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Measurable dynamics:

weak mixing vs. compactness
completely positive entropy vs. zero entropy

Topological dynamics:

weak mixing vs. nullness/zero sequence entropy
untameness vs. tameness

completely/uniformly
positive entropy

vs. zero entropy

Sizes of subsets of orbits along which independence occurs:

arbitrarily large finite vs. boundedly finite
infinite vs. finite

positive density vs. zero density



Let (X ,µ) be a probability space. Two sets A, B ⊆ X are independent
if µ(A ∩ B) = µ(A)µ(B).

Suppose that we have a µ-preserving action of a group G on X . By
considering the function

g 7→ µ(gA ∩ B)− µ(gA)µ(B)

on G one can develop various notions of asymptotic independence as
dynamical expressions of indeterminism or randomness:

• ergodicity
• weak mixing
• mixing
• completely positive entropy



For a unitary representation π : G → B(H) we define the following.

ergodicity: inf
(λg )∈P(G)

inf
ξ,ζ∈Ω

∣∣∣∣∑
g∈G

λg〈π(g)ξ, ζ〉
∣∣∣∣ = 0 for all finite Ω ⊆ H

weak mixing: inf
g∈G

inf
ξ,ζ∈Ω

|〈π(g)ξ, ζ〉| = 0 for all finite Ω ⊆ H

mixing: lim
g→∞

|〈π(g)ξ, ζ〉| = 0 for all ξ, ζ ∈ H

We then apply these notions to the action of G on (X ,µ) by considering
the associated representation of G on L2(X ,µ)	 C1.

For every π : G → B(H) we have an orthogonal decomposition

H = Hwm ⊕Hcpct

into G -invariant weakly mixing and compact components.



In topological dynamics, the appropriate notion of independence is the
combinatorial (or set-theoretic) one.

Definition. Let X be a set. A collection {(Ai ,0, Ai ,1)}ni=1 of pairs of
subsets of X is said to be independent if

⋂n
i=1 Ai ,σ(i) 6= ∅ for every

σ ∈ {0, 1}{1,...,n}.

i = 1
0 1

i = 2
0 1 0 1

i = 3
0 1 0 1 0 1 0 1

Independence plays an important role in Rosenthal’s `1 theorem:

Every bounded sequence of functions on a set has a subsequence
which either converges pointwise or is equivalent to the standard
basis of `1.



Let (X , G ) be a topological dynamical system. To what extent can
independence be observed when we generate a family of pairs of subsets
of X by applying the action of G to an initial pair (A0, A1)?



In the context of entropy, we are concerned with independence over
subsets of orbits with positive density. The topological entropy of a
homeomorphism T : X → X measures the asymptotic exponential
growth produced by applying T iteratively to open covers:

htop(T , U) = lim
n→∞

1

n
ln N(U ∨ T−1U ∨ · · · ∨ T−n+1U),

htop(T ) = sup
U

htop(T , U)

where N(·) denotes the minimal cardinality of a subcover.

For a two-element clopen partition {A0, A1} of X the problem of positive
entropy can be combinatorialized via the Sauer-Shelah lemma:

For every b > 0 there is a c > 0 such that, for all n ∈ N, if S ⊆
{0, 1}{1,...,n} satisfies |S | ≥ ebn then there is a J ⊆ {1, 2, ... , n}
with |J | ≥ cn and A|J = {0, 1}J .



The local theory of entropy was initiated by Blanchard about 15 years
ago via the notion of entropy pair. A pair (x , y) ∈ X ×X is an entropy
pair if htop(T , U) > 0 for every open cover U consisting of the comple-
ments of disjoint closed neighbourhoods of x and y . Entropy tuples in
X k can be defined similarly.



Blanchard and Lacroix constructed the largest zero entropy factor of the
system (X , T ), called the Pinsker factor, by taking the smallest closed
invariant equivalence relation containing all entropy pairs. The system
(X , T ) has

• completely positive entropy if every nontrivial factor has pos-
itive entropy (i.e., the Pinsker factor is trivial)

• uniformly positive entropy if every nondiagonal pair in X×X
is an entropy pair

• uniformly positive entropy of all orders if for each k ≥ 2
every nondiagonal tuple in X k is an entropy tuple



Remarkably, every significant result to date involving entropy pairs (e.g.,
the product formula due to Glasner) has been obtained using measure-
dynamical techniques by way of a variational principle.

Problem. Find more direct topological-combinatorial arguments.

This is one motivation for our approach to the local theory of entropy
and mixing based on independence.

Definition. We call a tuple x = (x1, ... , xk) ∈ X k an IE-tuple if for
every product neighbourhood U1 × · · · × Uk of x the orbit of the tuple
(U1, ... , Uk) has an independent subset of positive density.



Using a local variational principle, Huang and Ye showed that entropy tu-
ples are the same as nondiagonal IE-tuples. Inspired by work of Mendel-
son and Vershynin, we established a Sauer-Shelah-type coordinate den-
sity lemma that provides a combinatorial proof of this equivalence and
applies in a universal way to other situations:

• entropy for actions of amenable groups

• sequence entropy for actions of arbitrary groups

• the property of tameness, which involves to the presence of
`1 along infinite subsets of orbits of functions in the spirit
of Rosenthal’s `1 theorem

It is thus fruitful to define

IN-tuples: independence along arbitrary large finite subsets of orbits

IT-tuples: independence along infinite subsets of orbits

for the study of sequence entropy and tameness, respectively.



So the anaylsis of positive entropy production can be completely local-
ized to the neighbourhood scale.

Question. How does the theory translate when considering locality in
the dual sense at the C ∗-algebra level of functions on X?

We have seen already that independence is connected with the presence
of `1. The link between topological entropy and `1 structure via coordi-
nate density was discovered by Glasner and Weiss, who used techniques
from the local theory of Banach spaces to prove:

Theorem (Glasner-Weiss, 1995). If the homeomorphism T : X → X
has zero entropy then so does the induced weak∗ homeomorphism of
the space of probability measures on X .



The missing ingredient for the systematic development of the connection
to Banach space geometry observed by Glasner and Weiss is Voiculescu’s
notion of approximation entropy:

Definition. Let A be a unital nuclear C ∗-algebra. Given a finite subset
Ω ⊂ A and δ > 0, we write rcp(Ω, δ) for the infimum of d over all
diagrams

A

φ
u.c.p.

  A
AA

AA
AA

A
id // A

Md

ψ
u.c.p.

>>}}}}}}}}

which approximately commute to within δ on Ω. For an automorphism
α of A we then define

ht(α, Ω) = sup
δ>0

lim sup
n→∞

1

n
log rcp(Ω ∪ αΩ ∪ · · · ∪ αn−1Ω, δ),

ht(α) = sup
Ω

ht(α, Ω).



The Pinsker algebra is the invariant unital C ∗-subalgebra of C (X ) cor-
responding to the Pinsker factor.

Theorem (K.-Li). For f ∈ C (X ) the following are equivalent:

(1) f is not an element of the Pinsker algebra,

(2) ht(αT , {f }) > 0,

(3) there is an IE-pair (x1, x2) ∈ X × X with f (x1) 6= f (x2),

(4) there is a positive density set I ⊂ Z such that {f ◦ T k}k∈I is
equivalent to the standard basis of `1.

In particular we see that the system (X , T ) has completely positive
entropy if and only if the orbit of every nonscalar f ∈ C (X ) has a
positive density subset equivalent to the standard basis of `1.

Question. What are the functional-analytic meanings of uniformly pos-
itive entropy and uniformly positive entropy of all orders?



What corresponds to combinatorial independence at the C ∗-algebra level
is tensor product independence.

Theorem (K.-Li). The system (X , T ) has uniformly positive entropy of
all orders (i.e., every tuple is an IE-tuple) if and only if for every finite
set Ω ⊆ C (X ) and δ > 0 there is a finite-dimensional unital subspace
V ⊆ C (X ) with Ω ⊆δ V such that the span of the products of the
subspaces in a positive density subset J of the orbit of V is canonically
isomorphic to V⊗J .

For uniformly positive entropy we have a similar result, only now requir-
ing the subspaces V to be 2-dimensional.

We also have analogous results for tameness and sequence entropy using
IT-tuples and IN-tuples.



Problem. Can an analogous theory of combinatorial independence be
developed in measurable dynamics?

It frequently happens that combinatorial independence is present but
not in a robust enough way to be measure-theoretically meaningful.

Idea: Observe whether combinatorial independence occurs to the ap-
propriate degree in orbits of tuples of subsets whenever we hide from
view a small portion of the ambient space at each stage of the dynamics.

For a topological system (X , T ) with T -invariant probability measure
µ we can thus define measure IE-tuples as in the topological case but
subject to this control on our observations.



What is relevant now at the algebra level is Voiculescu’s von-Neumann-
algebraic approximation entropy:

Definition. Let M be a hyperfinite von Neumann algebra with faithful
normal state σ. Given a finite subset Ω ⊂ M and δ > 0, we write
rcpσ(Ω, δ) for the infimum of d over all diagrams

M

φ
u.c.p.

!!B
BB

BB
BB

B
id // M

Md

ψ
u.c.p.

==||||||||

with σ = σ ◦ ψ ◦ ϕ which approximately commute in the σ-norm to
within δ on Ω. For an automorphism α of M we then define

hcpaσ(α, Ω) = sup
δ>0

lim sup
n→∞

1

n
log rcpσ(Ω ∪ αΩ ∪ · · · ∪ αn−1Ω, δ),

hcpaσ(α) = sup
Ω

hcpaσ(α, Ω).



Let T be a measure-preserving automorphism of the probability space
(X ,µ). For a finite partition P of X we define

H(P) = −
∑
P∈P

µ(P) log µ(P)

The entropy h(T ) of T measures the asymptotic exponential growth
produced by applying T iteratively to finite partitions:

h(T , P) = lim
n→∞

1

n
H(P ∨ T−1P ∨ · · · ∨ T−n+1P),

h(T ) = sup
P

h(T , P).



For a measure-preserving system (X ,µ, T ), the Pinsker von Neumann
algebra is the invariant unital von Neumann subalgebra of L∞(X ,µ)
corresponding to the largest zero entropy factor of T .

Theorem (K.-Li). Let (X , T ) be a topological system with T -invariant
probability measure µ. For f ∈ L∞(X ,µ) the following are equivalent:

(1) f is not an element of the Pinsker von Neumann algebra,

(2) hcpaµ(T , {f }) > 0,

(3) every L2 perturbation of the orbit of f contains a subset of
positive density which is equivalent to the standard basis of `1,

and, in the case that f ∈ C (X ),

(4) there is a measure IE-pair (x1, x2) ∈ X ×X with f (x1) 6= f (x2).



Corollary. For a measure-preserving system (X ,µ, T ) the following are
equivalent:

(1) (X ,µ, T ) has complete positive entropy,

(2) the orbit of every nonscalar f ∈ L∞(X ,µ) contains a subset of
positive density which is equivalent to the standard basis of `1,

(3) the induced homeomorphism of the spectrum of L∞(X ,µ) has
uniformly positive entropy of all orders.

A joining between two systems (Y , ν, S) and (Z ,ω, T ) is an invariant
probability measure on Y × Z with ν and ω as marginals. The two
systems are said to be disjoint if ν × ω is the only joining between
them. Viewing joinings as equivariant unital positive maps L∞(Y , ν)→
L∞(Z ,ω), the above corollary gives a linear-geometric explanation for
the disjointness of zero entropy systems and completely positive entropy
systems.



In the context of sequence entropy we can define measure IN-tuples and
a sequence version hcpas

µ(·) of Voiculescu’s approximation entropy.

Theorem (K.-Li). Let (X , G ) be a topological system with ergodic
G -invariant probability measure µ. For f ∈ L∞(X ,µ) the following are
equivalent:

(1) f is not an element of the maximal null von Neumann algebra,

(2) hcpas
µ(X , {f }) > 0 for some sequence s in G ,

(3) the closure of the orbit of f in L2(X ,µ) is not compact,

(4) the orbit of every L2 perturbation of f contains an infinite subset
which is equivalent to the standard basis of `1,

(5) the orbit of every L2 perturbation of f contains, for some
λ ≥ 1, arbitrarily large finite subsets which are λ-equivalent
to the standard basis of `1,

and, in the case that f ∈ C (X ),

(6) there is a measure IN-pair (x1, x2) ∈ X ×X with f (x1) 6= f (x2).



Corollary. For a measure-preserving system (X ,µ, G ) the following are
equivalent:

(1) (X ,µ, G ) is weakly mixing,

(2) the orbit of every f ∈ L∞(X ,µ) contains, for some λ ≥ 1, arbi-
trarily large finite subsets which are λ-equivalent to the standard
basis of `1,

(3) the orbit of every nonscalar f ∈ L∞(X ,µ) contains an infinite
subset which is equivalent to the standard basis of `1,

(4) every tuple for the induced action of G on the spectrum of
L∞(X ,µ) is an IN-tuple,

(5) every tuple for the induced action of G on the spectrum of
L∞(X ,µ) is an IT-tuple.


