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Dear all, 

 

There are two common misconceptions on the ability to draw causal conclusions from observational 

data, that (a) this is not possible, and (b) it can be done “easily” with appropriate methods, such as 

the mediation model of Baron and Kenny (1986), or structural equation modelling (SEM). While the 

truth is closer to (a), and one should always prefer experimental designs over observational ones, I 

have personally been more concerned for the misconception of (b). That is, too many researchers 

oversimplify their causal assumptions and believe that a tool like SEM is sufficiently sophisticated and 

powerful to infer causality. This is obviously not true. In this mailing, I would like to discuss the problem 

of inferring causality using an alternative approach, known as propensity score adjustment. 

 

 
 

1. A classic example 

Suppose we would like to estimate the causal impact of smoking (yes or no) on the development of 

lung cancer (yes or no). Randomly assigning participants to smoking or non-smoking would be 

unethical, therefore we cannot run an experiment. However, we can make progress with observational 

smoking data, by first collecting as much information as we can about the demographical, lifestyle, 

and medical characteristics of a target sample (e.g., 50,000 people sampled randomly in Switzerland), 

especially characteristics that we suspect are linked to being a smoker and/or developing lung cancer. 



One can imagine there are numerous such characteristics, perhaps hundreds, but most likely more 

than would be practical for a SEM analysis, which requires us to spell out literally all variable 

relationships. Running a regression also encounters difficulties, as adjusting for too many confounders 

simultaneously may create multicollinearities, suppression effects, or engage in false extrapolation. 

Propensity score adjustment instead proposes a different approach. 

First, we run a logistic regression predicting smoking status from all measured confounders, 

and output the predicted probabilities per participant (i.e., the propensity model). These probabilities 

are known as the propensity score (Rosenbaum & Rubin, 1983), in this case the propensity to be a 

smoker, given confounder characteristics, P. Second, we run a logistic regression predicting lung 

cancer from smoking status, adjusted for the propensity score obtained in the first model (i.e., the 

outcome model). Now, we can estimate the causal impact of smoking on cancer, controlling for the 

probability to be a smoker in the first place. 

 

P(SMOKING) = α0 + α1C1 + … + αpCP    (1) 

P(CANCER) = β0 + β1SMOKING + β2P(SMOKING)   (2) 

 

While the example is somewhat simplified, the above has numerous advantages over either 

SEM or the naïve regression approach: 

 

 No need to spell out all variable relationships 

 The propensity score model is allowed to be overparametrized1 

 All confounder information is efficiently compressed into a single score, P 

 The outcome model with propensity adjustment has more power than SEM or regression for 

testing the group differences of interest 

 No false extrapolation in strata where confounder characteristics between smoking groups do 

not overlap 

 Tailored software or packages are (mostly) not required, it can be run simply as a two-step 

regression with any existing software. 

 

Propensity score adjustment remains highly uncommon in social sciences, though it has been 

popular in medical sciences for decades, where it has become a standard approach for confounder 

adjustment in observational data. In these studies, the target predictor of interest is usually referred 

to generically as the “treatment” or “exposure”. 

 

2. Assumptions and extensions 

The propensity score approach seems simple enough, but one should not gloss over several important 

assumptions. First and foremost, there should be no unmeasured confounders (Robins et al., 1992; 

VanderWeele & Vansteelandt, 2009), an assumption shared by all methods for causal inference, and 

one that is far too often neglected in SEM and simple causal models like Baron and Kenny. Second, 

while the propensity model is allowed to be overparametrized, no confounder should perfectly 

separate the treatment groups. In other words, propensity scores should not be systematically 0 or 1. 

This requires an inspection of the distribution of the propensity scores and their overlap between 

treatments. Third, the propensity model must be correct. Even if all relevant confounder variables are 

                                                           
1 When the group of confounders is large they are often said to be “high-dimensional” 



included, some effects may not be linear, but curvilinear, or involved in interactions. The propensity 

model must include these effects for the resulting propensity scores to be valid. 

Fourth, while the approach does not require the detail of SEM, one should still reflect on the 

causal nature of the different confounders. Some may in fact be mediators, and others common 

outcomes of treatment and outcome. In the latter case, adjusting for such information can lead to 

Berkson’s paradox, a.k.a., collider bias, and may produce spurious causal associations. Fifth, it is not 

entirely appropriate the fit the outcome model without further adjustments to the standard errors. That 

is, the uncertainty of the propensity model needs to be taken into account, which is typically done by 

the use of so-called “sandwich” or robust variance estimators, or via bootstrapping (Vansteelandt, 

Suetens & Goetghebeur, 2009). 

Bearing the assumptions in mind, the idea behind propensity adjustment has been extended 

in several ways, sometimes going under different names. When P is used to weight the observations, 

rather than as a covariate, the method is typically referred to as Inverse Probability Weighting (IPW)2 

(Robins, Hernan & Brumback, 2000). Other studies divide P into bins and stratify the analysis 

categorically along these groups (Lunceford & Davidian, 2004). Another extension is to adjust the 

outcome model not just for P but also for the most important confounders from the propensity model, 

making the estimator “doubly robust”, in the sense that even if the propensity model is misspecified, 

the presence of the confounder in the outcome models still allows for valid causal inference (Leon, 

Tsiatis and Davidian, 2003). When the treatment variable is continuous rather than categorical, the 

propensity model is sometimes called G-estimation (Robins, Mark & Newey, 1992). These methods 

have also been applied to quasi-experimental designs, where the target predictor of interest cannot 

be observed or manipulated directly but is operationalized by a third, indirect variable (experimental 

or observational), called an instrumental variable. Finally, propensity score adjustment is relevant in 

the context of time-varying confounding models, where a treatment, its confounders/mediators, and 

its outcome are measured repeatedly over time. 

 

3. Reflecting on confounding and causality 

Even if you do not plan to use propensity score adjustment, it is always useful to reflect on the causality 

in your data, and the possibility of confounding in particular. Too often the concern for confounding is 

restricted to subject-level confounding in observational designs, when in fact this may occur at multiple 

levels of measurement and also in experimental designs. For example, one may randomize 

participants to reading either abstract or concrete words and exclude confounding due to age, gender, 

reading speed, etc., but this design neglects that abstract words tend to be longer on average than 

concrete words (stimulus confounding). Similarly, an experiment that was conducted during winter 

may produce different results than one during summer. Randomized condition assignment of 

participants cannot exclude seasonal confounding. 

Finally, it should also be clear that “simple” methods for inferring causality should not be 

blindly trusted. For mediation, for example, we are rarely in a situation where a simple X-M-Y path 

makes for an appropriate analysis, even in experimental data. There may not even be a plausible 

temporal contingency between the three variables (they may all be trait-like constructs), or the study 

did not measure them sequentially. SEM appears to be much more sophisticated (and in many ways 

it is) but here too many researchers take faith in their diagram as representing the causal truth, when 

                                                           
2 Sometimes called Inverse Probability of Treatment Weighting (IPTW) 

https://www.unige.ch/cisa/files/9616/7501/5107/CISA_BM_statsupport_20230130_simpson.pdf
https://www.unige.ch/cisa/files/1117/4240/9562/CISA_BM_statsupport_20250324_AnovaHC.pdf


in fact it imposes numerous constraints on relationships that may not be realistic. Before using such 

methods, it is strongly advised to acquaint yourself with their assumptions. 
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