Self-similar families of groups

Volodymyr Nekrashevych

March 14, 2008, Les Diablerets

\mathcal{D}_w as Iterated Monodromy Groups

Let C_i be planes and let $A_i, B_i, \Gamma_i \in C_i$. Let $f_i : C_i \to C_{i-1}$ by 2-fold branched coverings such that

Let α , β and γ be loops around A_0 , B_0 and Γ_0 , respectively. Then the trees of orbits of the corresponding automorphisms of the rooted tree are

Hence they are conjugate to $\alpha = \sigma$, $\beta = (\alpha, \gamma)$ and $\gamma = (1, \beta)$.

$$\alpha,\beta,\gamma$$

The Family \mathcal{D}_w

Let $w \in \{0,1\}^{\infty}$ and $w = x\overline{w}$. Define

$$\begin{split} &\alpha_{w} = \sigma, \\ &\beta_{w} = \left(\alpha_{\overline{w}}, \gamma_{\overline{w}}\right), \\ &\gamma_{w} = \left\{ \begin{array}{ll} \left(\beta_{\overline{w}}, 1\right) & \text{if } x = 0, \\ \left(1, \beta_{\overline{w}}\right) & \text{if } x = 1. \end{array} \right. \end{split}$$

Let
$$\mathcal{D}_{w} = \langle \alpha_{w}, \beta_{w}, \gamma_{w} \rangle$$
.
 $\mathcal{D}_{00...} = \mathrm{IMG} \left(z^{2} + i \right)$
 $\mathcal{D}_{11...} = G_{0101...}$ (a Grigorchuk group).

Proposition

Suppose that h_0, h_1, h_2 are conjugate to α, β, γ in $\operatorname{Aut}(X^*)$. Then there exists a unique $w \in \{0,1\}^{\infty}$ such that h_0, h_1, h_2 are simultaneously conjugate to $\alpha_w, \beta_w, \gamma_w$.

Corollary

The iterated monodromy group of any backward iteration of the given form is isomorphic to \mathcal{D}_w for some w.

Proposition

For any $w \in \{0,1\}^{\infty}$ the set of $w' \in \{0,1\}^{\infty}$ such that \mathcal{D}_w is conjugate with $\mathcal{D}_{w'}$ is at most countable.

Theorem

Groups \mathcal{D}_{w_1} and \mathcal{D}_{w_2} are isomorphic if and only if they are conjugate in $\operatorname{Aut}(X^*)$.

The Family \mathcal{R}_w

Let $w \in \{0,1\}^{\infty}$ and $w = x\overline{w}$. Define

$$\alpha_{w} = \sigma(1, \gamma_{\overline{w}}),$$

$$\beta_{w} = \begin{cases} (\alpha_{\overline{w}}, 1) & \text{if } x = 0, \\ (1, \alpha_{\overline{w}}) & \text{if } x = 1, \end{cases}$$

$$\gamma_{w} = (1, \beta_{\overline{w}}).$$

Let
$$\mathcal{R}_{w} = \langle \alpha_{w}, \beta_{w}, \gamma_{w} \rangle$$
.
 $\mathcal{R}_{11...} = \mathrm{IMG} \left(z^{2} + (-0.1226... + 0.7449...i) \right)$ and $\mathcal{R}_{00...} = \mathrm{IMG} \left(z^{2} - 1.7549... \right)$.

Grigorchuk groups

Let $w \in \{0, 1, 2\}^{\infty}$ and $w = x\overline{w}$. Define

$$a_{w} = \sigma,$$

$$b_{w} = \left\{ \begin{array}{ll} (1,b_{\overline{w}}) & \text{if } x = 0, \\ (a_{\overline{w}},b_{\overline{w}}) & \text{otherwise,} \end{array} \right.$$

$$c_{w} = \left\{ \begin{array}{ll} (1,c_{\overline{w}}) & \text{if } x = 1, \\ (a_{\overline{w}},c_{\overline{w}}) & \text{otherwise,} \end{array} \right.$$

$$d_{w} = \left\{ \begin{array}{ll} (1,d_{\overline{w}}) & \text{if } x = 2, \\ (a_{\overline{w}},d_{\overline{w}}) & \text{otherwise,} \end{array} \right.$$

Denote $G_w = \langle a_w, b_w, c_w, d_w \rangle$.

The Space of Finitely Generated Groups

Let $F_n = \langle a_1, a_2, \dots, a_n \mid \emptyset \rangle$.

The set \mathfrak{G}_n of quotients of F_n , i.e., the set of marked n-generated groups

$$\mathfrak{G}_n = \{(G, a_1, \ldots, a_n) : \langle a_1, \ldots, a_n \rangle = G\}$$

is identified with the set of normal subgroups of F_n , which has a natural topology of a subset of 2^{F_n} .

Two groups are close if their Cayley graphs coincide on a large ball.

Theorem

The map $\{0,1\}^\infty \to \mathfrak{G}_3$

$$\mathbf{w} \mapsto (\mathcal{R}_{\mathbf{w}}, \alpha_{\mathbf{w}}, \beta_{\mathbf{w}}, \gamma_{\mathbf{w}})$$

is a homeomorphic embedding.

Let $\Omega \subset \{0,1\}^{\infty}$ be the set of sequences which have infinitely many zeros. Denote by D_w the limit of \mathcal{D}_{w_n} for $w_n \in \Omega$ and $w_n \to w$.

Theorem

We have $D_w = \mathcal{D}_w$ for $w \in \Omega$. The map $\{0,1\}^{\infty} \to \mathfrak{G}_3$

$$w \mapsto (D_w, \alpha_w, \beta_w, \gamma_w)$$

is a homeomorphic embedding.

Similar result holds also for the family of Grigorchuk groups. The exceptional groups in this case are G_w for eventually constant w.

Theorem

Two groups D_{w_1} , D_{w_2} are isomorphic, if and only if the sequences w_1 and w_2 are cofinal, i.e., if they are of the form $w_1 = v_1u$ and $w_2 = v_2u$ for $|v_1| = |v_2|$.

The isomorphism classes are dense and countable in the family $\{\mathcal{R}_w\}_{w\in\{0,1\}^{\infty}}$.

Corollary

For any $w_1, w_2 \in \{0,1\}^{\infty}$ and any finite set of relations and inequalities between the generators of D_{w_1} there are generators of D_{w_2} such that the same relations and inequalities hold.

Theorem (K.-U.Bux and R.Perez)

The group $\mathcal{D}_{000...} = \mathrm{IMG}\left(z^2 + i\right)$ has intermediate growth.

Theorem (A.Erschler)

The group $\mathcal{D}_{111...} = G_{0101...}$ has intermediate growth satisfying the estimates

$$\exp\left(\frac{n}{\log^{2+\epsilon}(n)}\right) \preceq \gamma(n) \preceq \exp\left(\frac{n}{\log^{1-\epsilon}(n)}\right).$$

Theorem

The group $D_{111...}$ is of exponential growth, hence it has non-uniform exponential growth.

The kernel of the epimorphism $D_{111...} \to \mathcal{D}_{111...}$ is C_{Δ}^{∞} .

Universal Groups of the Families

Let \mathcal{D} be the subgroup of $\prod_{w \in \{0,1\}^{\infty}} \mathcal{D}_w$ generated by the "diagonal" elements

$$(\alpha_w)_{w \in \{0,1\}^{\infty}}, (\beta_w)_{w \in \{0,1\}^{\infty}}, (\gamma_w)_{w \in \{0,1\}^{\infty}}.$$

This group can be also defined as

$$\langle \alpha, \beta, \gamma \mid \emptyset \rangle / \bigcap_{w \in \{0,1\}^{\infty}} N_w ,$$

where N_w is the kernel of the epimorphism $\alpha \mapsto \alpha_w, \beta \mapsto \beta_w, \gamma \mapsto \gamma_w$. Let us call \mathcal{D} the *universal group* of the family $\{\mathcal{D}_w\}$. The universal group ${\mathcal D}$ is also self-similar. It is generated by

$$\alpha = (1, 2)(3, 4)$$
$$\beta = (\alpha, \gamma, \alpha, \gamma)$$
$$\gamma = (\beta, 1, 1, \beta)$$

Identify $1 \leftrightarrows (0,0)$, $2 \leftrightarrows (1,0)$, $3 \leftrightarrows (0,1)$ and $4 \leftrightarrows (1,1)$.

Then ${\mathcal D}$ acts only on the first coordinates of letters.

Let $T_{y_1y_2...}$ be the subtree consisting of the words

$$(x_1, y_1)(x_2, y_2) \dots (x_n, y_n).$$

The subtrees T_w are \mathcal{D} -invariant.

Restriction of \mathcal{D} onto \mathcal{T}_w is \mathcal{D}_w .

A bigger group

Let $\widetilde{\mathcal{D}}$ be the group generated by

$$lpha = (12)(34), \qquad a = (13)(24),
eta = (lpha, \gamma, \alpha, \gamma), \qquad b = (alpha, alpha, c, c),
\gamma = (eta, 1, 1, \beta), \qquad c = (beta, beta, b, b).$$

Note that the group $\widetilde{\mathcal{D}}$ permutes the subtrees T_w .

Proposition

The following relations hold.

$$\begin{array}{ll} \alpha^{\mathbf{a}} = \alpha, & \alpha^{b} = \alpha, & \alpha^{c} = \alpha, \\ \beta^{\mathbf{a}} = \beta, & \beta^{b} = \beta, & \beta^{c} = \beta^{\gamma}, \\ \gamma^{\mathbf{a}} = \gamma^{\alpha}, & \gamma^{b} = \gamma^{\beta}, & \gamma^{c} = \gamma. \end{array}$$

In particular, $\mathcal{D} \lhd \widetilde{\mathcal{D}}$.

The subgroup $\mathcal{D} \lhd \widetilde{\mathcal{D}}$ coincides with the set of elements acting trivially on the second coordinates of letters (i.e., leaving the subtrees T_w invariant). Hence, the quotient $H = \widetilde{\mathcal{D}}/\mathcal{D}$ acts naturally on the binary tree by the action

$$a = \sigma,$$
 $b = (a, c),$ $c = (b, b).$
 $a = (13)(24)$ $b = (a\alpha, a\alpha, c, c),$ $c = (b\beta, b\beta, b, b).$

The group $\widetilde{\mathcal{D}}$ permutes the subtrees T_w in the same way as H acts on $w \in \{0,1\}^\infty$.

Consequently, if w_1 and w_2 belong to one H-orbit, then \mathcal{D}_{w_1} and \mathcal{D}_{w_2} are isomorphic.

Questions

Are all groups \mathcal{D}_w of intermediate growth?

Are all groups \mathcal{R}_w amenable?

Are the universal groups of the three families amenable? They do not contain free subgroups.

Analytic interpretation

Let us identify C_0 with \mathbb{C} . Then there exist unique complex structures on C_i such that f_i are holomorphic (i.e., are polynomials).

We may assume that A_i and B_i coincide with 0 and 1, respectively. Then position $p_i \in \mathbb{C}$ of Γ_i parametrizes the complex structure on C_i .

 f_i is a quadratic polynomial such that

- its critical value is 0,
- ② $f_i(0) = 1$,
- $f_i(1) = p_{i-1},$
- **and** $f_i(p_i) = 1$.

We get
$$f_i = (az + 1)^2$$
 and $ap_i + 1 = -1$, hence $f_i(z) = \left(1 - \frac{2z}{p_i}\right)^2$, $p_{i-1} = \left(1 - \frac{2}{p_i}\right)^2$.

We get a map

$$F: \left(\begin{array}{c} z \\ p \end{array}\right) \mapsto \left(\begin{array}{c} \left(1 - \frac{2z}{p}\right)^2 \\ \left(1 - \frac{2}{p}\right)^2 \end{array}\right).$$

$$F(z:p:u) = ((p-2z)^2:(p-2u)^2:p^2)$$

IMG (F) coincides with
$$\langle ab, ac, \alpha, \beta, \gamma \rangle < \widetilde{\mathcal{D}}$$
 and

$$\operatorname{IMG}(F)/\mathcal{D} \cong \operatorname{IMG}\left(\left(1-\frac{2}{p}\right)^2\right).$$

Family \mathcal{R}_w

Analogous computations for the family \mathcal{R}_{w} give the rational function

$$F: \left(\begin{array}{c} z \\ p \end{array}\right) \mapsto \left(\begin{array}{c} 1 - \frac{z^2}{p^2} \\ 1 - \frac{1}{p^2} \end{array}\right).$$

Theorem

The limit space of $\widehat{\mathcal{R}}$ is homeomorphic to the "Julia set" J_2 of F.

