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MODIFIED DIFFERENTIAL EQUATIONS*

PHILIPPE CHARTIER!, ERNST HAIRER? AND GILLES VILMART!?

Abstract. Motivated by the theory of modified differential equations (backward error analysis) an
approach for the construction of high order numerical integrators that preserve geometric properties
of the exact flow is developed. This summarises a talk presented in honour of Michel Crouzeix.

Résumé. Motivé par la théorie des équations modifiées (analyse rétrograde de I'erreur), une approche
pour la construction de méthodes numériques d’ordre élevé préservant des propriétés géométriques du
flot exact est développée. Ceci résume une présentation donnée en honneur de Michel Crouzeix.

INTRODUCTION

Modified differential equations in combination with backward error analysis (cf. the monographs [3], [5])
form an important tool for studying the long-time behaviour of numerical integrators for ordinary differential
equations. The main idea of this theory is sketched and, by inverting the roles of the exact and numerical flows,
a new approach for the construction of high order numerical integrators for ordinary differential equations is
developed [1]. As an application, a computationally efficient and highly accurate modification of the Discrete
Moser—Veselov algorithm for the simulation of the free rigid body is presented [4].

1. MODIFIED EQUATIONS FOR BACKWARD ERROR ANALYSIS

Consider an initial value problem
y=1rw,  v0)=uyo (1)
with sufficiently smooth vector field f(y), and a numerical one-step integrator y,+1 = ®fn(yn). The idea of
backward error analysis is to search for a modified differential equation

2= fn(2) = f(2) + hf2(2) + B2 f3(2) + ..., 2(0) = yo, (2)

which is a formal series in powers of the step size h, such that the numerical solution {y,} is formally equal to
the exact solution of (2),
Yn = z(nh) for n=0,1,2,..., (3)
see the left picture of Figure 1.
The idea of backward error analysis was originally introduced by Wilkinson (1960) in the context of numerical
linear algebra. For the integration of ordinary differential equations it was not used until one became interested
in the long-time behaviour of numerical solutions. Without considering it as a theory, Ruth [9] uses the
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BACKWARD ERROR ANALYSIS MODIFYING NUMERICAL METHOD
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FIGURE 1. Backward error analysis opposed to modifying numerical integrators
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idea of backward error analysis to motivate symplectic integrators for Hamiltonian systems. In fact, applying
a symplectic numerical method to a Hamiltonian system ¢ = J 1V H(y) gives rise to a modified differential
equation that is Hamiltonian. This permits to transfer known properties of perturbed Hamiltonian systems (e.g.,
conservation of energy, KAM theory for integrable systems) to properties of symplectic numerical integrators.
One became soon aware that this kind of reasoning is not restricted to Hamiltonian systems, and new insight
can be obtained with the same techniques also for reversible differential equations, for Poisson systems, for
divergence-free problems, etc. A rigourous analysis has been developed in the nineties. We refer the interested
reader to [3, Chapter IX], where backward error analysis and its applications are explained in detail.

2. MODIFYING NUMERICAL INTEGRATORS

Backward error analysis is a purely theoretical tool that gives much insight into the long-term integration with
geometric numerical methods. We shall show that by simply exchanging the roles of the “numerical method”
and the “exact solution” (cf.the two pictures in Figure 1), it can be turned into a means for constructing high
order integrators that conserve geometric properties. They will be useful for integrations over long times.

Let us be more precise. As before, we consider an initial value problem (1) and a numerical integrator.
But now we search for a modified differential equation, again of the form (2), such that the numerical solution
{zn} of the method applied with step size h to (2) yields formally the exact solution of the original differential
equation (1), i.e.,

zn = y(nh) for n=0,1,2,..., 4)
see the right picture of Figure 1. Notice that this modified equation is different from the one considered before.
However, due to the close connection with backward error analysis, all theoretical and practical results have
their analogue in this new context. The modified differential equation is again an asymptotic series that usually
diverges, and its truncation inherits geometric properties of the exact flow if a suitable integrator is applied. The
coefficient functions f;(z) can be computed recursively by using a formula manipulation program like MAPLE.
This can be done by developing both sides of z(t+h) = ®y, ,(z(t)) into a series in powers of h, and by comparing
their coefficients. Once a few functions f;(z) are known, the following algorithm suggests itself.

Algorithm 2.1 (modifying integrator). Consider the truncation

2= [1E) = FE) @)+ T () (5)
of the modified differential equation corresponding to @ p(y). Then,

Zn+1 = lij,h,(zn) = (P ( n)

defines a numerical method of order r that approxzimates the solution of (1). We call it modifying integrator,

because the vector field f(y) of (1) is modified into ff[f] before the basic integrator is applied.
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This is an alternative approach for constructing high order numerical integrators for ordinary differential
equations (classical approaches are multistep, Runge-Kutta, Taylor series, extrapolation, composition, and
splitting methods). It is particularly interesting in the context of geometric integration because, as known from
backward error analysis, the modified differential equation inherits the same structural properties as (1) if a
suitable integrator is applied.

A few known methods can be cast into the framework of modifying integrators although they have not been
constructed in this way. The most important are the generating function methods as introduced by Feng [2].
These are high order symplectic integrators obtained by applying a simple symplectic method to a modified
Hamiltonian system. The corresponding Hamiltonian is the solution of a Hamilton—Jacobi partial differential
equation. Another special case is a modification of the discrete Moser—Veselov algorithm for the Euler equations
of the rigid body, proposed by McLachlan and Zanna [7]. The general approach of Algorithm 2.1 is introduced
and discussed in [1].

Example 2.2. For the numerical integration of (1) we consider the implicit midpoint rule

Yn +yn+1). (6)

yn+1=yn+hf( 2

The truncated modified vector field corresponding to this method is

[5] h2 ! et 1// h4 ! el pl ol " ! el 1// / /
Vo= r e (s n) + g (PESS =G 5L TD)
ht 1 1 1
gt pen 1 gn / oy " _ ~r(3) /
+ oo (=PI EN+ LGS D+ 3 E S G ) = 55D 1) (7)
Mool 1
oL 1@
+ (=IO D + VG L)

and applying the midpoint rule to z = f,[f’] (z) yields a numerical approximation of order 6 for (1). At first glance
this modified equation looks extremely complicated and it is hard to imagine that the modifying midpoint rule
can compete with other methods of the same order. This is true in general, but there are important differential
equations for which the evaluation of f}[:] (y) is not much more expensive than that of f(y), so that the modifying
integrators of Algorithm 2.1 can become efficient. A first example is the equations of motion for the full dynamics
of a rigid body (see [1,4] and Section 3 below).

As another example, consider the N-body problem, which is Hamiltonian ¢ = p, p = —VU(¢) and has
potential
U= > Unlle—al
1<j<k<N
(the sum is over j and k), where Ujx(r) is a scalar function (Uj(r) = —1/r for the gravitational potential) and

| - || stands for the Euclidean norm. Here, ¢ € R3Y is composed by the position vectors ¢; € R3. The vector
field requires the computation of

8?@ = Z Vie(lla; — axll)(gj — ax), Vi (r) = Ul (r) -
4 1<kAj<N ,

the sum being only over k. The main observation is now that every summand in this expression depends only
on two variables g; and gi. Therefore, many mixed higher derivatives vanish, and all expressions appearing
in the modified equation (7) reduce to a sum over only one summation index. Typically, the computation of
the square root in ||¢; — gx|| is the most time consuming part, and derivatives of U (r) can often be obtained
with negligible cost when computed together with the value Uji(r). In this situation, modifying numerical
integrators can be implemented efficiently. As noted by McLachlan [6], this feature of N-body problems can be
exploited also in an efficient implementation of implicit Runge-Kutta methods.
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3. ACCURATE RIGID-BODY INTEGRATOR BASED ON THE DMV ALGORITHM

As illustration of how efficient modifying integrators can be, we consider the equations of motion for a rigid
body,

- — O —as a2
=9Iy, Q=QI 1y, where a=| a3 0 —a 9)
—das al 0

for a vector a = (a1, az,a3)’. Here, I = diag(Iy, I, I3) is the matrix formed by the moments of inertia, y is the
vector of the angular momenta, and () is the orthogonal matrix that describes the rotation relative to a fixed
coordinate system. As numerical integrator we choose the Discrete Moser—Veselov algorithm (DMYV) [§],

gn-ﬁ—l - Qn :/y\n Q;.Z;’ Qn-‘rl - Qn an (10)
where the orthogonal matrix €2,, is computed from
QD -~ DQ, = hin. (11)

Here, the diagonal matrix D = diag(dy,dz,ds) is determined by dy + da = I3, do +d3 = I1, and ds + d1 = I>.
This algorithm is an excellent geometric integrator and shares many geometric properties with the exact flow.
It is symplectic, it exactly preserves the Hamiltonian, the Casimir and the angular momentum Qy (in the fixed
frame), and it keeps the orthogonality of Q. Its only disadvantage is the low order two.

The technique of modifying integrators cannot be directly applied to increase the order of this method,
because the algorithm (10) is not defined for general problems (1). It is, however, defined for arbitrary I;, and
therefore we look for modified moments of inertia fj such that the DMV algorithm applied with fj yields the
exact solution of (9). It is shown in [4] that this is possible with

1 1
= = (14 Ws(n) + hsslym) -+ ) + W2 (yn) + Bids(yn) +--- (12)
7 J

The expressions s (y) and di(y) can be computed by a formula manipulation package similar as the modified
differential equation is obtained. The first of them are

1/1 1 1 I +1; + 13
W) = ——— 4+ —+ — ) H(y,) + =223 0(y,),
53(Yn) 3<11+12+13) (Yn) + 6L LI (Yn)
I+ 1+ 15 1
ds(yn) = 23 H(y,)— ——— Clyy),
3(Yn) 6T LT (Yn) 3T LT C(yn)
where L, 2 2 . y% y% yg
- - H :—(— ¥2 —) 1
Ow) =5(++15)  and  Huy=5(T+7+ 7 (13)

are the Casimir and the Hamiltonian of the system. The physical interpretation of this result is the following;:
after perturbing suitably the form of the body, an application of the DMV algorithm yields the exact motion of
the body. Truncating the series in (12) after the h?" 2 terms, yields a modifying DMV algorithm of order 2r.

Example 3.1. We consider an asymmetric rigid body with moments of inertia I; = 0.6, I = 0.8, and
I3 = 1.0 on the interval [0, 10]. Initial values are y(0) = (1.8,0.4, —0.9)T and Q(0) is the identity matrix. The
implementation of the modifying DMV algorithm is done using quaternions as explained in [4]. Although H(y)
and C(y) are constant along the numerical solution, we recompute the values of f] in every step to simulate the
presence of an external potential.

We apply the DMV algorithm and its extensions to order 4, 6, 8, and 10 with many different step sizes, and
we plot in Figure 2 the global error at the endpoint as a function of the cpu times. The execution times are
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Ficure 2. Work-precision diagram for the DMV algorithm (order 2) and for the modifying
DMV integrators of orders 4, 6, 8, and 10.

the average of 1000 experiments. The symbols indicate the values obtained with the step sizes h = 0.1 and
h = 0.01, respectively.

The pictures nicely illustrate the expected orders of the algorithms (order p corresponds to a straight line
with slope —p). Much more interesting is the fact that high accuracy is obtained more or less for free. Consider
the results obtained with step size h = 0.1. The error for the DMV algorithm (order 2) is more than 20%. With
very little extra work, the modification of order 10 gives an accuracy of more than 11 digits with the same step
size.
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