Multi-revolution composition methods for highly oscillatory problems

Gilles Vilmart

joint work with Philippe Chartier, Joseba Makazaga, and Ander Murua

ENS Rennes and INRIA

Enumath 2013, Lausanne

Plan of the talk

- The class of multi-revolution composition methods (MRCM)
- Order conditions and convergence analysis
- Numerical experiments
- 4 Extension to stochastic highly oscillatory systems

References

- P. Chartier, J. Makazaga, A. Murua, and G. Vilmart, Multi-revolution composition methods for highly oscillatory differential equations. *Preprint*.
- P. Chartier, F. Mehats, M. Thalammer, Multi-revolution composition methods for time-dependent Schrödinger equations. in preparation.
- G. Vilmart, Weak second order multi-revolution composition methods for highly oscillatory stochastic differential equations with additive or multiplicative noise. *Preprint*.

- The class of multi-revolution composition methods (MRCM)
- 2 Order conditions and convergence analysis
- Numerical experiments
- 4 Extension to stochastic highly oscillatory systems

Highly oscillatory problems

We consider highly oscillatory problems (HOP) of the form

$$\frac{d}{dt}y_{\varepsilon}(t) = \varepsilon^{-1}A_{\varepsilon}y_{\varepsilon}(t) + g(y_{\varepsilon}(t)), \qquad 0 \leq t \leq T,$$

with solution $y_{arepsilon}(t) \in \mathbb{R}^d$ and

- A_{ε} is a $d \times d$ skew-symmetric matrix with eigenvalues in $2i\pi\mathbb{Z}$ (making $t \mapsto e^{t\varepsilon^{-1}A}$ an ε -periodic map)
- $\varepsilon \ll 1$ (scales as the inverse of the frequency)
- g is a smooth nonlinearity.

Remarks.

- It includes several Hamiltonian partial differential equations (spatially discr.), in particular the nonlinear Schrödinger eq.
- Standard integrators usually have a stepsize restriction $h \leq C\varepsilon$ for stability/accuracy. Trigonometric methods require filters to reduce resonances (see Gautchi type methods).

Multi-revolution methods

see Calvo, Jay, Montijano, Rández (2003, 2004, 2007) (multi-revolution Runge-Kutta methods in the context of Astronomy). Idea The flow-map over one period ε is a near-identity map:

$$\varphi_{\varepsilon}: \mathbb{R}^d \to \mathbb{R}^d, \qquad \varphi_{\varepsilon}(y) = y + \mathcal{O}(\varepsilon).$$

Iterating N times the map φ_{ε} accounts for integrating the differential system over a time interval of length $H=N\varepsilon$.

Considering a smooth near-identity map

$$(\varepsilon, y) \mapsto \varphi_{\varepsilon}(y) = y + \varepsilon \Theta_{\varepsilon}(y),$$

the idea is to approximate $N=\mathcal{O}(1/arepsilon)$ compositions of $arphi_{arepsilon},$

$$\varphi_{\varepsilon}^{N} = \underbrace{\varphi_{\varepsilon} \circ \cdots \circ \varphi_{\varepsilon}}_{N \text{ times}}$$

with a method with cost and accuracy independent of ε .

Definition of multi-revolution composition methods

Definition: Semi discrete MRCM

Given $s \ge 1$, define for all $N \ge N_0$, $H = N\varepsilon \le H_0$,

$$\Psi_{N,H}(y) := \varphi_{\alpha_1(N)H} \circ \varphi_{\beta_1(N)H}^* \circ \cdots \circ \varphi_{\alpha_s(N)H} \circ \varphi_{\beta_s(N)H}^*(y) \simeq \varphi_{\varepsilon}^N(y)$$

where $\alpha_j(N)$ and $\beta_j(N)$ are scalars depending on N and satisfying $\sum_{j=1}^{s} (\alpha_j(N) + \beta_j(N)) = 1$, and where $\varphi_{\varepsilon}^* := \varphi_{-\varepsilon}^{-1}$ is the adjoint of φ_{ε} .

Remark: comput. advantageous compared to $\varphi_{\varepsilon}^{N}$ for $2s \ll N$.

Example: Method of order 2

With s=1, given by $\alpha_1=\frac{1}{2}+\frac{1}{2N}$ and $\beta_1=\frac{1}{2}-\frac{1}{2N}$:

$$\varphi_{\alpha_1 H} \circ \varphi_{-\beta_1 H}^{-1}(y) = \varphi_{\varepsilon}^{N}(y) + \mathcal{O}(H^3).$$

Definition of multi-revolution composition methods

If φ_{ε} is not known exactly, we consider instead an approximation

$$\Phi_{\varepsilon,h}(y) \approx \varphi_{\varepsilon}(y).$$

We assume the following accuracy estimate with order $q \ge 1$,

$$\Phi_{\varepsilon,h}(y) - \varphi_{\varepsilon}(y) = \mathcal{O}(\varepsilon h^q),$$

obtained using e.g. a standard Strang splitting with stepsize h between the periodic linear part and the nonlinear part.

Definition: Fully-discrete composition methods

Given $s \ge 1$, define for all $N \ge 1$, $H \le H_0$, $h \le h_0$,

$$\Psi_{N,H,h}(y) = \Phi_{\alpha_1(N)H,h} \circ \Phi_{\beta_1(N)H,h}^* \circ \cdots \circ \Phi_{\alpha_s(N)H,h} \circ \Phi_{\beta_s(N)H,h}^*(y)$$

where H is called the macro step and h the micro step, and where $\Phi_{\varepsilon,h}^* := \Phi_{-\varepsilon,h}^{-1}$ is the adjoint of $\Phi_{\varepsilon,h}$.

- The class of multi-revolution composition methods (MRCM)
- 2 Order conditions and convergence analysis
- Numerical experiments
- 4 Extension to stochastic highly oscillatory systems

Ingredient 1: Formalism of trees to derive the order conditions

B_{∞} -series associated to a map $a: T_{\infty} \cup \{\emptyset\} \to \mathbb{R}$

Assume
$$\varphi_{\varepsilon} = y + \varepsilon d_1(y) + \varepsilon^2 d_2(y) + \varepsilon^3 d_3(y) + \dots$$

Consider formal series indexed by labelled rooted trees: (1), (2), (2).

$$B_{\infty}(a,\varepsilon,y) = a(\emptyset)y + \sum_{\tau \in \mathcal{T}_{\infty}} \frac{\varepsilon^{\|\tau\|}}{\sigma(\tau)} a(\tau) F(\tau)(y)$$

$$= a(\emptyset)y + \varepsilon a(1) d_1(y) + \varepsilon^2 a(2) d_2(y)$$

$$+ \varepsilon^2 a(1) d_1(y) d_1(y) + \varepsilon^3 a(3) d_3(y) + \varepsilon^3 a(2) d_2(y) d_1(y)$$

$$+ \dots$$

where

$$F((j))(y) = d_j(y),$$

$$F([\tau_1, \dots, \tau_m]_j)(y) = d_j^{(m)}(y)(F(\tau_1)(y), \dots, F(\tau_m)(y)).$$

Ingredient 2: rigorous estimates on the remainders in Taylor series

To derive the order conditions, we compare equal powers of H in the B_{∞} -series $B(e_N, H, y)$ and B(a, H, y).

The remainder of the Taylor series is estimated rigorously using the following lemma.

Lemma

Assume that $(y,\varepsilon)\mapsto \Theta_{\varepsilon}(y)$ is of class C^{p+1} with respect to (y,ε) on $B_{2R}(y_0)\times [-\varepsilon_0,\varepsilon_0]$ for a given R>0 and a given $\varepsilon_0>0$. Then, there exists a constant H_0 such that for all ε and $N\geq 1$ with $H=N\varepsilon\leq H_0$,

$$\left\|\partial_{\varepsilon}^{p+1}\varphi_{\varepsilon}^{N}\right\| \leq CN^{p+1}, \qquad \left\|\partial_{H}^{p+1}\varphi_{H/N}^{N}\right\| \leq C,$$

in $B_R(y_0)$, where C is independent of N and ε .

Main ingredient of the proof of the lemma: the Faà-di-Bruno formula.

Ingredient 3: Eliminating redundant order conditions

For instance, for order 4, there are 7 conditions + 14 superfluous conditions.

Definition: Hall set

Given an order relation < (compatible with $|\cdot|),$ define $\mathcal{H}\subset\mathcal{T}_{\infty}$ by

- (i) $\forall i \geq 1, (j) \in \mathcal{H}$
- (ii) $\tau \in H$ iff $\exists u, v \in H, u > v$, such that $\tau = u \circ v$.

Theorem (Murua & Sanz-Serna)

Consider $B(a, \varepsilon, y)$ and $B(b, \varepsilon, y)$ two B_{∞} -series obtained as compositions and let $p \ge 1$. The following statements are equivalent:

(i)
$$\forall \tau \in T_{\infty}, \|\tau\| \leq p, \ a(\tau) = b(\tau),$$

(ii)
$$\forall \tau \in \mathcal{H}, \|\tau\| < p, \ a(\tau) = b(\tau).$$

Order 1, 2: ①, ②
$$\sum_{k=1}^{s} (\alpha_{k} + \beta_{k}) = 1, \sum_{k=1}^{s} (\alpha_{k}^{2} - \beta_{k}^{2}) = N^{-1}$$
Order 3: ③
$$\sum_{k=1}^{s} (\alpha_{k}^{3} + \beta_{k}^{3}) = N^{-2}$$

$$\underbrace{ \sum_{k=1}^{s} (\alpha_{k}^{2} - \beta_{k}^{2}) \sum_{\ell=1}^{k} {}'(\alpha_{\ell} + \beta_{\ell})}_{2} = \frac{N^{-1} - N^{-2}}{2}$$
Order 4: ④
$$\sum_{k=1}^{s} (\alpha_{k}^{4} - \beta_{k}^{4}) = N^{-3}$$

$$\underbrace{ \sum_{k=1}^{s} (\alpha_{k}^{3} + \beta_{k}^{3}) \sum_{\ell=1}^{k} {}'(\alpha_{\ell} + \beta_{\ell})}_{2} = \frac{N^{-2} - N^{-3}}{2}$$

$$\underbrace{ \sum_{k=1}^{s} (\alpha_{k}^{2} - \beta_{k}^{2}) \left(\sum_{\ell=1}^{k} {}'(\alpha_{\ell} + \beta_{\ell}) \right)^{2}}_{2} = \frac{N^{-1}(1 - N^{-1})(2 - N^{-1})}{6}$$

Table: Fourth-order conditions for MRCMs.

Convergence of MRCM (semi-discrete)

Theorem

Consider a semi-discrete MRCM with coefficients $\alpha_i(N)$, $\beta_i(N)$, $i=1,\ldots,s$ bounded with respect to N for all $N\geq N_0$ and satisfying the algebraic order conditions up to order p. Then, for all $H\leq H_0$, $N\geq N_0$,

$$\|\Psi_{N,H}(y) - \varphi_{\varepsilon}^{N}(y)\| \le CH^{p+1}$$

where $H = N\varepsilon$ and the constant C is independent of N, ε .

Convergence of MRCM (fully-discrete)

Theorem

Consider a fully-discrete MRCM satisfying the order p conditions. Assume further the order q estimate $\|\Phi_h - \varphi_{\varepsilon}\|_R \leq C\varepsilon h^q$. Then

$$\|\Psi_{H,h}(y) - \varphi_{\varepsilon}^{N}(y)\| \le C(H^{p+1} + Hh^{q})$$

where $H = N\varepsilon$, $h \le \varepsilon$ and C is independent of N, ε, H, h .

Remarks: This yields the global error estimate

$$\|\Psi_{H,h}^m(y_0) - y(Hm)\| \le C(H^p + h^q),$$

for all $H = N\varepsilon \le H_0$ and $Hm \le T$.

Notice that y(t) is approx. at times t that are integer multiples of the oscillatory period (similarly to the Stroboscopic Averaged Method (SAM) by Chartier, Murua & Sanz-Serna, 2011)

The class of multi-revolution composition methods (MRCM)

- 2 Order conditions and convergence analysis
- Numerical experiments
- 4 Extension to stochastic highly oscillatory systems

Fermi-Pasta-Ulam type problem

Hamiltonian:
$$E_{\varepsilon}(p,q) = \frac{1}{2} \sum_{i=4}^{6} p_i^2 + \frac{1}{2\varepsilon^2} \sum_{i=4}^{6} q_i^2 + \frac{1}{2} \sum_{i=1}^{3} p_i^2 + V(q)$$

where V(q) is a quartic potential.

HOP with an ε -dependent linear part with eigenvalues 0, i and -i.

- Micro method: Strang splitting $\Phi_{\varepsilon,h} := (\Xi_{h,\varepsilon})^n$ with $h = 2\pi/n$ (we take e.g. n = 4 or 8).
- Time interval length: $T=2\pi\varepsilon^{-1}$ (i.e. $\mathcal{O}(\varepsilon^{-2})$ fast oscillations).
- Quantities of interest: the stiff spring energies

$$I_j = \frac{1}{2}p_{3+j}^2 + \frac{1}{2\varepsilon^2}q_{3+j}^2, \quad j = 1, 2, 3,$$

the adiabatic invariant $I = I_1 + I_2 + I_3$ and the energy $E_{\varepsilon}(p, q)$.

Global error at time $t = 2\pi$ (semi-discrete)

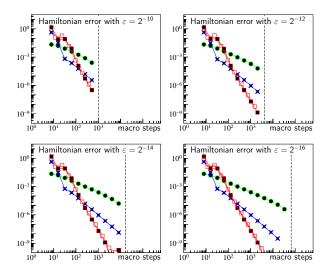


Figure: Hamiltonian error for MRCMs versus number of macro steps. Orders 1 (circles), 2 (squares), 4 (s = 3 white stars, s = 4 black stars).

Global error at time $t = 2\pi$ (fully-discrete)

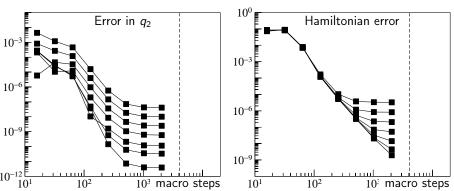


Figure: Fourth-order MRCM with $\varepsilon = 2^{-12}$.

Errors with versus number of macro steps.

The lines correspond respectively to $h = 2^{-j}\pi, j = 1, \dots, 7$.

Conclusion: H and h should be refined simultaneously (here $H^4 \sim h^2$).

Energy exchanges on the time interval $(0, 2\pi\varepsilon^{-1})$

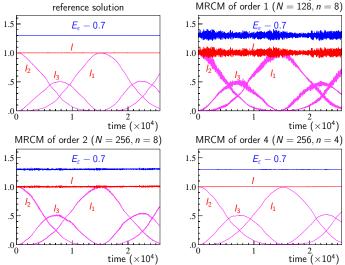


Figure: $\varepsilon = 2^{-12}$. MRCMs of orders 1, 2, 4. Reference solution computed with 10^8 constant steps by the standard Deuflhard method.

The nonlinear Schrödinger equation

The problem involves a cubic nonlinearity $|\psi^{\varepsilon}|^2 \psi^{\varepsilon}$ with excitation factor $2\cos(2x)$.

$$\begin{split} i\partial_t \psi^\varepsilon &= -\Delta \psi^\varepsilon + 2\varepsilon \cos(2x) |\psi^\varepsilon|^2 \psi^\varepsilon, \quad t \geq 0, \\ \psi(0,x) &= \cos x + \sin x. \end{split}$$

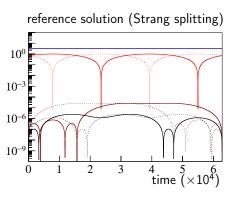
(unique global solution $\psi^{\varepsilon}(t,\cdot)$ in $H^{s}(\mathbb{T}_{2\pi})$ for all $s\geq 0$).

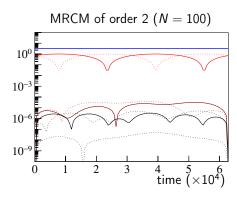
Theorem (Grébert & Villegas-Blas, 2011)

Consider the Fourier expansion of $\psi^{\varepsilon}(t,x) = \sum_{k \in \mathbb{Z}} \xi_k(t) e^{ikx}$. For ε small enough, one has for all $|t| \leq \varepsilon^{-9/8}$ the following estimates:

$$ert |\xi_1(t)|^2 = rac{1+\sin(2arepsilon t)}{2} + \mathcal{O}(arepsilon^{1/8}), \ ert |\xi_{-1}(t)|^2 = rac{1-\sin(2arepsilon t)}{2} + \mathcal{O}(arepsilon^{1/8}).$$

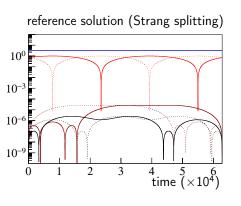
Beating effect for the NLS, time interval $2\pi\varepsilon^{-1}$

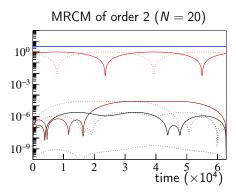




 $\varepsilon = 10^{-4}$, Hamiltonian, and modes $|\xi_1|, |\xi_{-1}| |\xi_3|, |\xi_{-3}|, |\xi_5|, |\xi_{-5}|$.

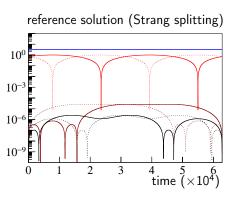
Beating effect for the NLS, time interval $2\pi\varepsilon^{-1}$

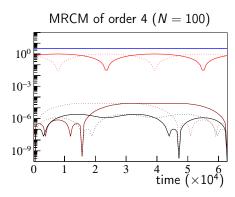




 $\varepsilon = 10^{-4}$, Hamiltonian, and modes $|\xi_1|, |\xi_{-1}| |\xi_3|, |\xi_{-3}|, |\xi_5|, |\xi_{-5}|$.

Beating effect for the NLS, time interval $2\pi\varepsilon^{-1}$





 $\varepsilon = 10^{-4}$, Hamiltonian, and modes $|\xi_1|, |\xi_{-1}| |\xi_3|, |\xi_{-3}|, |\xi_5|, |\xi_{-5}|$.

The class of multi-revolution composition methods (MRCM)

2 Order conditions and convergence analysis

Numerical experiments

Extension to stochastic highly oscillatory systems

Extension to stochastic highly-oscillatory systems

For systems of (Itô) SDEs with general (noncommutative) noise,

$$dX(t) = (\varepsilon^{-1}AX(t) + f(X(t)))dt + \sum_{r=1}^{m} g^{r}(X(t))dW_{r}(t), \quad 0 \leq t \leq T,$$

we consider the stochastic MRCM based on the order 2 method

$$\varphi_{\alpha_1 H} \circ \varphi_{-\beta_1 H}^{-1}(y) = \varphi_{\varepsilon}^{N}(y) + \mathcal{O}(H^3).$$

We approximate φ_{ε} by a Strang splitting between oscillatory and non-oscillatory parts.

Theorem: weak order two global error estimate

Let T>0. Assume $f,g^r\in C^6$ with bounded derivatives. Then, for all $\phi\in C^6_P(\mathbb{R}^d,\mathbb{R})$, and all h=1/n and $H=N\varepsilon$ small enough,

$$|\mathbb{E}(\phi(X_k) - \mathbb{E}(\phi(X(kH)))| \le C(H^2 + h^2), \qquad kH \le T,$$

where C is independent of ε , H, n, k, N, h.

Back to the nonlinear Schrödinger equation

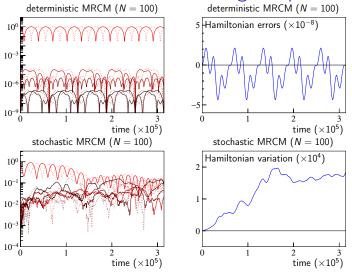


Figure: $\varepsilon = 10^{-4}$. MRCMs of orders 2. Top: deterministic case. Bottom: Stratonovitch space-time multiplicative noise $g(u) = u \circ \dot{W}(x, t)$.

Weak convergence of order 2 (stochastic NLS)

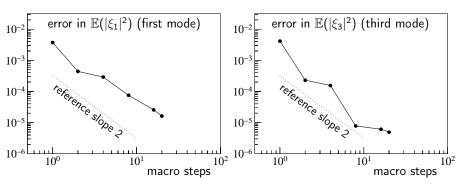


Figure: $\varepsilon=10^{-4}$. Convergence curves for S-MRCM of orders 2: Weak error versus number of macro steps ($\ell=128$ Fourier modes, n=100 micro steps per macro steps, number of samples for Monte-Carlo= 10^5).

Conclusions on multi-revolution composition meth.

We introduced a new class of integrators with large time steps for highly oscillatory problems.

- The schemes retain the advantages of composition methods: their are intrinsically geometric (the scheme inherits the symplecticity for Hamiltonian problems, conservation of quadratic first integrals, etc).
- It can be interpreted as an homogenization integrator, in the spirit of the Heterogeneous multiscale method (HMM, E, Engquist, 2003): it involves a macro step $H=N\varepsilon$ and a micro step h, and for $\varepsilon \to 0$ (i.e. $N \to \infty$) we recover the solution of the averaged system $\frac{dz(t)}{dt} = \Theta_0(z(t))$.
- The approach applies to stochastic highly oscillatory problems.