On the dynamics of left orderable groups

Andrés Navas Flores

Les Diablerets

March 2008

Definitions

- An order relation \prec on a group Γ is *left invariant* if for every $f \prec g$ and h in Γ one has $hf \prec hg$.
- A group Γ is said to be *left-orderable* if it admits a left invariant total order relation (*ordering*).
- A group Γ is said to be *bi-orderable* if it admits a total order relation which is invariant by the left and by the right simultaneously.

Definitions

- An order relation \prec on a group Γ is *left invariant* if for every $f \prec g$ and h in Γ one has $hf \prec hg$.
- A group Γ is said to be *left-orderable* if it admits a left invariant total order relation (*ordering*).
- A group Γ is said to be *bi-orderable* if it admits a total order relation which is invariant by the left and by the right simultaneously.

Remark. For a left orderable group,

$$f \succ g \implies f^{-1} \prec g^{-1}$$

Definitions

- An order relation \prec on a group Γ is *left invariant* if for every $f \prec g$ and h in Γ one has $hf \prec hg$.
- A group Γ is said to be *left-orderable* if it admits a left invariant total order relation (*ordering*).
- A group Γ is said to be *bi-orderable* if it admits a total order relation which is invariant by the left and by the right simultaneously.

Remark. For a left orderable group,

$$f \succ g \implies f^{-1} \prec g^{-1}$$

but

$$f \succ id \iff f^{-1} \prec id$$
.

- Orderable groups are torsion free.

- Orderable groups are torsion free.
- Orderable groups satisfy the Kaplansky Conjecture (the group algebra over $\mathbb Z$ or $\mathbb R$ of a torsion free group has no zero divisors):

- Orderable groups are torsion free.
- Orderable groups satisfy the Kaplansky Conjecture (the group algebra over $\mathbb Z$ or $\mathbb R$ of a torsion free group has no zero divisors):

$$g^{n} = 1 \implies (g-1)(g^{n-1} + g^{n-2} + ... + 1) = 0.$$

- Orderable groups are torsion free.
- Orderable groups satisfy the Kaplansky Conjecture (the group algebra over $\mathbb Z$ or $\mathbb R$ of a torsion free group has no zero divisors):

$$g^{n} = 1 \implies (g-1)(g^{n-1} + g^{n-2} + \ldots + 1) = 0.$$

 In a bi-orderable group, no non-trivial element is conjugate to its inverse.

- Orderable groups are torsion free.
- Orderable groups satisfy the Kaplansky Conjecture (the group algebra over $\mathbb Z$ or $\mathbb R$ of a torsion free group has no zero divisors):

$$g^{n} = 1 \implies (g-1)(g^{n-1} + g^{n-2} + \ldots + 1) = 0.$$

- In a bi-orderable group, no non-trivial element is conjugate to its inverse.
- Bi-orderable groups have the *unique root property*: for $n \in \mathbb{N}$,

$$f^n = g^n \implies f = g$$

- Torsion free Abelian groups (bi-orderable)

 $\mathbb{Z}^n\subset (\mathbb{R},+)$ with the induced ordering

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^n\subset (\mathbb{R},+)$$
 with the induced ordering

 \mathbb{Z}^n with the lexicographic order

- Torsion free nilpotent groups (bi-orderable) (Malcev)

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^n\subset (\mathbb{R},+)$$
 with the induced ordering

- Torsion free nilpotent groups (bi-orderable) (Malcev)
- Non Abelian free groups (bi-orderable) (Magnus)

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^n\subset (\mathbb{R},+)$$
 with the induced ordering

- Torsion free nilpotent groups (bi-orderable) (Malcev)
- Non Abelian free groups (bi-orderable) (Magnus)
- Thompson group F (bi-orderable)

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^n\subset (\mathbb{R},+)$$
 with the induced ordering

- Torsion free nilpotent groups (bi-orderable) (Malcev)
- Non Abelian free groups (bi-orderable) (Magnus)
- Thompson group F (bi-orderable)
- Fundamental groups of closed surfaces (Magnus)

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^n\subset (\mathbb{R},+)$$
 with the induced ordering

- Torsion free nilpotent groups (bi-orderable) (Malcev)
- Non Abelian free groups (bi-orderable) (Magnus)
- Thompson group F (bi-orderable)
- Fundamental groups of closed surfaces (Magnus)
- Fundamental groups of some 3-manifolds (Calegari-Dunfield, Boyer-Rolfsen-Wiest)

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^n\subset (\mathbb{R},+)$$
 with the induced ordering

- Torsion free nilpotent groups (bi-orderable) (Malcev)
- Non Abelian free groups (bi-orderable) (Magnus)
- Thompson group F (bi-orderable)
- Fundamental groups of closed surfaces (Magnus)
- Fundamental groups of some 3-manifolds (Calegari-Dunfield, Boyer-Rolfsen-Wiest)
- Mapping class groups of punctured surfaces with boundary (Nielsen, Thurston, Short-Wiest)

- Torsion free Abelian groups (bi-orderable)

$$\mathbb{Z}^n\subset (\mathbb{R},+)$$
 with the induced ordering

- Torsion free nilpotent groups (bi-orderable) (Malcev)
- Non Abelian free groups (bi-orderable) (Magnus)
- Thompson group F (bi-orderable)
- Fundamental groups of closed surfaces (Magnus)
- Fundamental groups of some 3-manifolds (Calegari-Dunfield, Boyer-Rolfsen-Wiest)
- Mapping class groups of punctured surfaces with boundary (Nielsen, Thurston, Short-Wiest)
- Braid groups (Dehornoy)

Some obstructions

- Finite index subgroups of $\mathrm{SL}(n,\mathbb{Z})$ (for $n\geq 3$) are non orderable (Witte).
- The above result extends to some higher rank lattices (Lifschitz and Witte-Morris)

Some obstructions

- Finite index subgroups of $\mathrm{SL}(n,\mathbb{Z})$ (for $n\geq 3$) are non orderable (Witte).
- The above result extends to some higher rank lattices (Lifschitz and Witte-Morris)

Question. Does there exists infinite orderable groups satisfying Kazhdan's property (T)?

The positive cone

– Orderability is equivalent to decomposition into positive and negative cones (semigroups): $\Gamma = \Gamma_+ \cup \Gamma_- \cup \{id\}$, where $\Gamma_+ = \{f : f \succ id\}$ and $\Gamma_- = \{f : f^{-1} \in \Gamma^+\}$.

The positive cone

– Orderability is equivalent to decomposition into positive and negative cones (semigroups): $\Gamma = \Gamma_+ \cup \Gamma_- \cup \{id\}$, where $\Gamma_+ = \{f : f \succ id\}$ and $\Gamma_- = \{f : f^{-1} \in \Gamma^+\}$.

Example. The positive cone of Dehornoy ordering on B_n is formed by the elements $\sigma \in B_n$ which may be written as a product

$$\sigma = w_0 \sigma_i^{n_1} w_1 \sigma_i^{n_2} w_2 \cdots \sigma_i^{n_k} w_k,$$

where $i \in \{1, ..., n-1\}$, the exponents n_r are positive, and the w_s are words on $\sigma_{i+1}^{\pm 1}, ..., \sigma_{n-1}^{\pm 1}$.

The positive cone

– Orderability is equivalent to decomposition into positive and negative cones (semigroups): $\Gamma = \Gamma_+ \cup \Gamma_- \cup \{id\}$, where $\Gamma_+ = \{f : f \succ id\}$ and $\Gamma_- = \{f : f^{-1} \in \Gamma^+\}$.

Example. The positive cone of Dehornoy ordering on B_n is formed by the elements $\sigma \in B_n$ which may be written as a product

$$\sigma = w_0 \sigma_i^{n_1} w_1 \sigma_i^{n_2} w_2 \cdots \sigma_i^{n_k} w_k,$$

where $i \in \{1, ..., n-1\}$, the exponents n_r are positive, and the w_s are words on $\sigma_{i+1}^{\pm 1}, ..., \sigma_{n-1}^{\pm 1}$.

General Question. Is the positive cone of an ordering finitely generated as a semigroup?

Dynamical realizations

Folklore principle. A countable group is orderable if and only if Γ admits a faithful action by orientation preserving homeomorphisms of the real line.

Dynamical realizations

Folklore principle. A countable group is orderable if and only if Γ admits a faithful action by orientation preserving homeomorphisms of the real line.

– Given $\Gamma \subset \operatorname{Homeo}_+(\mathbb{R})$ we may fix a dense sequence (x_n) of points in the real line and define $f \prec g$ if and only if the first $n \geq 1$ for which $f(x_n) \neq g(x_n)$ is such that $f(x_n) < g(x_n)$ (a "dynamical lexicographic ordering").

Dynamical realizations

Folklore principle. A countable group is orderable if and only if Γ admits a faithful action by orientation preserving homeomorphisms of the real line.

- Given $\Gamma \subset \operatorname{Homeo}_+(\mathbb{R})$ we may fix a dense sequence (x_n) of points in the real line and define $f \prec g$ if and only if the first $n \geq 1$ for which $f(x_n) \neq g(x_n)$ is such that $f(x_n) < g(x_n)$ (a "dynamical lexicographic ordering").
- Given an ordering \leq on a countable group Γ , let $t:\Gamma\to\mathbb{R}$ be any order preserving map (with t(id)=0). Define the action of Γ on the set $t(\Gamma)$ by letting g(t(h))=t(gh). This action may be extended continuously to the whole line... (dynamical realization).

Archimedean orders and free actions

Definition. An ordering \leq on a group Γ is *Archimedean* if for every $f \neq id$ and g in Γ there exists $n \in \mathbb{N}$ such that $f^n \succ g$.

Theorem (Hölder). Every group endowed with an Archimedean ordering is order isomorphic to a subgroup of $(\mathbb{R}, +)$.

Archimedean orders and free actions

Definition. An ordering \leq on a group Γ is *Archimedean* if for every $f \neq id$ and g in Γ there exists $n \in \mathbb{N}$ such that $f^n \succ g$.

Theorem (Hölder). Every group endowed with an Archimedean ordering is order isomorphic to a subgroup of $(\mathbb{R}, +)$.

- Dynamical realizations of Archimedean orderings are free actions (i.e., no non-trivial element has fixed points).

Theorem (Hölder). Every free action by homeomorphisms of the real line is topologically semiconjugate to an action by translations.

Bi-invariant orderings and essentially free actions

– The action of a group Γ of orientation preserving homeomorphisms of the real line is essentially free if for each $f \neq id$ one has either

$$f(x) \ge x$$
 for every $x \in \mathbb{R}$

or

$$f(x) \le x$$
 for every $x \in \mathbb{R}$.

Bi-invariant orderings and essentially free actions

– The action of a group Γ of orientation preserving homeomorphisms of the real line is *essentially free* if for each $f \neq id$ one has either

$$f(x) \ge x$$
 for every $x \in \mathbb{R}$

or

$$f(x) \le x$$
 for every $x \in \mathbb{R}$.

- The action of a dynamical realization of a bi-invariant ordering is essentially free.
- Every subgroup of $\mathrm{Homeo}_+(\mathbb{R})$ whose action is essentially free is bi-orderable.

The Conrad property

– An ordering \leq on a group Γ satisfy the Conrad property if for every $f \succ id$ and $g \succ id$ there exists $n \in \mathbb{N}$ such that $fg^n \succ g$.

The Conrad property

– An ordering \leq on a group Γ satisfy the Conrad property if for every $f \succ id$ and $g \succ id$ there exists $n \in \mathbb{N}$ such that $fg^n \succ g$.

Exercise. For a Conradian ordering \leq one has $fg^2 \succ g$ for all positive elements f, g.

The Conrad property

– An ordering \leq on a group Γ satisfy the Conrad property if for every $f \succ id$ and $g \succ id$ there exists $n \in \mathbb{N}$ such that $fg^n \succ g$.

Exercise. For a Conradian ordering \leq one has $fg^2 \succ g$ for all positive elements f, g.

- Theorem (Brodskii, Rhemtulla-Rolfsen, N). A group admits a Conradian ordering if and only if it is locally indicable (*i.e.*, every finitely generated subgroup admits a non trivial homomorphism into \mathbb{Z}).

The Conrad property

– An ordering \leq on a group Γ satisfy the Conrad property if for every $f \succ id$ and $g \succ id$ there exists $n \in \mathbb{N}$ such that $fg^n \succ g$.

Exercise. For a Conradian ordering \leq one has $fg^2 \succ g$ for all positive elements f, g.

- Theorem (Brodskii, Rhemtulla-Rolfsen, N). A group admits a Conradian ordering if and only if it is locally indicable (*i.e.*, every finitely generated subgroup admits a non trivial homomorphism into \mathbb{Z}).
- Dynamical realizations of Conradian orderings have no resilient orbits. Dynamical lexicographic orderings induced from actions without resilient orbits are Conradian.

Definition

 Γ : orderable group, $\mathcal{O}(\Gamma)$: set of orderings on Γ

 $-\mathcal{O}(\Gamma)$ admits a natural topology for which a neighborhood basis for an element \preceq is given by the sets of the form

$$U_{g_1,\ldots,g_n}(\preceq) = \{ \leq : \quad g_i \geq id \iff g_i \succeq id \}.$$

– Endowed with this topology, $\mathcal{O}(\Gamma)$ is totally disconnected and compact (this follows from Tychonov Theorem).

Definition

 Γ : orderable group, $\mathcal{O}(\Gamma)$: set of orderings on Γ

 $-\mathcal{O}(\Gamma)$ admits a natural topology for which a neighborhood basis for an element \prec is given by the sets of the form

$$U_{g_1,\ldots,g_n}(\preceq) = \{ \leq : \quad g_i \geq id \iff g_i \succeq id \}.$$

- Endowed with this topology, $\mathcal{O}(\Gamma)$ is totally disconnected and compact (this follows from Tychonov Theorem).
- The subespaces of Conradian or bi-invariant orderings are closed.

The case of finitely generated groups

$$G = \{f_1, \dots, f_k\}$$
: finite system of generators for Γ .

-The preceding topology is induced by the metric *dist* on $\mathcal{O}(\Gamma)$ defined by

$$dist(\preceq, \leq) = 2^{-n}$$

where n is the maximum $m \ge 0$ such that the positive cones of \le and \le coincide for elements of \mathcal{G} -length not larger than m.

The action of Γ on $\mathcal{O}(\Gamma)$

– Γ acts on $\mathcal{O}(\Gamma)$ by conjugacy (equivalently, by right multiplication): given an ordering \preceq its image under f is the ordering \preceq_f defined by

$$g \prec_f h \iff fgf^{-1} \prec fhf^{-1} \iff gf^{-1} \prec hf^{-1}.$$

The action of Γ on $\mathcal{O}(\Gamma)$

– Γ acts on $\mathcal{O}(\Gamma)$ by conjugacy (equivalently, by right multiplication): given an ordering \preceq its image under f is the ordering \preceq_f defined by

$$g \prec_f h \iff fgf^{-1} \prec fhf^{-1} \iff gf^{-1} \prec hf^{-1}.$$

– This action has been used by Witte-Morris to prove the following result: if Γ is amenable, then Γ is left-orderable if and only if it is locally indicable.

Infinitely generated positive cones for non isolated orders

Lemma (Linnell). If \leq is non isolated in $\mathcal{O}(\Gamma)$, then its positive cone is not finitely generated.

Infinitely generated positive cones for non isolated orders

Lemma (Linnell). If \leq is non isolated in $\mathcal{O}(\Gamma)$, then its positive cone is not finitely generated.

Proof. If g_1, \ldots, g_n generate the positive cone of an ordering \leq , then the only ordering in $U_{g_1,\ldots,g_n}(\leq)$ is \leq itself, and therefore \leq is isolated in the space of orderings.

Infinitely generated positive cones for non isolated orders

Lemma (Linnell). If \leq is non isolated in $\mathcal{O}(\Gamma)$, then its positive cone is not finitely generated.

Proof. If g_1, \ldots, g_n generate the positive cone of an ordering \leq , then the only ordering in $U_{g_1,\ldots,g_n}(\leq)$ is \leq itself, and therefore \leq is isolated in the space of orderings.

– For a countable orderable group Γ , the fact that no ordering is isolated is equivalent to that $\mathcal{O}(\Gamma)$ is homeomorphic to the Cantor set.

Cantor sets of orderings

- $-\mathcal{O}(\mathbb{Z}^n)$ for $n \geq 2$ (Sikora).
- $\mathcal{O}(\Gamma)$ for Γ finitely generated torsion free nilpotent and non rank 1 Abelian (N).
- $-\mathcal{O}(\mathbb{F}_n)$ for $n \geq 2$ (N).

Cantor sets of orderings

- $-\mathcal{O}(\mathbb{Z}^n)$ for $n \geq 2$ (Sikora).
- $\mathcal{O}(\Gamma)$ for Γ finitely generated torsion free nilpotent and non rank 1 Abelian (N).
- $-\mathcal{O}(\mathbb{F}_n)$ for $n \geq 2$ (N).
- $-\mathcal{O}(B_n)$ has isolated points (Dubrovina-Dubrovin). However, Dehornoy's ordering can be aproximated by its conjugates. (In particular, its orbit under the right action of B_n is homeomorphic to a Cantor set.)

Cantor sets of orderings

- $-\mathcal{O}(\mathbb{Z}^n)$ for $n \geq 2$ (Sikora).
- $\mathcal{O}(\Gamma)$ for Γ finitely generated torsion free nilpotent and non rank 1 Abelian (N).
- $-\mathcal{O}(\mathbb{F}_n)$ for $n \geq 2$ (N).
- $-\mathcal{O}(B_n)$ has isolated points (Dubrovina-Dubrovin). However, Dehornoy's ordering can be aproximated by its conjugates. (In particular, its orbit under the right action of B_n is homeomorphic to a Cantor set.)

Theorem (Linnell, N). The space of orderings of every countable left-orderable group is either finite or contains an homeomorphic copy of the Cantor set.

– Left-orderable groups with finitely many orderings were classified by Tararin. A non trivial example is the Klein bottle group $\langle f,g:fgf^{-1}=g^{-1}\rangle$, which admits (precisely) four different orderings.

– Given an ordering \leq on \mathbb{F}_n , let us consider the corresponding dynamical realization.

- Given an ordering \leq on \mathbb{F}_n , let us consider the corresponding dynamical realization.
- Perturb slightly the homeomorphisms corresponding to the generators of \mathbb{F}_n , and induce a new ordering on the group generated by the new homeomorphisms via the "dynamically lexicographical" procedure.

- Given an ordering \leq on \mathbb{F}_n , let us consider the corresponding dynamical realization.
- Perturb slightly the homeomorphisms corresponding to the generators of \mathbb{F}_n , and induce a new ordering on the group generated by the new homeomorphisms via the "dynamically lexicographical" procedure.
- In general, the new group is still free (generically, two homeomorphisms satisfy no non trivial relation).

- Given an ordering \leq on \mathbb{F}_n , let us consider the corresponding dynamical realization.
- Perturb slightly the homeomorphisms corresponding to the generators of \mathbb{F}_n , and induce a new ordering on the group generated by the new homeomorphisms via the "dynamically lexicographical" procedure.
- In general, the new group is still free (generically, two homeomorphisms satisfy no non trivial relation).
- Therefore, the new ordering "lives" on \mathbb{F}_n . Clearly, if the topological perturbation was small then the new ordering is very close to the original one.

- Given an ordering \leq on \mathbb{F}_n , let us consider the corresponding dynamical realization.
- Perturb slightly the homeomorphisms corresponding to the generators of \mathbb{F}_n , and induce a new ordering on the group generated by the new homeomorphisms via the "dynamically lexicographical" procedure.
- In general, the new group is still free (generically, two homeomorphisms satisfy no non trivial relation).
- Therefore, the new ordering "lives" on \mathbb{F}_n . Clearly, if the topological perturbation was small then the new ordering is very close to the original one.
- On the other hand, the new ordering does not coincide with the original one if the dynamical realization is "non structurally stable" (which holds for free group actions).

– Are the space of orderings of fundamental group of surfaces homeomorphic to the Cantor set ? (The same question for Thompson's group F and the left-orderable 3-manifold groups).

- Are the space of orderings of fundamental group of surfaces homeomorphic to the Cantor set ? (The same question for Thompson's group F and the left-orderable 3-manifold groups).
- Is $\mathcal{O}(\Gamma)$ "typically" a Cantor set for an orderable group Γ ?

- Are the space of orderings of fundamental group of surfaces homeomorphic to the Cantor set ? (The same question for Thompson's group F and the left-orderable 3-manifold groups).
- Is $\mathcal{O}(\Gamma)$ "typically" a Cantor set for an orderable group Γ ?
- Can probabilistic methods provide some relevant information for the action on $\mathcal{O}(\Gamma)$ of a countable orderable group Γ having infinitely many orderings ?

- Are the space of orderings of fundamental group of surfaces homeomorphic to the Cantor set ? (The same question for Thompson's group F and the left-orderable 3-manifold groups).
- Is $\mathcal{O}(\Gamma)$ "typically" a Cantor set for an orderable group Γ ?
- Can probabilistic methods provide some relevant information for the action on $\mathcal{O}(\Gamma)$ of a countable orderable group Γ having infinitely many orderings ?
- For a bi-orderable group Γ the outer automorphisms group $Out(\Gamma)$ naturally acts on $Bi\mathcal{O}(\Gamma)$. Can this action be used to understand the space of bi-orderings of Γ ?

- Are the space of orderings of fundamental group of surfaces homeomorphic to the Cantor set ? (The same question for Thompson's group F and the left-orderable 3-manifold groups).
- Is $\mathcal{O}(\Gamma)$ "typically" a Cantor set for an orderable group Γ ?
- Can probabilistic methods provide some relevant information for the action on $\mathcal{O}(\Gamma)$ of a countable orderable group Γ having infinitely many orderings ?
- For a bi-orderable group Γ the outer automorphisms group $Out(\Gamma)$ naturally acts on $Bi\mathcal{O}(\Gamma)$. Can this action be used to understand the space of bi-orderings of Γ ?

Conjecture. The space of bi-orderings of a (non Abelian) countable free group is a Cantor set.