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Geometric integration

The aim of geometric integration is to study and/or construct
numerical integrators for differential equations

y(&) =fly(2),  y(0) =,

which share geometric structures of the exact solution.

In particular: symmetry, symplecticity for Hamiltonian systems, first
integral preservation, Poisson structure, etc.

Examples of numerical integrators y, ~ y(nh) (stepsize h):
e explicit Euler method  y, 11 =y, + hf(yn)-
e implicit Euler method  y, 11 = v, + hf (Vni1)-

e implicit midpoint rule  y,.1 =y, + hf(y” +y,,+1)‘

2
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Example: simplified solar system (Sun-Jupiter-Saturn)

Universal law of gravitation (Newton)

Two bodies at distance D attract each others with a force
proportional to 1/D? and the product of their masses.

t) — q;(t) -
() = =6 3 ’"’”’fnq CEC
0<j#i<2 !

qi(t) € R3 positions, p;(t) = m;g;(t) momenta, G, mg, m;, mp const.
This is a Hamiltonian system
Q(6) = VoH(p(t) a(t),  p=—VH(p(t). a()).
with Hamiltonian (energy): H(p,q) = T(p) + V(q)
2 2

-1
T(P) =52, %pfp;, = —GZZ i i,

i=0 ! i=1 j=0 ql_qu
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Conservation of first integrals

Energy conservation for Hamiltonian systems

For a Hamiltonian system

q(t) = VoH(p(t),q(t)),  p(t) = =VH(p(t), q(t)),

the Hamiltonian H(p, q) is a first integral: H(p(t), q(t)) = const.

More generally, a quantity C(y) is a first integral (C(y(t)) = const)
of a general system y = f(y) if and only if

VC(y)-f(y) =0, for all y.

Comparison of numerical methods: —anim.
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Example of a stochastic model: Langevin dynamics

It models particle motions subject to a potential V/, linear friction and
molecular diffusion:

q(t) = p(t), () = =V V(q(t)) — vp(t) + /2751 W(¢).

W(t): standard Brownian motion in R continuous, independent
increments, W(t+ h) — W(t) ~ N(0, h), a.s. nowhere differentiable.

[té integral: for f(t) a (continuous and adapted) stochastic process,

/0 T F () aW(s) — lim S (1) (Witn) — W(E), b= nh.

Example in 2D
A quartic potential V (see level curves):
V(x)=(1—x{)>+ (1 —x3)* + %2 + 2.
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Example: Overdamped Langevin equation (Brownian dynamics)

dX(t) = =V V(X(t))dt + V2dW(t).

W(t): standard Brownian motion in R¢.
Ergodicity: invariant measure /i, hasdensity p,(x) = Ce™ V™),

T—o0

lim %/0 ¢(X(s))ds:/Rd o(y)dus(x), a.s.

Example (d = 2): V(x) = (1 = x{)* + (1 — x3)> + 2 + 2.
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Long time accuracy for ergodic SDEs
dX(t) = F(X())dt + g(X(£))dW(t), X(0) = x.

Under standard ergodicity assumptions,

Tlgnoo—/ (X (1) = /¢ ) tooly

‘E(qﬁ(X(t)))—/Rd () d oy )' < K(x,¢)e=, forall t>0.

Two standard approaches using an ergodic integrator of order p:
@ Compute a single long trajectory {X,} of length T = Nh,
N

1
> (XK = | d(y)duse(y),  error O(hP + T71/2),
N+1 kz::o /]Rd

@ Compute many trajectories {X!} of length of length t = Nh,
M
1 ,. B _
o E d(Xy) =~ /Rd o(y)dpso(y), error O(e™ + hP + M~1/2),
i=1
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Parabolic SPDE case

Example: Consider a semilinear parabolic stochastic PDE:

Bru(t, x) = Oeu(t, x) + f(u(t,x)) + W(t,x), t >0,x € Q
u(0,x) = up(x) , x €Q
u(t,x) =0, x € 09,

or its abstract formulation in L2(Q):

du(t) = Au(t)dt + f(u(t))dt + dW(t), t >0
u(0) = uo.

Under appropriate assumptions, (u(t)) is an ergodic process.

£>0
Aim: design an efficient high order integrator for sampling the SPDE
invariant distribution.
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Plan of the talk

© Modified differential equations

S. Fiorelli Vilmart and G. V., Computing the long term evolution of
the solar system with geometric numerical integrators, snapshots of
modern mathematics from Oberwolfach, 2017.
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A linear example: the harmonic oscillator

N A

We consider the model of an oscillating spring, where g(t) is the
position relative to equilibrium at time t and p(t) is the momenta.

g = plt).  At) = —ka(t

The Hamiltonian energy of the system is

1 k
H(p,q) = %pz + §q2-
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Comparison of energy conservations (harmonic oscillator, m = 1)

@ Explicit Euler method: energy amplification.

H(pn-i-la qn+1) = (1 + khz)H(pm qn)
@ Implicit Euler method: energy damping.

H(pn—i-la qn—i—l) = H(pm qn)-

1+ kh?
@ Symplectic Euler method: exact conservation of a modified
Hamiltonian energy Hu(p, q) = H(p, q) + hkpq.

/:/h(Pn+17 qn+1) — I:Ih(pn; qn)

explicit Euler implicit Euler symplectic Euler

P p

TN A ™
K B o
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What happened? Theory of backward error analysis

Given a differential equation
and a one-step numerical integrator

Yni1 = Pr n(Vn)

we search for a modified differential equation

7 = fo(2) = f(2) + hts(2) + WPH(2) + BPha(z) + . ..

such that (formally) Yo = z(nh)

) Z(O):yO

Ruth (1983), Griffiths, Sanz-Serna (86), Gladman, Duncan, Candy (91),
Feng (91), Sanz-Serna (92), Yoshida (93), Eirola (93), Hairer (94), Fiedler,

Scheurle (96), ...
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What happened? Energy conservation by symplectic integrators
g=VT(p), p=-VV(q)

Theorem (Benettin & Giorgilli 1994, Tang 1994)

For a symplectic integrator, e.g. the symplectic Euler method

Gn+1 = Qn + hV T(Pn), Pn+1 = Pn — hvv(qn+1)a

the modified differential equation remains Hamiltonian:

d=Hpy(3.9), P=—Hyp7)
H(p,q) = H(p, q) + h Ha(p, q) + R*Hs(p, q) + ...

Here A(q,p) = T(q) + V(p) — 2V T(q)TVV(p) + LV V(p) V2 T(q)VV(p) + .. .

Formally, the modified energy is exactly conserved by the integrator:

H(pn, qn) = H(p(nh), g(nh)) = H(po, o) = const.
It allows to prove the good long time conservation of energy.
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High order numerical integrators based on modified equations
Theorem (Chartier, Hairer, V., Math.Comp. 2007)
Given yp1 = ®r4(yn), consider a suitable truncated modified

equation
q 2= f(2) = f(2) + hta(2) + - + 5 (2).

Then, the same integrator applied to the above modified equations,
Zn+1 — cbfh[’]’h(zn)y

defines an integrator of order r for y = f(y) .

Remark: The above modified equation is different but related to the
one of backward error analysis. It can be viewed as a dual approach
using the algebraic framework of B-series (Taylor-type series indexed
by rooted trees), (Calaque, Ebrahimi-Fard, Manchon, 2008).
Example of a co-product of a Hopf algebra of trees:

2
Aek(D =Y al+ 20120710 ).
Sty oy i e



Application: high-order modified implicit midpoint rule
Considering the modified implicit midpoint rule

n + n
Yosr = yo + e (L),

applied to the modified differential equation
z =% = £(2) + BB(2) + K*5(2),

1 1
o= —(—fff+=f'(ff
3 12( 5 (,)>,
1 l gl gl ¢! 1" ! ! ]‘/l ! !
s = EO(fffff—f(f,fff)+§f (ff,ff))
1 Lo i / 1., 1" 1(3) /
—(-= SFEF(E, F)) — S FONF L FF
g (S FEO T EUEF ) 4 SF (R, ) = SFOE . FF))
1 1 1
(= ZFFONF )+ —fFBE, FLFF)),
1 G GUD B T (A N))

we obtain a method of order 6 for y = f(y).
Remarks: Connexion with Generating function symplectic integrators
for Hamiltonian systems of Feng Kang (1986). It yields efficient
integrators for specific problems (rigid body, Hairer, V. 2006).
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Application: a high-order stochastic implicit midpoint rule

(Abdulle, Cohen, V., Zygalakis, SIAM SISC 2012).
The strategy of modified equations yields the integrator

X, + X, Xn+ X,
T“) + gh1 (Tﬂ

where f,; = f + hf; and gn1 = g + hgy with

1/1 1/1
£ Zf _ g f! R R/ o
] 4(2 (g.8)—¢& g) & 4(2g (g.,8) ggg>,

Xn+1 — Xn + hﬁ1,1 ( ) AWm

Theorem

The modified stochastic implicit midpoint rule exactly conserves any
quadratic first integral and has weak order 2: for all test function ¢,

IE(o(Xn) — E(o(X (L)) < CH?, ta=nh<T.

Note: the standard stochastic implicit midpoint rule has weak order 1.
The above methods have strong order 1/2 or 1: E(|X, — t,|) < Ch*/2.
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Order conditions for the invariant measure

© Order conditions for the invariant measure

@ A. Abdulle, G. V., K. Zygalakis, High order numerical approximation
of ergodic SDE invariant measures, SIAM SINUM, 2014.

@ A. Abdulle, G. V., K. Zygalakis, Long time accuracy of Lie-Trotter
splitting methods for Langevin dynamics, SIAM SINUM, 2015.
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A classical tool: the Fokker-Plank equation
dX(t) = F(X(t))dt +V2dW(t).

The density p(x, t) of X(t) at time t solves the parabolic problem
Owp = L*p = —div(fp) + Ap, t>0,x¢eR
For ergodic SDEs, for any initial condition X(0) = X, as t — +o0,

E(o(X(2))) = IRd¢(><)p(><, t)ox — | d(x)dhoo(x).

Rd

The invariant measure dfioo(x) ~ po(x)dx is a stationary solution
(Otpoo = 0) of the Fokker-Plank equation

L pso = 0.
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Asymptotic expansions

Theorem (Talay and Tubaro, 1990, see also, Milstein, Tretyakov)

Assume that X, — X,11 (weak order p) is ergodic and has a Taylor
expansion E(¢(X1))|Xo = x) = ¢(x) + hLo + h?Ar1d + h3Ax0 + ...
If uh denotes the numerical invariant distribution, then

/ pdpl, — / $dpice = AphP + O(KPH1),
Rd Rd

where, denoting u(t,x) = E¢(X(t,x)),

Ny = /0+OO /Rd (Ap - (frrll)!>u(t,x)poo(x)dxdt

=_ /0 - /R ) u(t,x)(Ap)" poo(x)dxdt.
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High order approximation of the numerical invariant measure
Assume that X, — X1 is ergodic with standard assumptions and

E(6(X1))[Xo = x) = ¢(x) + hLop + h*A1p + hPAxp + . ..

Standard weak order condition.
If A; = E , 1 <j < p, then (weak order p)
If‘3(¢5(X(1—“n))) =E(¢(Xn)) +O(h°),  ty=nh<T.

Order condition for the invariant measure.
Theorem
If Afpo =0, 1 <j < p then (order p for the invariant measure)

lim —Z¢(X / ¢d s + O(hP),

N—oo N

E(é(X,)) — /]Rd ¢dps = O(exp(—cnh) + hP).
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Application: high order integrator based on modified equations

It is possible to construct integrators of weak order 1 that have
order p for the invariant measure.

This can be done inspired by recent advances in modified equations
of SDEs (see Shardlow 2006, Zygalakis, 2011, Debussche & Faou,
2011, Abdulle Cohen, V., Zygalakis, 2013).

Theorem (Abdulle, V., Zygalakis)

Consider an ergodic integrator X, — X1 (with weak order > 1) for
an ergodic SDE (with technical assumptions),
dX = f(X)dt + g(X)dW.

Then, for all p > 1, there exist a modified equations

dX = (f + hfy + ...+ P71, 1)(X)dt + g(X)dW,
such that the integrator applied to this modified equation has order p
for the invariant measure of the original system dX = fdt + gdW
(assuming ergodicity).
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Example of high order integrator for the invariant measure

Theorem

Consider the Euler-Maruyama scheme X, 1 = X, + hf(X,) + cAW,
applied to Brownian dynamics (f = =V V).

Then, the Euler-Maruyama scheme applied to

dX = (f+ hf + Hh)dt + AW,
o= —Lrr_Tar
1 — 2 4 )
1 1 1 ,< 1
_ T flgle Tl __2 //_/'__2/
fh = 2fff 6f(f,f) 30 E:f(e,,fe,) 4afAf,

i=1

has order 3 for the invariant measure (assuming ergodicity).

Remark 1: the weak order of accuracy is only 1.
Remark 2: derivative free versions can also be constructed.
Sydney, 07/2017 22/ 38



Convergence of the modified Euler-Maruyama schemes

(double-well potential, long trajectories of length T = 108).

- symmetric case
10_25— § ’

- ©

)

o

10°F £

)

r E

=
10% 8

Fr Qo

L un

- stepsize h

5 1 1 1 | I I
1016 102
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V(x) = (1—x%)?

102

second moment error

10°3

104

107°

non-symmetric case |

stepsize h

5
< w

102

Sydney, 07/2017 23 /38



Postprocessed integrators for ergodic SDEs

@ Postprocessed integrators for ergodic SDEs

G. V., Postprocessed integrators for the high order integration of
ergodic SDEs, SIAM SISC, 2015.
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Postprocessed integrators for ergodic SDEs

Idea: extend to the context of ergodic SDEs the popular idea of
effective order for ODEs from Butcher 69’,

Yri1 = Xh 0 Kho X (vn)s Yo = X 0 Ky 0 XG5 (10)-
Example based on the Euler-Maruyama method
for Brownian dynamics: dX(t) = =V V/(X(t))dt + odW(t).
1 — 1
Xpi1 = X,—hV V (X,, + iaﬁgn) +ovVhE,, X, = xn+§aﬁ§n.

X, has order 1 of accuracy for the invariant measure.
X, has order 2 of accuracy for the invariant measure (postprocessor).

This method was first derived as a non-Markovian method by
[Leimkhuler, Matthews, 2013], see [Leimkhuler, Matthews,
Tretyakov, 2014],

X1 =X +hf( )+ af (mm)
Sydney, 07/2017 25/ 38



Postprocessed integrators
Postprocessing: X, = G,(X,), with weak Taylor series expansion

E(¢(Gn(x))) = ¢(x) + hPA0(x) + O(h**).

Theorem

Under technical assumptions, assume that X, — Xn+1 and X, satisfy
and (Ao +[£, Ap]) "poo = 0,

(with [L,Ap] = LA, — ApL) then (order p + 1 for the invariant measure)

E(¢(Xn)) — /Rd Ppocdx = O (exp(—cnh) + hPT1).

Remark: the postprocessing is needed only at the end of the time
interval (not at each time step).
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New schemes based on the theta method
We introduce a modification of the § = 1 method:

Xoy1 = Xp — hVV(Xpi1 + aa\/ﬁﬁn) + 0\/55,,, a=—

N -
SF
N

A postprocessor of order 2

X, = Xo+ coVhiTle,, c=1/2v2— 1/2

The matrix J; 1 is the inverse of J, = | — hf'(X, + aa\/ﬂf,,_l).

A postprocessor of order 2 (order 3 for linear problems)

X, = X,— hbV V(X)) +covhe,, b=+2/2, c= 4\/5—1/2.
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Example: stiff and nonstiff Brownian dynamics.
Gibbs density po(x) = Ze 2V,

0
< -05 O

2 15 -1 05 0 05 1 15 2
X,
1

Nonstiff case V(x) = (1 — x2)2 + x5 — x + x1 cos(x2) + (x2 + x2)?

Stiff case V(x) = (1 — x2)? 4+ x3 — x + x3 cos(xz2) + 100(xz + x2)? + %()q — x3)2.
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Example: stiff and nonstiff Brownian dynamics.

- nonstiff case
10_15_ 4 %\)\ef N
- &t
- WL
102 L&
E o, . i ;// Q,&
Fow . e <
- O /
w0l ® N 0=1/2
g b ] method
c N
10_4:_ pew method 2
‘ stepsize h
102 101

101

1072

1073

104

T
error

stiff case

stepsi

ze h

10 1072

Error in [o4(x2 + X{)?poo(x)dx versus time stepsize h obtained using

10 trajectories on a long time interval of length T = 10°.
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Postprocessed integrators for parabolic SPDEs

@ Postprocessed integrators for parabolic SPDEs

C.-E. Bréhier and G. V., High-order integrator for sampling the
invariant distribution of a class of parabolic SPDEs with additive
space-time noise, SIAM SISC, 2016.
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Abstract setting

Stochastic evolution equation on the Hilbert space H:
du(t) = Au(t)dt + F(u(t))dt + dWO(t), u(0) = up € H.

@ A: D(A) C H— H is a self-adjoint linear operator with
Aek = —)\kek
(ex),., complete orthonormal system of H

O< M <...< ) — +4o0

k——+o0

Example: Laplace operator with homogeneous Dirichlet
boundary conditions on a bounded domain D C RY.

@ F: H— His a Lipschitz nonlinearity (with constant L < \;),
eg. F(uy=fouwithf:R—R.
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Abstract setting

Stochastic evolution equation on the Hilbert space H:

du(t) = Au(t)dt + F(u(t))dt + dW(t), u(0) = up € H.

@ Noise: WQ® is a Q-Wiener process on H

WOt) =3 a0/ Bu(t)é,

kEN*
(ék)kel complete orthonormal system of H,
Bk, k € N*independent standard Wiener processes on R,
Q& = qié, qx >0, supqx < +oo.
k

@ Simplification:
we assume that A and Q commute: & = e, for all k.
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The linear implicit Euler scheme
Stochastic evolution equation on the Hilbert space H:

du(t) = Au(t)dt + F(u(t))dt +dW®(t) , u(0)=uo € H.

Euler scheme, with time-step size h:
Voi1 = Vo + hAvayq + hF(v,) + VAES
= (v,, + hF(v,) + ﬁéf),

where J; = (I — hA) ™ and VAEQ = WO ((n+ 1)h) — WO (nh).

Order of convergence is 5 — ¢ for all € > 0 (see Bréhier 2014):

S =sup {s €(0,1); Trace((—A)_HsQ) < —|—oo} > 0.

82
ox27

Example: for A= Q@ = I in dimension 1, we have s = 1/2.
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The postprocessed scheme

Linear Euler scheme:

Voir = (v,, + hF(v,) + ﬁgf).

New postprocessed scheme

Upni1 =h (Un + hF(Un + %\/EJ2§S) + \/Fgr?)

1
Postprocessing: U, = u, + §J3\/F§,?,
with

h
hAYE = (I — EA)—l/Z.

v

h=(—=hAY, Lh=(-

3-V2
2
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|dea of the construction

Construction as an IMEX (implicit-explicit) integrator for the SDE in
RY:

dX(t) = (A(X(t)) + B(X(t)))dt + dW(t), X(0) = Xo.
with fo =fi +H=-VW,.
Modified scheme with postprocessor:

Xn+1 - Xn + hfl (Xn+1 + alﬁ£n> + hf2(Xn + a2ﬁ§n)

+(1 + ashf{(Xa))Vhé,
X, = Xo+4 cVhE

Unknown coefficients: ay, a», as, ¢, obtained using the order
conditions.
Next, stabilization terms J;, J», J3 are added to guaranty the
well-posedness in infinite dimension.
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Analysis of the postprocessed Euler method

Theorem

@ The Markov chain (u,,,ﬁ,,_l)neN is ergodic, with unique
invariant distribution, and for any test function ¢ : H — R of
class C?, with bounded derivatives,

B(o(m) - [ o ()| =0 (exn(-$250m) ).

@ Moreover, for the case of a linear F, for any s € (0,5),

Adﬂﬁwm—/ﬂmwAM=OW“)

H

Remark: error for the standard linear Euler: O(h°), s € (0,5).
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Numerical experiments (stochastic heat equation)

Case f(u) = Case f(u) = —u

101;7 relative error 101;7 relative error

E Eu\E\' met\\ d. - E Euler \'\"et‘“o " ea-
102 . 102k T

F slope 1/2 E sope 1/2 \oPE
10l 0L i

new method

§ trap. meth. stepsize h § « stepsize h

105+ “]_‘(‘)’2 L L 31(\)»1 L 1051 \1\(\)»2 Lo H]_‘(‘)’l P
Case f(u) = —u —sin(u) Case f(u) = —2u —u®

[ relative error [ relative error
10" d 10t d

: guler Mt : guler Mt

L -—>'_*_—'<’ \' F ->/>/"<—""
102 ope =+ 107%g -

E slope 1@,‘&\\‘- ,S\- - E <lope 1/30\)%\/ e
10k 8 0 I

E E P

: S

F Foet
107k 10 ¢ 5\0"&

E oy stepsize h £ stepsize h

L | Ll L ] | R | P

o 102 10t 1o 102 10t

Figure: Orders of convergence, test function (1) = exp —(||ul|?).
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Qualitative behavior
Data: f(u) = —u —sin(u), Q =1, h=10.01.

standard Euler method postprocessed method

Remark: the process (U,,)neN has the same spatial regularity as the

while the Euler scheme (v,,) s

continuous-time process (u(t))
more regular.
Related work: Chong and Walsh, 2012 (regularity study of the
0 = 1/2 stochastic method).
il Gy 85

t>0' neN :



Qualitative behavior
Data: f(u) = —u—sin(u), Q =1, h=0.01, T =1.

0.6 0.6
0.4 0.4
0.2 0.2
£ £
0.2 -0.2
-0.4 -0.4
-0.6 -0.6
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
» »
standard Euler method postprocessed method

Remark: the process (U,,)neN has the same spatial regularity as the
continuous-time process (u(t))
more regular.
Related work: Chong and Walsh, 2012 (regularity study of the
6 = 1/2 stochastic method).
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Summary

@ Using tools from geometric integration, we presented new order
conditions for the accuracy of ergodic integrators, with emphasis
on postprocessed integrators.

@ In particular, high order in the deterministic or weak sense is not
necessary to achieve high order for the invariant measure.

@ A new high-order method for sampling the invariant distribution
of parabolic semilinear SPDEs

du(t) = Au(t)dt + F(u(t))dt + dW(t),

with high-order of accuracy 5+ 1 instead of 5 (proof in a
simplified linear case).

Current works:
@ study of algebraic structures in stochastic modified equations.
@ analysis of the order of convergence in the general semilinear
SPDE case.
@ combination with Multilevel Monte-Carlo strategies.
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