Independence and dichotomies in dynamics

David Kerr
Texas A&M University

Joint work with Hanfeng Li



Measurable dynamics:

weak mixing
completely positive entropy

Topological dynamics:

weak mixing
untameness

completely /uniformly
positive entropy

VS.
VS.

VS.
VS.

VS.

compactness
zero entropy

nullness/zero sequence entropy
tameness

zero entropy

Sizes of subsets of orbits along which independence occurs:

arbitrarily large finite
infinite
positive density

VS.
VS.
VS.

boundedly finite
finite
zero density



Let (X, i) be a probability space. Two sets A, B C X are independent
if 1(AN B) = u(A)u(B).

Suppose that we have a p-preserving action of a group G on X. By
considering the function

g — 1(gAN B) — 1(gA)u(B)
on G one can develop various notions of asymptotic independence as
dynamical expressions of indeterminism or randomness:

e ergodicity

e weak mixing

e mixing

e completely positive entropy



For a unitary representation 7 : G — B(H) we define the following.

ergodicity: inf  inf

= 0 for all finite Q C
(Ag)EP(G) £.CEQ gEZG/\g<7T(g)§, C>’ 0 for all finite Q C H

weak mixing: (m(g)&, ¢)| = 0 for all finite Q C H

inf inf |

g€G £,CeQ

mixing:  lim [(m(g)&, ()| =0forall £, € H
g0

We then apply these notions to the action of G on (X, ) by considering
the associated representation of G on Ly(X, u) © C1.

For every m: G — B(H) we have an orthogonal decomposition
H= inm > j{cpct

into G-invariant weakly mixing and compact components.



In topological dynamics, the appropriate notion of independence is the
combinatorial (or set-theoretic) one.

Definition. Let X be a set. A collection {(A;o, A1)}, of pairs of
subsets of X is said to be independent if (\_; Ai ) # O for every
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Independence plays an important role in Rosenthal’s /; theorem:

Every bounded sequence of functions on a set has a subsequence
which either converges pointwise or is equivalent to the standard
basis of /5.



Let (X, G) be a topological dynamical system. To what extent can
independence be observed when we generate a family of pairs of subsets
of X by applying the action of G to an initial pair (Ao, A;)?



In the context of entropy, we are concerned with independence over
subsets of orbits with positive density. The topological entropy of a
homeomorphism T : X — X measures the asymptotic exponential

growth produced by applying T iteratively to open covers:
1
htop(T, u) = lim E In N(u V T—lu VeV T—n-i—lu),

htop( T) — Slq.l/(p htop( T, U)

where N(-) denotes the minimal cardinality of a subcover.

For a two-element clopen partition {Ag, A; } of X the problem of positive
entropy can be combinatorialized via the Sauer-Shelah lemma:

For every b > 0 there is a ¢ > 0 such that, forall n € N, if S C

with |J| > cn and Al; = {0, 1}7.



The local theory of entropy was initiated by Blanchard about 15 years
ago via the notion of entropy pair. A pair (x,y) € X x X is an entropy
pair if hop( T, U) > 0 for every open cover U consisting of the comple-
ments of disjoint closed neighbourhoods of x and y. Entropy tuples in
X can be defined similarly.



Blanchard and Lacroix constructed the largest zero entropy factor of the
system (X, T), called the Pinsker factor, by taking the smallest closed

invariant equivalence relation containing all entropy pairs. The system
(X, T) has

e completely positive entropy if every nontrivial factor has pos-
itive entropy (i.e., the Pinsker factor is trivial)

e uniformly positive entropy if every nondiagonal pair in X x X
is an entropy pair

e uniformly positive entropy of all orders if for each k > 2
every nondiagonal tuple in X is an entropy tuple



Remarkably, every significant result to date involving entropy pairs (e.g.,
the product formula due to Glasner) has been obtained using measure-
dynamical techniques by way of a variational principle.

Problem. Find more direct topological-combinatorial arguments.

This is one motivation for our approach to the local theory of entropy
and mixing based on independence.

Definition. We call a tuple x = (x, ..., x) € Xk an IE-tuple if for
every product neighbourhood U; x - -+ x Uy of x the orbit of the tuple
(Uy, ..., Ux) has an independent subset of positive density.



Using a local variational principle, Huang and Ye showed that entropy tu-
ples are the same as nondiagonal |IE-tuples. Inspired by work of Mendel-
son and Vershynin, we established a Sauer-Shelah-type coordinate den-
sity lemma that provides a combinatorial proof of this equivalence and
applies in a universal way to other situations:

e entropy for actions of amenable groups
e sequence entropy for actions of arbitrary groups

e the property of tameness, which involves to the presence of
/1 along infinite subsets of orbits of functions in the spirit
of Rosenthal’'s ¢; theorem

It is thus fruitful to define

IN-tuples: independence along arbitrary large finite subsets of orbits
IT-tuples: independence along infinite subsets of orbits

for the study of sequence entropy and tameness, respectively.



So the anaylsis of positive entropy production can be completely local-
ized to the neighbourhood scale.

Question. How does the theory translate when considering locality in
the dual sense at the C*-algebra level of functions on X7

We have seen already that independence is connected with the presence
of /1. The link between topological entropy and ¢; structure via coordi-
nate density was discovered by Glasner and Weiss, who used techniques
from the local theory of Banach spaces to prove:

Theorem (Glasner-Weiss, 1995). If the homeomorphism T : X — X
has zero entropy then so does the induced weak* homeomorphism of
the space of probability measures on X.



The missing ingredient for the systematic development of the connection
to Banach space geometry observed by Glasner and Weiss is Voiculescu's
notion of approximation entropy:

Definition. Let A be a unital nuclear C*-algebra. Given a finite subset
Q C Aand § > 0, we write rcp(£2, ) for the infimum of d over all

diagrams
A A
o\, v

u.c.p. M u.c.p.

id
d

which approximately commute to within § on €. For an automorphism
a of A we then define
1
ht(a, Q) = suplimsup = logrep(QUaQ U - - - U a"1Q, ),
n

>0 n—oo

ht(«) = sup ht(a, Q).



The Pinsker algebra is the invariant unital C*-subalgebra of C(X) cor-
responding to the Pinsker factor.

Theorem (K.-Li). For f € C(X) the following are equivalent:

(1) f is not an element of the Pinsker algebra,

(2) ht(ar,{f}) >0,

(3) there is an IE-pair (x1, x2) € X x X with f(x1) # f(x2),

(4) there is a positive density set | C Z such that {f o TK},¢, is
equivalent to the standard basis of /;.

In particular we see that the system (X, T) has completely positive
entropy if and only if the orbit of every nonscalar f € C(X) has a
positive density subset equivalent to the standard basis of /;.

Question. What are the functional-analytic meanings of uniformly pos-
itive entropy and uniformly positive entropy of all orders?



What corresponds to combinatorial independence at the C*-algebra level
is tensor product independence.

Theorem (K.-Li). The system (X, T) has uniformly positive entropy of
all orders (i.e., every tuple is an |IE-tuple) if and only if for every finite
set Q C C(X) and ¢ > 0 there is a finite-dimensional unital subspace
V C C(X) with Q Cs5 V such that the span of the products of the
subspaces in a positive density subset J of the orbit of V' is canonically
isomorphic to V7.

For uniformly positive entropy we have a similar result, only now requir-
ing the subspaces V to be 2-dimensional.

We also have analogous results for tameness and sequence entropy using
IT-tuples and IN-tuples.



Problem. Can an analogous theory of combinatorial independence be
developed in measurable dynamics?

It frequently happens that combinatorial independence is present but
not in a robust enough way to be measure-theoretically meaningful.

Idea: Observe whether combinatorial independence occurs to the ap-
propriate degree in orbits of tuples of subsets whenever we hide from
view a small portion of the ambient space at each stage of the dynamics.

For a topological system (X, T) with T-invariant probability measure
(1t we can thus define measure IE-tuples as in the topological case but
subject to this control on our observations.



What is relevant now at the algebra level is Voiculescu's von-Neumann-
algebraic approximation entropy:

Definition. Let M be a hyperfinite von Neumann algebra with faithful
normal state o. Given a finite subset 2 C M and § > 0, we write
rep, (€2, 6) for the infimum of d over all diagrams

M d M
o\,
u.c.p. M, u.c.p.

with 0 = o o 1 o ¢ which approximately commute in the o-norm to
within § on €. For an automorphism « of M we then define

1
hepa, (o, Q) = suplimsup = log rcp, (QUaQ U --- U™ 1Q, §),
n

6>0 n—oo

hcpa, () = sup hepa, («, Q).
Q



Let T be a measure-preserving automorphism of the probability space
(X, ). For a finite partition P of X we define

H(P) == p(P)log u(P)
PeP
The entropy h(T) of T measures the asymptotic exponential growth

produced by applying T iteratively to finite partitions:
1
A(T,P)= lim “H(PV T 'Pv...v T "1P),

n—oo N

h(T) =suph(T,?P).



For a measure-preserving system (X, i, T), the Pinsker von Neumann
algebra is the invariant unital von Neumann subalgebra of L>(X, )
corresponding to the largest zero entropy factor of T.

Theorem (K.-Li). Let (X, T) be a topological system with T-invariant
probability measure u. For f € L>(X, i) the following are equivalent:

(1) f is not an element of the Pinsker von Neumann algebra,

(2) hcpau(T, {f}) >0,

(3) every L? perturbation of the orbit of f contains a subset of
positive density which is equivalent to the standard basis of /1,

and, in the case that f € C(X),
(4) there is a measure |E-pair (x1, x2) € X x X with f(x1) # f(x2).



Corollary. For a measure-preserving system (X, i, T) the following are
equivalent:

(1) (X, p, T) has complete positive entropy,

(2) the orbit of every nonscalar f € L*°(X, i) contains a subset of
positive density which is equivalent to the standard basis of /1,

(3) the induced homeomorphism of the spectrum of L*°(X, ) has
uniformly positive entropy of all orders.

A joining between two systems (Y, v, S) and (Z,w, T) is an invariant
probability measure on Y x Z with v and w as marginals. The two
systems are said to be disjoint if v X w is the only joining between
them. Viewing joinings as equivariant unital positive maps L*(Y,v) —
L>*(Z,w), the above corollary gives a linear-geometric explanation for
the disjointness of zero entropy systems and completely positive entropy
systems.



In the context of sequence entropy we can define measure IN-tuples and
a sequence version hcpay,(+) of Voiculescu's approximation entropy.

Theorem (K.-Li). Let (X, G) be a topological system with ergodic
G-invariant probability measure p. For f € L*°(X, 1) the following are
equivalent:

(1) f is not an element of the maximal null von Neumann algebra,
(2) hepay (X, {f}) > 0 for some sequence s in G,

(3) the closure of the orbit of f in Ly(X, p) is not compact,

(4)

4) the orbit of every L2 perturbation of f contains an infinite subset
which is equivalent to the standard basis of /4,

(5) the orbit of every L2 perturbation of f contains, for some
A > 1, arbitrarily large finite subsets which are A-equivalent
to the standard basis of /1,

and, in the case that f € C(X),
(6) there is a measure IN-pair (x1, x2) € X x X with f(x1) # f(x2).



Corollary. For a measure-preserving system (X, i, G) the following are
equivalent:
(1) (X, p, G) is weakly mixing,
(2) the orbit of every f € L*°(X, 1) contains, for some A > 1, arbi-
trarily large finite subsets which are A-equivalent to the standard
basis of /1,

(3) the orbit of every nonscalar f € L*(X, i) contains an infinite
subset which is equivalent to the standard basis of /1,

(4) every tuple for the induced action of G on the spectrum of
L>(X, i) is an IN-tuple,

(5) every tuple for the induced action of G on the spectrum of
L(X, ) is an I T-tuple.



