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Data-driven coarse-graining

What are we interested in?

@ Many Dynamical systems in the natural sciences are characterised by
the presence of processes that occur across several length and time
scales, e.g. atmosphere-ocean system, biological systems, materials
and molecular dynamics, etc.

@ Full multiscale system is cumbersome to analyse: high-dimensional,
nonlinear coupling, small scale vs. large scale effects, etc.
Sometimes, it is not even fully known.

@ Commonly, only the evolution of a few selected degrees of freedom is
of main interest, which are often observable.

Idea: Data-Driven Coarse-Graining

Use data (observations) of full system to find an adequate simplified
low-dimensional coarse-grained model that retains the essential dynamic
characteristics of the degrees of freedom of interest.
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Data-driven coarse-graining: A motivating example

The paleoclimatic record

@ Celebrated (partial) record of 630 (~ proxy for temperature) from the
NGRIP ice core during last glacial period  [anderson et al. Nature, 2004]
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@ Temperature is a single degree of freedom of an arguably
high-dimensional climate model.

Swiss Numerical Analysis Day 2015, Geneva 3/14



Inference for coarse-grained dynamical systems

Abstract framework
@ Consider a dynamical system Z¢ evolving according to

dz°
- =F(Z), Z'()eZ

@ Decompose the state space into subspaces X and V:
Z=Xa)Y, dm(X)<dm())
X': state space of degrees of freedom of interest

Data-Driven Coarse-Graining
Use data X¢ = Py Z° to find a stochastic coarse-grained system

dX = f(X;0)dt + g(X;0)dW,, X(t) € X

such that X ~ X¢ (in an appropriate sense).

But ...
Inverse problem for 6 based on X¢ = Py Z¢ not straightforward!
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Failure of classic approaches: Multiscale diffusions

A toy example: homogenization [Pavliotis, Stuart. Springer. 2008]
: —A=0=1/2, e=0.1
Dynamical System ‘ : T

40
dX* = (AXE + \/—EYE) dt,| 2l
< 1
0

1 2
av = —Lyear gy,
5 g )
Coarse-Grained System ol
dX = AX dt +\2gadw, | ° ¢ 0 woo» o w

y

@ Coarse-grained system rigorously obtained via Homogenization

theory
@ Commonly used parametric estimators for SDEs are MLE and QVP:

Ayg = —0.026 % —05=A, Gqup =0.026%05=0.
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Failure for multiscale systems on the diffusive time scale

[Pavliotis, Stuart. 2007], [Papavasiliou, Pavliotis, Stuart. 2009], [Azencott, Beri, Timofeyev. 2010]

Standard estimators for coarse-grained system based on observations
from full multiscale system are (asymptotically) biased

@ For the toy example: lim._,o limy_,o0 Avip(e,7) = A+ 0

General abstract nonsense or practically relevant?
@ A practitioner believes the “true” coarse-grained model is
dX = f(X)dt + g(X)dW,
@ An estimator is derived from this model: £(X)
@ One does not observe X, but a perturbed version X€ instead.
@ Is the estimator robust w.r.t. the perturbation? Does it hold that
EX)—=E(X), if X°=X ase—07
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Derivation of general purpose estimator

@ Let X, denote the solution to coarse-grained 1t6 SDE
dX = f(X)dt +g(X)dW;, X(0)=¢&cR?,
with f: RY — R?, g: RY — RIXT

@ Both f and G := g¢g” € R%*“ depend on unknown parameters
0= (01,...,0,)T €O CR™

fx) = f(x;0) :=> 0;fj(x) and G() Ze G (
j=1
@ For any function ¢ € CZ(R%) and any ¢ > 0, It6’s formula implies
E(0(Xe(®))) - ¢ Ze / E((£0)(Xe(s)) ) ds

with generators £;¢ = f; - Vo + LG, : VV¢
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@ This can be written as

be(€) 1= E(¢(Xe(0))) ~ 0(6) and a(©) = ([ E((£,0) (Xe(s))) ds) € R"
@ Equation a(¢)T0 = b.(¢) is ill-posed
@ Since the equation is valid for any trial point £, we can overcome this
shortcoming by considering multiple trial points (&;); <<, thus

A9=b,

with 4 := (a(&)")
@ Define estimator as least-squares solutions

eR™" and b:= (bo(&)),... €R™

1<i<m 1<i<m

0 :=argmin |z|3 , S:= {z eR": ||Az — b3 = min }
z€S
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The toy example revisited: Does it work at all?

—A=0=1/2,0=(A,0), =0.1
Dynamical System R
ng;i‘||2 —_—
0.08 | !
dX°© = (AXE + ‘/—EW) dt
c Y 0.06
1 2
g _ _ ES -
dY® = €2Y dt + . dv; -l
Coarse-Grained System 0.02¢
dX = AX dt + V20 dW; 00 02 04 06 08 1 12 14 16
> t

Observations
@ consistent parameter estimation seems possible
@ sufficiently large t removes multiscale bias:

multiscale bias ~ o (|A| + ¢ 1)e* + O(e*)
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Just lucky? A more complex system.

Dynamical System
dX¢E = (YE

€

0o+ op(X5)2 + (A — 0p) X© — B(X6)3) dt , Y* as before

v

Coarse-Grained System

dX = (AX — BX3)dt + \/2(04 + 03 X2) dW;

0.2
@ True values:

0 = (A,B,O’a,O'b) with 0.15
A=1, o0,=049 o1l
B=2, o0,=0381

0c=01 0051
0
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What about rigorous results? Not just lucky! i« axw 2014

Robustness
Assumptions
Al X°= X ase — 0in C([0,T],R%)
A2 Sampling errors in discretely sampled observations vanish as h — 0

A3 Error of approximating time integrals by numerical quadrature
vanishes as § — 0

A4 Error of approximating expectations by finite averages vanishes as
N — o0

Proposition (Robustness)
Under assumptions A1-A4, the estimator is robust with respect to
multiscale perturbations, in the sense that

lim6(X°) =60, a.s.

e—0

foranyt >0 and ¢ € CZ(RY).
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Many more Exam pIeS [K., Pavliotis, Kalliadasis. MMS, 2013], [Kalliadasis, K., Pavliotis. arXiv , 2014]

Theory covers problem of obtaining coarse-grained models for:
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Many more Exam pIeS [K., Pavliotis, Kalliadasis. MMS, 2013], [Kalliadasis, K., Pavliotis. arXiv , 2014]

Theory covers problem of obtaining coarse-grained models for:

@ multiscale problems with
multidimensional coarse-grained Brownian Motion in two-scale
models Potential = — V' (x, z/¢)

20
15 I\
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Many more Exam pIeS [K., Pavliotis, Kalliadasis. MMS, 2013], [Kalliadasis, K., Pavliotis. arXiv , 2014]

Theory covers problem of obtaining coarse-grained models for:

@ multiscale problems with
multidimensional coarse-grained Burgers equation in a small noise
models regime:

@ stochastic PDEs ) )
due = ((QB + Due + 20, u.

+ 521/u6> dt +eQdW,
Study solutions of O(¢) on times

scales O(1/&?): diffusive
rescaling ve s.t. eve(e2t) = u.(t)
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Many more Exam pleS [K., Pavliotis, Kalliadasis. MMS, 2013], [Kalliadasis, K., Pavliotis. arXiv , 2014]

Theory covers problem of obtaining coarse-grained models for:

@ multiscale problems with
multidimensional coarse-grained
models

@ stochastic PDEs
@ deterministic systems with
stochastic limit:
» Kac—Zwanzig models: “particle in
a heat bath”
» deterministic model of Brownian
motion

» fast deterministic chaos
> ..

@ etc.
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Kac—Zwanzig model:

A distinguished particle moves in
a potential V' and interacts with
M heat bath particles:

1 1L p2
H = -p? =
5 +V(Q)+2;mj

M
+5 0 kile; - Q)

Jj=1
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Data-driven coarse-graining: A real-world application
The paleoclimatic record revisited [K., Pradas, Kalliadasis, Pavliotis. 2015]
@ A robust estimation procedure provides more confidence when

studying real-world phenomena based on data that may be prone to
effects from multiple scales.
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@ Example of model-based analysis: average time between
Dansgaard—Oeschger events:

» Tpo = average time to exit from warm state + average time to exit from
cold state : model M1 7po ~ 1.60 ky and model M2 7pp ~ 1.51 ky

» Previously reported value in the literature (various physical arguments
and/or complex models): 1.5 ky.
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A general purpose procedure for data-driven
coarse-graining

Take Home Message

@ Multiscale effects in data can result in inconsistent (i.e. false)
parametric estimators for coarse-grained models,

@ Using a robust scheme however, it is possible to obtain simplified
low-dimensional models from available data.

@ Question: Can you rule out the presence of multiscale effects in your
data? If not, then use classic parametric estimators carefully.

Generalisations and Extensions
@ Additional data contamination by noise, e.g. via filtering techniques
@ Passage to fully nonparametric setting (v')
@ Applications in (computational) molecular dynamics
@ Is a Bayesian approach helpful?
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