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Geometric integration
The aim of geometric integration is to study and/or construct
numerical integrators for differential equations

ẏ(t) = f (y(t)), y(0) = y0,

which share geometric structures of the exact solution.
In particular: symmetry, symplecticity for Hamiltonian systems, first
integral preservation, Poisson structure, etc.

Examples of numerical integrators yn ≃ y(nh) (stepsize h):

• explicit Euler method yn+1 = yn + hf (yn).

• implicit Euler method yn+1 = yn + hf (yn+1).

• implicit midpoint rule yn+1 = yn + hf
(yn + yn+1

2

)
.
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Example: simplified solar system (Sun-Jupiter-Saturn)

Universal law of gravitation (Newton)

Two bodies at distance D attract each others with a force
proportional to 1/D2 and the product of their masses.

mi q̈i(t) = −G
∑

0≤j 6=i≤2

mimj

qi(t)− qj(t)

‖qi(t)− qj(t)‖3
(i = 0, 1, 2)

qi(t) ∈ R
3 positions, pi(t) = mi q̇i(t) momenta, G ,m0,m1,m2 const.

This is a Hamiltonian system

q̇(t) = ∇pH
(
p(t), q(t)

)
, ṗ = −∇qH

(
p(t), q(t)

)
,

with Hamiltonian (energy): H(p, q) = T (p) + V (q)

T (p) =
1
2

2∑

i=0

1
mi

pTi pi , V (q) = −G

2∑

i=1

i−1∑

j=0

mimj

‖qi − qj‖
.
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Conservation of first integrals

Energy conservation for Hamiltonian systems

For a Hamiltonian system

q̇(t) = ∇pH
(
p(t), q(t)

)
, ṗ(t) = −∇qH

(
p(t), q(t)

)
,

the Hamiltonian H(p, q) is a first integral: H(p(t), q(t)) = const.

More generally, a quantity C (y) is a first integral (C (y(t)) = const)
of a general system ẏ = f (y) if and only if

∇C (y) · f (y) = 0, for all y .

Comparison of numerical methods: →anim.
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Example of a stochastic model: Langevin dynamics

It models particle motions subject to a potential V , linear friction and
molecular diffusion:

q̇(t) = p(t), ṗ(t) = −∇V (q(t))− γp(t) +
√

2γβ−1Ẇ (t).

W (t): standard Brownian motion in R
d ,continuous, independent

increments, W (t + h)−W (t) ∼ N (0, h), a.s. nowhere differentiable.

Itô integral: for f (t) a (continuous and adapted) stochastic process,
∫ t=tN

0

f (s)dW (s) = lim
h→0

N−1∑

n=0

f (tn)(W (tn+1)−W (tn)), tn = nh.

Example in 2D
A quartic potential V (see level curves):
V (x) = (1 − x2

1 )
2 + (1 − x2

2 )
2 + x1x2

2
+ x2

5
.
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Example: Overdamped Langevin equation (Brownian dynamics)

dX (t) = −∇V (X (t))dt +
√

2dW (t).

W (t): standard Brownian motion in R
d .

Ergodicity: invariant measureµ∞ has density ρ∞(x) = Ce−V (x),

lim
T→∞

1
T

∫ T

0

φ(X (s))ds =

∫

Rd

φ(y)dµ∞(x), a.s.

Example (d = 2): V (x) = (1 − x2
1 )

2 + (1 − x2
2 )

2 + x1x2
2

+ x2
5
.
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Long time accuracy for ergodic SDEs

dX (t) = f (X (t))dt + g(X (t))dW (t), X (0) = x .

Under standard ergodicity assumptions,

lim
T→∞

1
T

∫ T

0

φ(X (t)) =

∫

Rd

φ(y)dµ∞(y)
∣∣∣∣E(φ(X (t)))−

∫

Rd

φ(y)dµ∞(y)

∣∣∣∣ ≤ K (x , φ)e−ct , for all t ≥ 0.

Two standard approaches using an ergodic integrator of order p:

Compute a single long trajectory {Xn} of length T = Nh,

1

N + 1

N∑

k=0

φ(Xk) ≃
∫

Rd

φ(y)dµ∞(y), error O(hp + T−1/2),

Compute many trajectories {X i
n} of length of length t = Nh,

1

M

M∑

i=1

φ(X i
N) ≃

∫

Rd

φ(y)dµ∞(y), error O(e−ct + hp +M−1/2).
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Parabolic SPDE case

Example: Consider a semilinear parabolic stochastic PDE:

∂tu(t, x) = ∂xxu(t, x) + f
(
u(t, x)

)
+ Ẇ (t, x) , t > 0, x ∈ Ω

u(0, x) = u0(x) , x ∈ Ω

u(t, x) = 0 , x ∈ ∂Ω,

or its abstract formulation in L2(Ω):

du(t) = Au(t)dt + f
(
u(t)

)
dt + dW (t) , t > 0

u(0) = u0.

Under appropriate assumptions,
(
u(t)

)
t≥0

is an ergodic process.

Aim: design an efficient high order integrator for sampling the SPDE
invariant distribution.
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Plan of the talk

1 Introduction: geometric numerical integration

2 Modified differential equations

3 Order conditions for the invariant measure

4 Postprocessed integrators for ergodic SDEs

5 Postprocessed integrators for parabolic SPDEs

S. Fiorelli Vilmart and G. V., Computing the long term evolution of

the solar system with geometric numerical integrators, snapshots of
modern mathematics from Oberwolfach, 2017.
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A linear example: the harmonic oscillator

q(t) < 0

q(t) = 0

q(t) > 0

We consider the model of an oscillating spring, where q(t) is the
position relative to equilibrium at time t and p(t) is the momenta.

q̇(t) =
1
m
p(t), ṗ(t) = −kq(t)

The Hamiltonian energy of the system is

H(p, q) =
1

2m
p2 +

k

2
q2.
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Comparison of energy conservations (harmonic oscillator, m = 1)

Explicit Euler method: energy amplification.

H(pn+1, qn+1) = (1 + kh2)H(pn, qn).

Implicit Euler method: energy damping.

H(pn+1, qn+1) =
1

1 + kh2
H(pn, qn).

Symplectic Euler method: exact conservation of a modified
Hamiltonian energy H̃h(p, q) = H(p, q) + hkpq.

H̃h(pn+1, qn+1) = H̃h(pn, qn)

0 q

p

explicit Euler

0 q

p

implicit Euler

0 q

p

symplectic Euler
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What happened? Theory of backward error analysis

Given a differential equation

ẏ = f (y), y(0) = y0

and a one-step numerical integrator

yn+1 = Φf ,h(yn)

we search for a modified differential equation

ż = f̃h(z) = f (z) + hf2(z) + h2f3(z) + h3f4(z) + . . . , z(0) = y0

such that (formally) yn = z(nh)

Ruth (1983), Griffiths, Sanz-Serna (86), Gladman, Duncan, Candy (91),
Feng (91), Sanz-Serna (92), Yoshida (93), Eirola (93), Hairer (94), Fiedler,
Scheurle (96), . . .
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What happened? Energy conservation by symplectic integrators

q̇ = ∇T (p), ṗ = −∇V (q).

Theorem (Benettin & Giorgilli 1994, Tang 1994)

For a symplectic integrator, e.g. the symplectic Euler method

qn+1 = qn + h∇T (pn), pn+1 = pn − h∇V (qn+1),

the modified differential equation remains Hamiltonian:

˙̃q = H̃p(p̃, q̃), ˙̃p = −H̃q(p̃, q̃)

H̃(p, q) = H(p, q) + h H2(p, q) + h2H3(p, q) + . . .

Here H̃(q, p) = T (q) + V (p)− h
2
∇T (q)T∇V (p) + h2

12
∇V (p)T∇2T (q)∇V (p) + . . ..

Formally, the modified energy is exactly conserved by the integrator:

H̃(pn, qn) = H̃(p̃(nh), q̃(nh)) = H̃(p0, q0) = const.
It allows to prove the good long time conservation of energy.
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High order numerical integrators based on modified equations

Theorem (Chartier, Hairer, V., Math.Comp. 2007)

Given yn+1 = Φf ,h(yn), consider a suitable truncated modified
equation

ż = f
[r ]
h (z) = f (z) + hf2(z) + · · ·+ hr−1fr (z).

Then, the same integrator applied to the above modified equations,
zn+1 = Φ

f
[r ]
h

,h
(zn),

defines an integrator of order r for ẏ = f (y) .

Remark: The above modified equation is different but related to the
one of backward error analysis. It can be viewed as a dual approach
using the algebraic framework of B-series (Taylor-type series indexed
by rooted trees), (Calaque, Ebrahimi-Fard, Manchon, 2008).
Example of a co-product of a Hopf algebra of trees:

∆CK ( ) = ⊗ ∅+ 2 ⊗ + 2 ⊗ + ∅ ⊗ .
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Application: high-order modified implicit midpoint rule

Considering the modified implicit midpoint rule

yn+1 = yn + hf
[6]
h

(yn + yn+1

2

)
,

applied to the modified differential equation

ż = f
[6]
h = f (z) + h2f3(z) + h4f5(z),

f3 =
1

12

(
− f ′f ′f +

1

2
f ′′(f , f )

)
,

f5 =
1

120

(
f ′f ′f ′f ′f − f ′′(f , f ′f ′f ) +

1

2
f ′′(f ′f , f ′f )

)

+
1

240

(
−

1

2
f ′f ′f ′′(f , f ) + f ′f ′′(f , f ′f ) +

1

2
f ′′(f , f ′′(f , f ))−

1

2
f (3)(f , f , f ′f )

)

+
1

80

(
−

1

6
f ′f (3)(f , f , f ) +

1

24
f (4)(f , f , f , f )

)
,

we obtain a method of order 6 for ẏ = f (y).
Remarks: Connexion with Generating function symplectic integrators
for Hamiltonian systems of Feng Kang (1986). It yields efficient
integrators for specific problems (rigid body, Hairer, V. 2006).
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Application: a high-order stochastic implicit midpoint rule

(Abdulle, Cohen, V., Zygalakis, SIAM SISC 2012).

The strategy of modified equations yields the integrator

Xn+1 = Xn + hfh,1

(
Xn + Xn+1

2

)
+ gh,1

(
Xn + Xn+1

2

)
∆Wn,

where fh,1 = f + hf1 and gh,1 = g + hg1 with

f1 =
1
4

(
1
2
f ′′(g , g)− g ′f ′g

)
g1 =

1
4

(
1
2
g ′′(g , g)− g ′g ′g

)
,

Theorem
The modified stochastic implicit midpoint rule exactly conserves any
quadratic first integral and has weak order 2: for all test function φ,

|E(φ(Xn)− E(φ(X (tn))| ≤ Ch2, tn = nh ≤ T .

Note: the standard stochastic implicit midpoint rule has weak order 1.
The above methods have strong order 1/2 or 1: E(|Xn− tn|) ≤ Ch1/2.
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Order conditions for the invariant measure

1 Introduction: geometric numerical integration

2 Modified differential equations

3 Order conditions for the invariant measure

4 Postprocessed integrators for ergodic SDEs

5 Postprocessed integrators for parabolic SPDEs

A. Abdulle, G. V., K. Zygalakis, High order numerical approximation
of ergodic SDE invariant measures, SIAM SINUM, 2014.

A. Abdulle, G. V., K. Zygalakis, Long time accuracy of Lie-Trotter
splitting methods for Langevin dynamics, SIAM SINUM, 2015.
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A classical tool: the Fokker-Plank equation

dX (t) = f (X (t))dt +
√

2dW (t).

The density ρ(x , t) of X (t) at time t solves the parabolic problem

∂tρ = L∗ρ = −div(f ρ) + ∆ρ, t > 0, x ∈ R
d .

For ergodic SDEs, for any initial condition X (0) = X0, as t → +∞,

E(φ(X (t))) =

∫

Rd

φ(x)ρ(x , t)dx −→
∫

Rd

φ(x)dµ∞(x).

The invariant measure dµ∞(x) ∼ ρ∞(x)dx is a stationary solution
(∂tρ∞ = 0) of the Fokker-Plank equation

L∗ρ∞ = 0.
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Asymptotic expansions

Theorem (Talay and Tubaro, 1990, see also, Milstein, Tretyakov)

Assume that Xn 7→ Xn+1 (weak order p) is ergodic and has a Taylor
expansion E(φ(X1))|X0 = x) = φ(x) + hLφ+ h2A1φ+ h3A2φ+ . . .
If µh

∞ denotes the numerical invariant distribution, then

∫

Rd

φdµh
∞ −

∫

Rd

φdµ∞ = λph
p +O(hp+1),

where, denoting u(t, x) = Eφ
(
X (t, x)

)
,

λp =

∫ +∞

0

∫

Rd

(
Ap −

Lp+1

(p + 1)!

)
u(t, x)ρ∞(x)dxdt

= −
∫ +∞

0

∫

Rd

u(t, x)
(
Ap

)∗
ρ∞(x)dxdt.
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High order approximation of the numerical invariant measure

Assume that Xn 7→ Xn+1 is ergodic with standard assumptions and

E(φ(X1))|X0 = x) = φ(x) + hLφ+ h2A1φ+ h3A2φ+ . . .

Standard weak order condition.

If Aj =
Lj

j!
, 1 ≤ j < p, then (weak order p)

E(φ(X (tn))) = E(φ(Xn)) +O(hp), tn = nh ≤ T .

Order condition for the invariant measure.

Theorem
If A∗

j ρ∞ = 0, 1 ≤ j < p, then (order p for the invariant measure)

lim
N→∞

1
N

N∑

n=1

φ(Xn) =

∫

Rd

φdµ∞ +O(hp),

E(φ(Xn))−
∫

Rd

φdµ∞ = O(exp
(
−cnh

)
+ hp).
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Application: high order integrator based on modified equations

It is possible to construct integrators of weak order 1 that have
order p for the invariant measure.
This can be done inspired by recent advances in modified equations
of SDEs (see Shardlow 2006, Zygalakis, 2011, Debussche & Faou,
2011, Abdulle Cohen, V., Zygalakis, 2013).

Theorem (Abdulle, V., Zygalakis)

Consider an ergodic integrator Xn 7→ Xn+1 (with weak order ≥ 1) for
an ergodic SDE (with technical assumptions),

dX = f (X )dt + g(X )dW .

Then, for all p ≥ 1, there exist a modified equations

dX = (f + hf1 + . . .+ hp−1fp−1)(X )dt + g(X )dW ,

such that the integrator applied to this modified equation has order p
for the invariant measure of the original system dX = fdt + gdW

(assuming ergodicity).
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Example of high order integrator for the invariant measure

Theorem
Consider the Euler-Maruyama scheme Xn+1 = Xn + hf (Xn) + σ∆Wn

applied to Brownian dynamics (f = −∇V ).
Then, the Euler-Maruyama scheme applied to

dX = (f + hf1 + h2f2)dt + σ∆Wn

f1 = −1
2
f ′f − σ2

4
∆f ,

f2 = −1
2
f ′f ′f − 1

6
f ′′(f , f )− 1

3
σ2

d∑

i=1

f ′′(ei , f
′ei)−

1
4
σ2f ′∆f ,

has order 3 for the invariant measure (assuming ergodicity).

Remark 1: the weak order of accuracy is only 1.
Remark 2: derivative free versions can also be constructed.
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Convergence of the modified Euler-Maruyama schemes

(double-well potential, long trajectories of length T = 108).
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Postprocessed integrators for ergodic SDEs

1 Introduction: geometric numerical integration

2 Modified differential equations

3 Order conditions for the invariant measure

4 Postprocessed integrators for ergodic SDEs

5 Postprocessed integrators for parabolic SPDEs

G. V., Postprocessed integrators for the high order integration of

ergodic SDEs, SIAM SISC, 2015.
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Postprocessed integrators for ergodic SDEs
Idea: extend to the context of ergodic SDEs the popular idea of
effective order for ODEs from Butcher 69’,

yn+1 = χh ◦ Kh ◦ χ−1

h (yn), yn = χh ◦ K n
h ◦ χ−1

h (y0).

Example based on the Euler-Maruyama method

for Brownian dynamics: dX (t) = −∇V (X (t))dt + σdW (t).

Xn+1 = Xn−h∇V

(
Xn +

1
2
σ
√
hξn

)
+σ

√
hξn, X n = Xn+

1
2
σ
√
hξn.

Xn has order 1 of accuracy for the invariant measure.
X n has order 2 of accuracy for the invariant measure (postprocessor).

This method was first derived as a non-Markovian method by
[Leimkhuler, Matthews, 2013], see [Leimkhuler, Matthews,
Tretyakov, 2014],

X n+1 = X n + hf (X n) +
1
2
σ
√
h(ξn + ξn+1).
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Postprocessed integrators
Postprocessing: X n = Gn(Xn), with weak Taylor series expansion

E(φ(Gn(x))) = φ(x) + hpApφ(x) +O(hp+1).

Theorem
Under technical assumptions, assume that Xn 7→ Xn+1 and X n satisfy

A∗
j ρ∞ = 0 j < p,

and
(
Ap + [L,Ap]

)∗
ρ∞ = 0,

(with [L,Ap] = LAp − ApL) then (order p + 1 for the invariant measure)

E(φ(X n))−
∫

Rd

φρ∞dx = O
(
exp

(
−cnh

)
+ hp+1

)
.

Remark: the postprocessing is needed only at the end of the time
interval (not at each time step).
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New schemes based on the theta method
We introduce a modification of the θ = 1 method:

Xn+1 = Xn − h∇V (Xn+1 + aσ
√
hξn) + σ

√
hξn, a = −1

2
+

√
2

2
,

A postprocessor of order 2

X n = Xn + cσ
√
hJ−1

n ξn, c =

√
2
√

2 − 1
/

2

The matrix J−1
n is the inverse of Jn = I − hf ′(Xn + aσ

√
hξn−1).

A postprocessor of order 2 (order 3 for linear problems)

X n = Xn−hb∇V (X n)+cσ
√
hξn, b =

√
2/2, c =

√
4
√

2 − 1
/

2.
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Example: stiff and nonstiff Brownian dynamics.
Gibbs density ρ∞(x) = Ze−

2
σ
2 V (x).
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Example: stiff and nonstiff Brownian dynamics.
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Postprocessed integrators for parabolic SPDEs

1 Introduction: geometric numerical integration

2 Modified differential equations

3 Order conditions for the invariant measure

4 Postprocessed integrators for ergodic SDEs

5 Postprocessed integrators for parabolic SPDEs

C.-E. Bréhier and G. V., High-order integrator for sampling the

invariant distribution of a class of parabolic SPDEs with additive

space-time noise, SIAM SISC, 2016.
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Abstract setting
Stochastic evolution equation on the Hilbert space H :

du(t) = Au(t)dt + F
(
u(t)

)
dt + dW Q(t), u(0) = u0 ∈ H .

A : D(A) ⊂ H → H is a self-adjoint linear operator with

Aek = −λkek(
ek
)
k∈1,...

complete orthonormal system of H

0 < λ1 ≤ . . . ≤ λk →
k→+∞

+∞

Example: Laplace operator with homogeneous Dirichlet
boundary conditions on a bounded domain D ⊂ R

d .

F : H → H is a Lipschitz nonlinearity (with constant L < λ1),
e.g. F (u) = f ◦ u with f : R → R.
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Abstract setting
Stochastic evolution equation on the Hilbert space H :

du(t) = Au(t)dt + F
(
u(t)

)
dt + dW Q(t), u(0) = u0 ∈ H .

Noise: W Q is a Q-Wiener process on H

W Q(t) =
∑

k∈N∗

q
1/2
k βk(t)ẽk ,

(
ẽk
)
k∈1,...

complete orthonormal system of H ,

βk , k ∈ N
∗independent standard Wiener processes on R,

Qẽk = qk ẽk , qk ≥ 0, sup
k

qk < +∞.

Simplification:
we assume that A and Q commute: ẽk = ek for all k .
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The linear implicit Euler scheme
Stochastic evolution equation on the Hilbert space H :

du(t) = Au(t)dt + F
(
u(t)

)
dt + dW Q(t) , u(0) = u0 ∈ H .

Euler scheme, with time-step size h:

vn+1 = vn + hAvn+1 + hF (vn) +
√
hξQn

= J1

(
vn + hF (vn) +

√
hξQn

)
,

where J1 =
(
I − hA

)−1
and

√
hξQn = W Q

(
(n + 1)h

)
−W Q

(
nh

)
.

Order of convergence is s − ε for all ε > 0 (see Bréhier 2014):

s = sup
{

s ∈ (0, 1) ; Trace
(
(−A)−1+sQ

)
< +∞

}
> 0.

Example: for A = ∂2

∂x2 ,Q = I in dimension 1, we have s = 1/2.
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The postprocessed scheme

Linear Euler scheme:

vn+1 = J1

(
vn + hF (vn) +

√
hξQn

)
.

New postprocessed scheme

un+1 =J1

(
un + hF

(
un +

1
2

√
hJ2ξ

Q
n

)
+
√
hξQn

)

Postprocessing: un = un +
1
2
J3

√
hξQn ,

with

J1 = (I − hA)−1, J2 = (I − 3 −
√

2
2

hA)−1, J3 = (I − h

2
A)−1/2.
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Idea of the construction
Construction as an IMEX (implicit-explicit) integrator for the SDE in
R

d :

dX (t) =
(
f1(X (t)) + f2(X (t))

)
dt + dW (t), X (0) = X0.

with f0 = f1 + f2 = −∇V0.

Modified scheme with postprocessor:

Xn+1 = Xn + hf1

(
Xn+1 + a1

√
hξn

)
+ hf2(Xn + a2

√
hξn)

+(I + a3hf
′
1(Xn))

√
hξn

X n = Xn + c
√
hξn.

Unknown coefficients: a1, a2, a3, c , obtained using the order
conditions.
Next, stabilization terms J1, J2, J3 are added to guaranty the
well-posedness in infinite dimension.
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Analysis of the postprocessed Euler method

Theorem

The Markov chain
(
un, un−1

)
n∈N

is ergodic, with unique

invariant distribution, and for any test function ϕ : H → R of

class C2, with bounded derivatives,

∣∣∣∣E(ϕ(un))−
∫

H

ϕ(y)dµh
∞(y)

∣∣∣∣ = O
(
exp

(
−(λ1 − L)

1 + λ1h
nh

))
.

Moreover, for the case of a linear F , for any s ∈ (0, s),

∫

H

ϕ(y)dµh
∞(y)−

∫

H

ϕ(y)dµ∞(y) = O(hs+1).

Remark: error for the standard linear Euler: O(hs), s ∈ (0, s).
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Numerical experiments (stochastic heat equation)
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Figure: Orders of convergence, test function ϕ(u) = exp−(‖u‖2).
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Qualitative behavior
Data: f (u) = −u − sin(u), Q = I , h = 0.01.
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Remark: the process
(
un

)
n∈N

has the same spatial regularity as the
continuous-time process

(
u(t)

)
t≥0

, while the Euler scheme
(
vn
)
n∈N

is
more regular.

Related work: Chong and Walsh, 2012 (regularity study of the
θ = 1/2 stochastic method).
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Qualitative behavior
Data: f (u) = −u − sin(u), Q = I , h = 0.01, T = 1.
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Remark: the process
(
un

)
n∈N

has the same spatial regularity as the
continuous-time process

(
u(t)

)
t≥0

, while the Euler scheme
(
vn
)
n∈N

is
more regular.

Related work: Chong and Walsh, 2012 (regularity study of the
θ = 1/2 stochastic method).
Gilles Vilmart (Univ. Geneva) Geometric and stochastic integration Sydney, 07/2017 37 / 38



Summary
Using tools from geometric integration, we presented new order
conditions for the accuracy of ergodic integrators, with emphasis
on postprocessed integrators.
In particular, high order in the deterministic or weak sense is not
necessary to achieve high order for the invariant measure.
A new high-order method for sampling the invariant distribution
of parabolic semilinear SPDEs

du(t) = Au(t)dt + F
(
u(t)

)
dt + dW Q(t),

with high-order of accuracy s + 1 instead of s (proof in a
simplified linear case).

Current works:
study of algebraic structures in stochastic modified equations.
analysis of the order of convergence in the general semilinear
SPDE case.
combination with Multilevel Monte-Carlo strategies.
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