphic, if and only if the sequences w_{1} and w_{2} are cofinal, i.e., if they are of the form $w_{1}=v_{1} u$ and $w_{2}=v_{2} u$ for $\left|v_{1}\right|=\left|v_{2}\right|$.
The isomorphism classes are dense and countable in the family $\left\{\mathcal{R}_{w}\right\}_{w \in\{0,1\}^{\infty}}$.

Corollary

For any $w_{1}, w_{2} \in\{0,1\}^{\infty}$ and any finite set of relations and inequalities between the generators of $D_{w_{1}}$ there are generators of $D_{w_{2}}$ such that the same relations and inequalities hold.

Theorem (K.-U.Bux and R.Perez)
The group $\mathcal{D}_{000 \ldots}=\operatorname{IMG}\left(z^{2}+i\right)$ has intermediate growth .

Theorem (A.Erschler)
The group $\mathcal{D}_{111 \ldots}=G_{0101 \ldots}$ has intermediate growth satisfying the estimates

$$
\exp \left(\frac{n}{\log ^{2+\epsilon}(n)}\right) \preceq \gamma(n) \preceq \exp \left(\frac{n}{\log ^{1-\epsilon}(n)}\right) .
$$

Theorem

The group $D_{111 . . .}$ is of exponential growth, hence it has non-uniform exponential growth.

The kernel of the epimorphism $D_{111 \ldots} \rightarrow \mathcal{D}_{111 \ldots .}$ is C_{4}^{∞}.

Universal Groups of the Families

Let \mathcal{D} be the subgroup of $\prod_{w \in\{0,1\} \infty} \mathcal{D}_{w}$ generated by the "diagonal" elements

$$
\left(\alpha_{w}\right)_{w \in\{0,1\}^{\infty}},\left(\beta_{w}\right)_{w \in\{0,1\}^{\infty}},\left(\gamma_{w}\right)_{w \in\{0,1\}^{\infty}} .
$$

This group can be also defined as

$$
\langle\alpha, \beta, \gamma \mid \emptyset\rangle / \bigcap_{w \in\{0,1\}^{\infty}} N_{w}
$$

where N_{w} is the kernel of the epimorphism $\alpha \mapsto \alpha_{w}, \beta \mapsto \beta_{w}, \gamma \mapsto \gamma_{w}$. Let us call \mathcal{D} the universal group of the family $\left\{\mathcal{D}_{w}\right\}$.

The universal group \mathcal{D} is also self-similar. It is generated by

$$
\begin{aligned}
\alpha & =(1,2)(3,4) \\
\beta & =(\alpha, \gamma, \alpha, \gamma) \\
\gamma & =(\beta, 1,1, \beta)
\end{aligned}
$$

Identify $1 \leftrightarrows(0,0), 2 \leftrightarrows(1,0), 3 \leftrightarrows(0,1)$ and $4 \leftrightarrows(1,1)$.
Then \mathcal{D} acts only on the first coordinates of letters.
Let $T_{y_{1} y_{2} \ldots}$ be the subtree consisting of the words
$\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$.
The subtrees T_{w} are \mathcal{D}-invariant.
Restriction of \mathcal{D} onto T_{w} is \mathcal{D}_{w}.

A bigger group

Let $\widetilde{\mathcal{D}}$ be the group generated by

$$
\begin{array}{ll}
\alpha=(12)(34), & a=(13)(24), \\
\beta=(\alpha, \gamma, \alpha, \gamma), & b=(a \alpha, a \alpha, c, c), \\
\gamma=(\beta, 1,1, \beta), & c=(b \beta, b \beta, b, b) .
\end{array}
$$

Note that the group $\widetilde{\mathcal{D}}$ permutes the subtrees T_{w}.

Proposition

The following relations hold.

$$
\begin{array}{lll}
\alpha^{a}=\alpha, & \alpha^{b}=\alpha, & \alpha^{c}=\alpha \\
\beta^{a}=\beta, & \beta^{b}=\beta, & \beta^{c}=\beta^{\gamma} \\
\gamma^{a}=\gamma^{\alpha}, & \gamma^{b}=\gamma^{\beta}, & \gamma^{c}=\gamma
\end{array}
$$

In particular, $\mathcal{D} \triangleleft \widetilde{\mathcal{D}}$.

The subgroup $\mathcal{D} \triangleleft \widetilde{\mathcal{D}}$ coincides with the set of elements acting trivially on the second coordinates of letters (i.e., leaving the subtrees T_{w} invariant). Hence, the quotient $H=\widetilde{\mathcal{D}} / \mathcal{D}$ acts naturally on the binary tree by the action

$$
\begin{array}{ccc}
a=\sigma, & b=(a, c), & c=(b, b) . \\
a=(13)(24) & b=(a \alpha, a \alpha, c, c), & c=(b \beta, b \beta, b, b) .
\end{array}
$$

The group $\widetilde{\mathcal{D}}$ permutes the subtrees T_{w} in the same way as H acts on $w \in\{0,1\}^{\infty}$.
Consequently, if w_{1} and w_{2} belong to one H-orbit, then $\mathcal{D}_{w_{1}}$ and $\mathcal{D}_{w_{2}}$ are isomorphic.

Questions

Are all groups \mathcal{D}_{w} of intermediate growth?
Are all groups \mathcal{R}_{w} amenable?
Are the universal groups of the three families amenable? They do not contain free subgroups.

Analytic interpretation

Let us identify C_{0} with \mathbb{C}. Then there exist unique complex structures on C_{i} such that f_{i} are holomorphic (i.e., are polynomials).
We may assume that A_{i} and B_{i} coincide with 0 and 1 , respectively. Then position $p_{i} \in \mathbb{C}$ of Γ_{i} parametrizes the complex structure on C_{i}.
f_{i} is a quadratic polynomial such that
(1) its critical value is 0 ,
(2) $f_{i}(0)=1$,
(3) $f_{i}(1)=p_{i-1}$,
(3) and $f_{i}\left(p_{i}\right)=1$.

We get $f_{i}=(a z+1)^{2}$ and $a p_{i}+1=-1$, hence $f_{i}(z)=\left(1-\frac{2 z}{p_{i}}\right)^{2}$,
$p_{i-1}=\left(1-\frac{2}{p_{i}}\right)^{2}$.

We get a map

$$
\begin{gathered}
F:\binom{z}{p} \mapsto\binom{\left(1-\frac{2 z}{p}\right)^{2}}{\left(1-\frac{2}{p}\right)^{2}} \\
F(z: p: u)=\left((p-2 z)^{2}:(p-2 u)^{2}: p^{2}\right)
\end{gathered}
$$

IMG (F) coincides with $\langle a b, a c, \alpha, \beta, \gamma\rangle<\widetilde{\mathcal{D}}$ and
$\operatorname{IMG}(F) / \mathcal{D} \cong \operatorname{IMG}\left(\left(1-\frac{2}{p}\right)^{2}\right)$.

Family \mathcal{R}_{w}

Analogous computations for the family \mathcal{R}_{w} give the rational function

$$
F:\binom{z}{p} \mapsto\binom{1-\frac{z^{2}}{p^{2}}}{1-\frac{1}{p^{2}}} .
$$

Theorem

The limit space of $\widehat{\mathcal{R}}$ is homeomorphic to the "Julia set" J_{2} of F.

