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Motivation: Data reduction / model reduction

» Encyclopedia: term-document matrix
latent semantic indexing: low-rank approximation by a
truncated SVD: A~ Y7, O'jUjVjT

time-dependent encyclopedia? (a la Wikipedia)

» Multi-particle quantum dynamics
time-dependent Schrédinger equation /W = Hvy
for the wavefunction ¥ = ¢(xq, ..., xn, t)

MCTDH: reduced model via low-rank tensor approximation
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Dynamical low-rank approximation



Best low-rank approximation

given a matrix A € R™*" (huge m, n)

best approximation to A of rank r: matrix X in the
manifold M, of rank-r matrices with

X € M, suchthat ||X — Al = min!

Frobenius norm: problem solved by truncated SVD

X=UL, VT => o]
i=1



Best low-rank approximation

given matrices A(t) € R™*" for 0 <t < T (huge m, n)

best approximation to A(t) of rank r: matrix X(t) in the
manifold M, of rank-r matrices with

X(t) € M, such that ||X(t)— A(t)|| = min!

Frobenius norm: problem solved by truncated SVD, but expensive!

Need an updating technique



Dynamical low-rank approximation

X(t) € M, suchthat || X(t)— A(t)| = min!
replaced by initial value problem of differential equations on M,:

Y(t) € Ty@M, suchthat [ Y(t)—A(t)] = min!



Motivation

Y(t) € TygM, such that ||Y(t) — A(t)|| = min!

> use sparse increments A(t) instead of the complete data
matrix A(t): time-continuous updating

> linear projection onto the tangent space instead of a
nonlinear, nonconvex minimization problem

» extends to matrix differential equations A = F(A):
minimum defect approximation

Y(t) € Ty(gM, suchthat ||Y(t)— F(Y(t))| = min!
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Differential equations



Non-unique factorisation of rank-r matrices

Y =Usv’

with invertible S € R™"

U e R™ and V € R™" with orthonormal columns

SVD has diagonal S, is not assumed here!



Unique decomposition in the tangent space

non-unique decomposition Y = USVT € M,
tangent matrix Y € Ty M,:

Y=UsvVT +USVT +Usv’
with § € R"™" and skew-symmetric UT U, VTV

S, U, V are uniquely determined by Y and S, U, V
under the orthogonality constraints

utu=0, Vv'v=0

gauge conditions enforce uniqueness



Equivalent formulations of
dynamical low-rank approximation

» Y e TyM, suchthat |Y —A| = min!
» (Y—A Z)=0 forall Ze TyM,

» Y = P(Y)A with P(Y) = orth. projection onto Ty M,



ODEs for dynamical low-rank approximation

Yy =usv’
with
U= (ln,— UUT)AVS™!
V=_(~,—-VwWTNhATusT
S=UTAV

Koch & L. 2007

cf. ODEs for SVD (Wright 1992 and Dieci & Eirola 1999)
but here, no singularities arise for coalescing singular values



Low-rank approximation of matrix ODEs

A= F(A)

solution A approximated by Y = USV'T with

minimum defect: Y € Ty M, with [|Y — F(Y)| = min!
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Splitting integrator



Equivalent formulations of
dynamical low-rank approximation

» YeTyM, suchthat |Y —A| = min!
» (Y—-A 2Z)=0 forall Ze TyM,

» Y = P(Y)A with P(Y) = orth. projection onto Ty M,:

P(Y)A = APg(y1) — Pr(v)APRr(yT) + Pr(v)A

Idea: split the projection — the integrator (wait and see!)

L. & Oseledets 2014



Splitting integrator, abstract form

1. Solve the differential equation
Y[ — AP’R(Y/T)
with initial value Y;(tp) = Yo for to < t < ty.

2. Solve _ _
Yi = *PR(YH)APR(Y,,T)

with initial value Y} (tp) = Yi(t1) for to <t < t;.

3. Solve _ _
Y = Pry,nA

with initial value Y[//(to) = Y//(tl) for tg <t < t1.

Finally, take Y1 = Yj;(t1) as an approximation to Y'(t1).



Solving the split differential equations

The solution of 1. is given by

Y, =US V,T with (U/S/). = AV/, V/ =0:

Ui(t)Si(t) = (A(t) — A(to)) Vi(to),  Vi(t) = Vi(to).

and similarly for 2. and 3.



Splitting integrator, practical form

Start from Yy = UpSo VOT e M,.
1. With the increment AA = A(t1) — A(tp), set

Ki = UpSg + AA V
and orthogonalize: B
Ki = U151,

where U; € R™*" has orthonormal columns, and 51 e R™r,
2. Set Sp= 51— Ul DAV,
3. Set [ = Vog(;r + AATU; and orthogonalize:

L =WS],

where Vi € R™" has orthonormal columns, and S; € R™*".

The algorithm computes a factorization of the rank-r matrix

Y1 = U5 VlT ~ Y(tl).



Splitting integrator, cont.

» use symmetrized variant (Strang splitting)

» for a matrix differential equation A = F(A):
in substep 1. solve

k = F(KVOT)V(), K(to) = UoSo

by a step of a numerical method (Runge-Kutta etc.),
and similarly in substeps 2. and 3.
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Robustness to small singular values



ODEs for dynamical low-rank approximation

Yy =usv’
with
U= (ln,—UUT)AVS™?
V=(~,-—wWThATusT
S=UTAV

What if S is ill-conditioned? (effective rank smaller than r)



Numerical experiment

e-perturbed rank-10 matrices for t =0,0.2,...,1,




Numerical experiment: errors at t =1

Table: Approximation rank r = 10.

e [ IX-Al [ IV-Al [ 51
le—1 7.3762e+00 | 1.3478e+01 | 7.9878e—01
le—2 9.3381e—01 | 5.2203e+00 | 1.4487e+00
le—3 1.8293e—01 | 2.1549e—01 | 2.6232e+00
le—4 1.8310e—02 | 2.1550e—02 | 2.6232e+00

Table: Approximation rank r = 20.

e T IX=Al [ IV=Al [ 51
le—1 6.0335e+00 | 1.3094e+01 | 1.5749e+00
le—2 6.1246e—01 | 1.0885e+00 | 1.3569e+01
le—3 6.1280e—02 | 1.0354e—01 | 1.3474e+02
le—4 || 6.1282e—03 | 1.0298e—02 | 1.2940e+03




Robustness under over-approximation

Theorem
> A(t) = Xq(t) + E(t) with ||E(t)|| < o, [[E(t)] < &1
for Xq(t) € Mg with q <r
> ag(A() = p >0

> A < p
> Y(0) = X,(0) € M,
Then,
1Y (£) = Xg(t)|| < co + 6tey  for t < ﬁ

good rank-r approximation even in case of effective rank g < r



Numerical experiment: integrator errors (h = 1073)

p Appr. err. p Appr. err.
Midpoint 2.0023 0.2200 Midpoint 2.0024 0.0188
KLS 1.0307 1.8133 KLS 1.0309 1.8030
KLS(symm) 1.8226 0.2215 KLS(symm) 1.8231 0.0324
KSL 1.0089 0.2188 KSL 1.0082 0.0002

KSL(symm) 2.005  0.2195

KSL(symm) 2.0049 0.0002

Table: e =1073,r =10

Table: e =107%,r =10

p Appr. err.

p Appr. err.
Midpoint 0.0001 0.1006
KLS 0.8154 1.4224
KLS(symm) 1.4911 0.3142
KSL 1.0354 0.0913

KSL(symm) 1.9929 0.0913

Midpoint - failed
KLS 0.9633 1.3435
KLS(symm) 0.3127 1.5479

KSL 1.0362 9.1316e-05
KSL(symm)  1.993  9.1283e-05

Table: e =1073,r =20

Table: e =107% r =20



An exactness result for the splitting method

Theorem
If A(t) has rank at most r, then the splitting integrator is exact:

Yl = A(tl)

Ordering of the splitting is essential! (KSL, not KLS)



Approximation is robust to small singular values

A=F(t,A), Alto)=YoeM,
» F is locally Lipschitz-continuous
> [[(I = P(Y))F(t,Y)| <e forall Y € M,.

Y, € M, result of the projector-splitting integrator after n steps

Theorem
| Yo — A(tn)]| < c1e + c2h for t, < T,

where c1, ¢o depend only on the local Lipschitz constant and
bound of F, and on T.

Kieri, L. & Walach 2015



Remarks on the proof

The method splits P(Y) = Pi(Y) — Py(Y) + Py (Y) in
Y = P(Y)F(t,Y).

Difficulty: cannot use the Lipschitz continuity of the tangent space
projection P(-) and its subprojections, because the Lipschitz
constants become large for small singular values

Rescue:
> use the previous exactness result

> use the conservation of the subprojections in the substeps
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Extensions to tensors



Tensors in Tucker format

Approximation of time-dependent tensors
A(t) € R XM with entries A(ki, ..., Kd; t)

by tensors Y(t) € R™*"*" of the form, with r; < n;,

Y(ky,... kgit) = Z Zcﬂ, (O uPD k1)l (kg ),

=1l jg=1

Tucker format of multilinear rank r = (n, ..., rg):
» Each 1-mode matrix unfolding of the core tensor has full rank.

» The vectors ugi)(t), cee uﬁii)(t) € R" are orthonormal.

Dynamical tensor approximation: Koch & L. 2010
Projector-splitting integrator: L. 2015P™



Tensor trains / matrix product states

Non-commutative separation of variables:
Y(ki,. .., ka) = Gi(k1) ... Gq(kq)
where the G(k;) are ri_1 X r; matrices, with rp = rg = 1.

Attractive because of low data requirement: dKr?

Matrix product states: e.g., Verstraete, Murg & Cirac 2008
Tensor trains: Oseledets 2011
Manifold structure: Holtz, Rohwedder & Schneider 2012

Uschmajew & Vandereycken 2013

Dynamical approximation in the tensor train format:
L., Rohwedder, Schneider, Vandereycken 2013
Projector-splitting integrator: L., Oseledets & Vandereycken 2015
in physics context: Haegeman, L., O., V. & Verstraete 2014F"¢
Error analysis: Kieri, L. & Walach 2015°"
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Review

C.L., Low-rank dynamics

in Extraction of Quantifiable Information from Complex Systems
(S. Dahlke et al., eds.), Springer Lecture Notes Comput. Sci. Eng.
102, 2014.

na.uni-tuebingen.de
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