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Abstract

This paper considers a multi-agent one-sector Ramsey equilibrium growth model with bor-
rowing constraints. The extreme borrowing constraint used in the classical version of the model,
surveyed in Becker (2006), and the limited form of borrowing constraint examined in Borissov
and Dubey (2015) are relaxed to allow more liberal borrowing by the households. A perfect
foresight equilibrium is shown to exist in this economy. We describe the steady state equilibria
for the liberal borrowing regime and show that as the borrowing regime is progressively lib-
eralized, the steady state wealth inequality increases. Unlike the case of a limited borrowing
regime, an equilibrium path need not converge in the case of liberal borrowing regime. We
show through an example that a two period cyclic equilibrium exists when agents are allowed
to borrow against their two period future wage income. This result is similar to the possibility
of non-convergent equilibrium capital stock sequences in the model with no borrowing.

Keywords: Convergence, Existence, Gini Coefficient, Growth, Heterogeneous

agent, Liberal borrowing, Turnpike property.
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1 Introduction

In this paper we consider a discrete time economic growth model with one capital good and finitely
many infinitely-lived heterogeneous households in an infinite time horizon framework and focus on
the savings choices available to the households.

In the standard Ramsey economy, the households are not allowed to borrow against their fu-
ture wage incomes. Becker (1980) formalized the discrete time version of the economy originally
described in continuous time framework in Ramsey (1928). It led to a proliferation of research on
the Ramsey model and continues to receive wide attention in macroeconomic growth literature1.
Becker (2006) contains the main results of this literature. The borrowing constraints on the house-
holds’ consumption - saving choices imply that the markets are not complete.

The no borrowing models based on Becker (1980) identify household savings and physical
capital holdings. The capital stock must be non-negative at each time. In the liberal borrowing
model proposed here savings include not only the capital stock, but also household debts. Therefore,
the non-negativity of capital in the no borrowing model becomes a non-negativity constraint on the
sum of each household’s capital stock and its outstanding debt. The limit on a household’s debt
is determined endogenously in an equilibrium and it is always finite. We assume an exogenous
maximum number of periods before outstanding loans must be repaid.

Alternative borrowing regimes help us understand the wealth distribution in the society driven
solely by time preference and the borrowing constraints. It thus provides an opportunity to inves-
tigate the basic idea in Fisher (1930) that time preference based interactions with the loan market
acts as a redistributive mechanism.

Incomplete markets economies potentially may generate inefficient aggregate allocations on
equilibrium paths. However, Becker and Mitra (2012) show that if a Ramsey equilibrium path
satisfies the turnpike property2, then it satisfies the transversality condition of Malinvaud (1953) and
is therefore inter-temporally efficient in terms of the aggregate consumption stream that it provides
despite the presence of borrowing constraints. Becker (2006) points out that turnpike property does
not hold in general but does hold only if the capital stock sequence converges to the steady state
stock. An example by Michael L. Stern, reported in Becker (2006), shows that without additional
assumptions about technology and / or preferences, this turnpike property does not hold3.

The turnpike property is an asymptotic property by definition. It places restrictions on the Ram-
sey equilibrium itself, and is not easily verifiable, given the primitives of the model (i. e., the spec-
ification of production and utility functions, and the agents’ discount factors). In order to overcome
the difficulty in checking the turnpike property, efforts were made to explore the sufficient condi-

1See Sorger (1994), Le Van and Vailakis (2003), Le Van et al. (2007), Borissov (2011), Becker (2012), Becker and
Mitra (2012), Nishimura et al. (2013), Mitra and Sorger (2013), Becker et al. (2014), Borissov and Dubey (2015), and
Nishimura et al. (2015), for recent contributions.

2In the context of the Ramsey equilibria, the turnpike property states that eventually the most patient household owns
the entire capital stock of the economy whereas remaining households eventually reach the zero capital stock ownership
state and maintain that state thereafter.

3There is only one general result on the long-run behavior of Ramsey equilibria established in Becker and Foias (1987)
known as the recurrence theorem: the zero capital state is recurrent for every household other than the most patient one.
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tions on the equilibrium paths which would ensure that the turnpike property holds. In this regard,
important results by Becker and Foias (1987) show that if the capital stock sequence converges in
equilibrium, then the turnpike property holds. Sufficient conditions to ensure the convergence of the
capital input stock sequence would therefore lead to the Ramsey equilibrium satisfying the turnpike
property and efficiency with respect to the aggregate consumption stream. However, Becker and
Foias (1987) proved by an example that the equilibrium capital stock sequence might not converge
to the stationary equilibrium stock without further restrictions on their basic assumptions.

Becker and Foias (1987) came up with the first set of sufficient condition for the convergence
of the capital stock sequence known as Capital Income Monotonicity. If the production function is
such that the capital income is monotone increasing in the capital stock, then the turnpike property
holds.

Monotonicity of the capital income turns out to be a rather strong assumption on the produc-
tion function. Therefore, attempts were made in recent literature to seek other alternative / weaker
conditions on the fundamentals of the model which guarantee the convergence of capital sequence
along equilibrium path. In an unpublished paper, Borissov (2011) modifies the timing of wage pay-
ments (he considers a discrete-time model under the assumption that wages are paid ante factum)
and proves the convergence property. Mitra and Sorger (2013) investigate a continuous time version
of the Ramsey economy as was proposed originally by Ramsey (1928) and show that the turnpike
property holds in every Ramsey equilibrium4. Becker et al. (2014) weaken the capital income mono-
tonicity condition for the discrete-time Ramsey model to the monotonicity of the maximal income
that any household can have. Borissov and Dubey (2015) relaxes the no borrowing condition by
letting the households to be able to borrow against their next period wage income.

In this paper we take a more comprehensive view of the relaxed borrowing (we term it as liberal
borrowing regime) by allowing the households to borrow against their future wage incomes for
finitely many (𝑁 ∈ ℕ) time periods 5. Thus our paper extends the line of enquiry initiated in
Borissov and Dubey (2015). The borrowing constraint would take the form of

𝑠𝑗𝑡 +
𝑤𝑡+1(

1 + 𝑟𝑡+1
)
𝐽
+⋯ +

𝑤𝑡+𝑁(
1 + 𝑟𝑡+1

)
⋯

(
1 + 𝑟𝑡+𝑁

)
𝐽

≥ 0.6

We prove (a) the existence of an equilibrium in the Ramsey economy with liberal borrowing; (b)
the existence of a unique stationary equilibrium, and (c) the existence of a period two equilibrium
which is efficient. The question of what, if any additional restrictions might yield convergence of an
equilibrium to the long-run steady state remains an open problem. We note that IF the equilibrium

4They also demonstrate that every Ramsey equilibrium in their model is inter-temporally efficient.
5This exercise could be one way of approaching the complete markets as the finite time horizon for the borrowing is

extended to the borrowing against the life time incomes. Bewley (1982) considers such an economy with complete mar-
kets, where households can borrow against their life time wage incomes and shows that in equilibrium, the consumption
of all households other than the most patient one is zero after some finite time in every equilibrium.

6In this expression, 𝐽 > 1 is the number of households, 𝑠𝑡𝑗 is savings for period 𝑡 for household 𝑗, 𝑤𝑡
𝐽

is the wage
income for every household in period 𝑡,

(
1 + 𝑟𝑡

)
is the rental rate in time period 𝑡 and 𝑤𝑡+𝑘

(1+𝑟𝑡+1)⋯(1+𝑟𝑡+𝑘)𝐽 is the present
(time 𝑡) value of the wage income in period 𝑡 + 𝑘.
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aggregate capital stock sequence converges to the steady state in our liberal borrowing regime, then
the turnpike property holds in our liberal borrowing framework and that equilibrium is also efficient.

The proof of the existence of an equilibrium is in three steps and is along the lines of the exis-
tence result in the case of the limited borrowing regime in Borissov and Dubey (2015) 7. First we
devise a simultaneous move generalized game with a finite number of players to represent the finite
time periods Ramsey economy with liberal borrowing and use a theorem by Debreu (1952) to show
the existence of a Nash equilibrium in this game. In the second step we show that this Nash equilib-
rium is also an equilibrium in the finite time horizon economy. Finally, we apply a process similar
to Cantor’s diagonalization argument to the sequence of finite time periods equilibria to prove the
existence of equilibrium in the infinite-horizon Ramsey economy 8.

Having established the existence of an equilibrium, we show that there is a unique stationary
equilibrium in the Ramsey economy with liberal borrowing, in which all households except the
most patient one are in the maximum borrowing state, whereas the most patient household owns
entire capital stock and all debts of the other households.

Our analysis also provides an opportunity to investigate the role of different borrowing regimes
on the consumption inequality in the society. While it is true that the aggregate steady state con-
sumption is independent of𝑁 as it depends only upon technology and the most patient agent’s pure
rate of time preference, a feature which unifies the no-borrowing aggregate steady state consumption
(see Becker (1980)) with the liberal borrowing case, the steady state consumption of the impatient
households declines with increases in 𝑁 . It implies that the patient household’s consumption rises
with 𝑁 and approaches the aggregate consumption as 𝑁 tends to infinity. Therefore, in the steady
state the wealth is redistributed from the impatient households to the patient household as the credit
regime is liberalized. In other words, the steady state consumption distribution in Becker (1980)
Lorenz dominates the steady state distribution in our paper, implying a lower Gini coefficient in
Becker (1980) for the distribution of consumption than in the current setup. Hence the steady state
consumption Gini coefficient is increasing with𝑁 and approaches the long-run consumption distri-
bution found in Bewley (1982) with complete markets. Our results corroborate Fisher’s observation
that the time preference based interactions with the loan market act as a redistributive mechanism9.

Last, we turn our attention to dynamic properties of the Ramsey equilibria. Following tech-
niques of proof in Becker and Foias (1987), we first show that in every equilibrium with a convergent
capital stock sequence the following version of the turnpike property holds: from some time onward

7See Becker et al. (2015b) and Bosi et al. (2014) for an alternative finite horizon equilibrium approach and limiting
argument in the no borrowing constraint case. Becker et al. (2015b) allow elastic labor supply in the Ramsey model
and prove existence of equilibrium. The elastic labor supply assumption has received considerable attention in recent
literature on Ramsey models, see, for example, Bosi and Seegmuller (2010), Kamihigashi (2015).

8Our existence result allows the possibility of the household’s felicity function to be unbounded below and thus
extends the results in Borissov and Dubey (2015). Thus we have established existence of equilibrium in the case of
felicity function 𝑢(𝑐𝑡) = ln 𝑐𝑡. In the no - borrowing case, such possibilities have been taken care of in Becker et al.
(1991).

9We consider the discount factors for households as parameters. If the discount factors are endogenous in the spirit of
Borissov and Lambrecht (2009), then less stringent borrowing constraints and hence higher inequality will lead to more
savings if initially inequality is low and to less savings if initially inequality is high.
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the most patient household owns all the capital and the debts of all other households, whereas the
latter eventually attain the maximum borrowing position and stay in that position thereafter. How-
ever, an example shows that a two-period cyclic equilibrium can exist. Moreover, that equilibrium
is efficient and the turnpike property holds (by construction).

The rest of the paper is organized as follows. Section 2 introduces the model. In section 3
we define an equilibrium for this economy and state the existence of equilibrium result. Section 4
contains a description of the unique stationary equilibrium. In section 5, we prove the convergence
of the capital stock sequence implies the limit point must be the stationary equilibrium and the
turnpike property obtains. We also construct a two-period cyclic equilibrium counterexample to the
general hypothesis that the equilibrium aggregate stocks form a convergent sequence. We conclude
in section 6. The proof of the existence of equilibrium and results reported in Section 5 are contained
in the Appendix10.

2 Ramsey Economy with liberal borrowing

2.1 Firms

Firms produce output using one capital good and one unit of labor input. The production technology
transforms labor and the capital goods into a composite good that can be either consumed or invested
as the next period’s capital goods input. The amount of labor is fixed in this economy. There is one
unit of labor services in the aggregate in this economy and all labor services are assumed to be
identical.

The technology is summarized by a production function, denoted by 𝑓 . Let 𝑦 = 𝑓 (𝑘) denote
the composite good 𝑦 produced from one unit of labor (whose value is suppressed in the notation),
together with the non-negative capital input 𝑘. Capital is assumed to depreciate completely within
one period11. Hence, the model is formally one with circulating capital that is consumed within
each production period. The output 𝑦 is available for consumption or capital accumulation. The
formal properties of 𝑓 are:

Assumption 1. The production function 𝑓 ∶ ℝ+ → ℝ+ is continuous, increasing and concave on
ℝ+ and satisfies 𝑓 (0) = 0. Also, 𝑓 is twice continuously differentiable on ℝ++, with

𝑓 ′(⋅) > 0, 𝑓 ′′(⋅) < 0 𝑜𝑛 ℝ++, lim𝑘→0
𝑓 ′(𝑘) = ∞, and lim

𝑘→∞
𝑓 ′(𝑘) = 0.

This assumption implies the existence of a maximum sustainable capital stock, denoted by 𝐾 ,
satisfying 𝐾 = 𝑓

(
𝐾
)
> 0.

10The Appendix A is available in the working paper, Becker et al. (2015a, CAEPR Working Paper # 2015-003), online.
11It is a simplifying assumption in the standard Ramsey models as has been observed in Becker (2006, Footnote

30): “This assumption simplifies the presentation. Depreciated at a fixed rate is easily incorporated into the productive
technology.”. Similar observation holds true in our paper as well.
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2.2 Households

There are 𝐽 > 1 households indexed by 𝑗 = 1,… , 𝐽 . Let 𝑐𝑗𝑡 and 𝑠𝑗𝑡 denote the consumption
and savings of household 𝑗 at time 𝑡 respectively. Households’ preferences assume time additively
separable utility functions with fixed discount factors. Household 𝑗 has felicity function 𝑢𝑗(𝑐) and
discounts future utilities by the factor 𝛿𝑗 with 0 < 𝛿𝑗 < 1. Hence, the household’s lifetime utility
function is specified by

∑∞
𝑡=0 𝛿

𝑡
𝑗𝑢𝑗

(
𝑐𝑗𝑡
)

. The felicity functions satisfy the following properties.

Assumption 2. For each 𝑗, 𝑢𝑗 ∶ ℝ++ → ℝ is twice continuously differentiable and concave with

𝑢′𝑗(⋅) > 0, 𝑢′′𝑗 (⋅) < 0, 𝑎𝑛𝑑 lim
𝑐→0

𝑢′𝑗(𝑐) = ∞.

We focus on the case where the first household’s discount factor is larger than every other house-
holds’ discount factors. Assumption 3 orders households from the most patient to the least patient.

Assumption 3. For each household 𝑗, the discount factor 𝛿𝑗 ∈ (0, 1) is such that

1 > 𝛿1 > 𝛿2 ≥ … ≥ 𝛿𝐽 > 0.

2.3 Liberal Borrowing Constraint

A general complete market competitive one-sector model treats household’s budget constraints as
restricting the present value of the household’s consumption to be smaller than or equal to the
initial wealth defined as the capitalized wage income plus the initial savings. This allows us to
interpret the choice of a consumption stream as if the household is allowed to borrow and lend at
market determined present value prices subject to repaying all loans. Markets are complete - any
intertemporal trade satisfying the present value budget constraint is admissible at the individual
household level.

In this paper, we introduce liberal borrowing in the following manner. Suppose that at time 𝑡,
based on the time 𝑡 − 1 savings, which are not assumed to be non-negative, and the wage income
accrued from working at time 𝑡, the households’ total incomes are realized. Then, given their total
incomes, households make the consumption - savings choices. Again, when making these choices,
they are not prohibited from borrowing (equivalently having negative savings). They are allowed to
borrow against the wage they will earn at times 𝑡+1, 𝑡+2, ⋯, 𝑡+𝑁 where𝑁 ∈ ℕ. This borrowing
can take place at the market determined rental rate. It is convenient to introduce following notation.
For any 𝑡 + 1, 𝑁 ∈ ℕ, we define

𝐴 (𝑡 + 1, 𝑁) ≡ 𝑤𝑡+1(
1 + 𝑟𝑡+1

) +⋯ +
𝑤𝑡+𝑁(

1 + 𝑟𝑡+1
)
⋯

(
1 + 𝑟𝑡+𝑁

) =
𝑁∑
𝑛=1

𝑤𝑡+𝑛
𝑛∏
𝑠=1

(
1 + 𝑟𝑡+𝑠

) .
It is possible to construct a trading institution for matching savings and aggregate capital as the

households may not want to track individual debts in the sense of figuring out what each house-
holds owe to the other households in the economy. So, we imagine a costless clearinghouse (a very
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Walrasian idea) that aggregates savings and matches them with aggregate capital. The clearing-
house also packages loans in the form of annuities due over the payback or loan horizon, 𝑁 , with
variable discount rates and “coupons”. This “security” represents the maximum debt the economy
can carry at any time. Its per capita expression is 𝐴(𝑡+1,𝑁)

𝐽
which enters each agents borrowing con-

straint. That is, an agent can never be indebted to the clearinghouse by more than this amount. The
clearinghouse passes through the repayment of this debt to the holders of the loans. It is important
to note that there is a fairly simple expression for the maximum loan that can be outstanding at any
time 𝑡 given by the generic annuity term

(
𝐽−1
𝐽

)
⋅ 𝐴 (𝑡 + 1, 𝑁). The expression 𝑠𝑗𝑡 +

𝐴(𝑡+1,𝑁)
𝐽

≥ 0
describes the constraint on the savings of the household 𝑗 in period 𝑡.

Markets continue to be incomplete, however households are relatively less debt constrained.
Further, the continued operation of a partial borrowing constraint in the households’ problems hin-
ders the possibility of an equilibrium allocation arising as the economy’s Pareto optimal allocation.

3 Equilibrium in Ramsey Economy with liberal borrowing

We consider the Ramsey model with liberal borrowing described in Section 2 and define an equi-
librium for this economy. The optimizing behaviors of the agents in this economy are as follows.

3.1 Households lifetime utility maximization

Let {1+𝑟𝑡, 𝑤𝑡 ∶ 𝑡 = 0, 1,…} be sequences of one period rental returns and wage rates, respectively.
The sequences {1 + 𝑟𝑡, 𝑤𝑡} are always taken to be positive. Households are competitive agents and
perfectly anticipate the profile of factor returns {1 + 𝑟𝑡, 𝑤𝑡}. At time 𝑡, each household can borrow
against the wage earned at times 𝑡+1, 𝑡+2, ⋯, 𝑡+𝑁 , i. e., a household could have negative savings
at any time 𝑡 which is bounded below by the present value of the prevailing wage in time periods
𝑡 + 1, 𝑡 + 2, ⋯, 𝑡 +𝑁 . Hence, for 𝑗 = 1, …, 𝐽 ,

−𝑠𝑗𝑡 ≤ 𝐴 (𝑡 + 1, 𝑁)
𝐽

, or 𝑠𝑗𝑡 +
𝐴 (𝑡 + 1, 𝑁)

𝐽
≥ 0.

At time 𝑡 = 0, we are given 𝑠𝑗−1, 𝑗 = 1, …, 𝐽 , such that

𝐽∑
𝑗=1

𝑠𝑗−1 = 𝜅0 > 0. (1)

This formulation of the initial condition imposes no constraints on the households entering the
economy with non-negative savings 𝑠𝑗−1 ≥ 0. It could also accommodate some households with
limited initial debt. Given {1 + 𝑟𝑡, 𝑤𝑡}, household 𝑗 solves
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𝒫 (𝑗) ∶ sup
∞∑
𝑡=0

𝛿𝑡𝑗𝑢𝑗
(
𝑐𝑗𝑡
)
,

by choice of a non-negative consumption sequence {𝑐𝑗𝑡 ∶ 𝑡 = 0, 1, 2,…}, and a savings sequence
{𝑠𝑗𝑡 ∶ 𝑡 = 0, 1, 2,…} such that

𝑐𝑗𝑡 + 𝑠
𝑗
𝑡 ≤ (

1 + 𝑟𝑡
)
𝑠𝑗𝑡−1 +

𝑤𝑡

𝐽
, and 𝑠𝑗𝑡 +

𝐴 (𝑡 + 1, 𝑁)
𝐽

≥ 0; 𝑡 = 0, 1, 2,… . (2)

The first-order conditions of optimality12 (the Ramsey-Euler inequalities) for problem 𝒫 (𝑗) are

𝑢′𝑗
(
𝑐𝑗𝑡
)

𝑢′𝑗
(
𝑐𝑗𝑡−1

) ≤ 1
𝛿𝑗

(
1 + 𝑟𝑡

) 𝑡 = 1, 2,… . (3)

In case,

𝑠𝑗𝑡 +
𝐴 (𝑡 + 1, 𝑁)

𝐽
> 0

for some 𝑡 ≥ 1, the Ramsey - Euler equality holds, i.e.,

𝑢′𝑗
(
𝑐𝑗𝑡
)

𝑢′𝑗
(
𝑐𝑗𝑡−1

) = 1
𝛿𝑗

(
1 + 𝑟𝑡

) . (4)

Observe that all inter-temporal decisions are taken by the households.

3.2 Firms’ profit maximization

In contrast to the households, firms are not engaged in inter-temporal decision making and are
completely myopic. They take the rental rate as given and solve the following profit maximization
problem P(𝐹 ) at each 𝑡:

P(𝐹 ) ∶ sup[𝑓 (𝐾) −
(
1 + 𝑟𝑡

)
𝐾],

by choice of 𝐾 ≥ 0. The residual profit is treated as the wage bill. It is shared equally among the
households as wage income. If 0 < 1 + 𝑟𝑡 < ∞, then Assumption 1 implies that there exists a
unique positive stock 𝐾𝑡 which solves P(𝐹 ) at each 𝑡. The first order condition yields

𝑓 ′(𝐾𝑡) = 1 + 𝑟𝑡; (5)
12In addition, the transversality condition must hold on the optimal path.
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furthermore, the corresponding 𝑤𝑡 is positive and is defined by

𝑤𝑡 = 𝑓
(
𝐾𝑡

)
−
(
1 + 𝑟𝑡

)
𝐾𝑡. (6)

3.3 The Ramsey Equilibrium Concept

A collection ℰ =
(
𝑓, 𝜅0,

{
𝑢𝑗 , 𝛿𝑗 , 𝑠

𝑗
−1

}
, 𝑗 = 1, 2,… , 𝐽

)
satisfying Assumptions 1 - 3 and the re-

strictions in (1) on initial savings is said to be an economy. For the borrowing constraint to be
liberal, we need to assume that 𝑁 ≥ 1. The economy always has a positive aggregate capital stock
and at least one agent has positive savings at 𝑡 = −1.

The equilibrium concept is perfect foresight. Households perfectly anticipate the sequences
of rental and wage rates. They solve their optimization problems for their planned consumption
demand and saving sequences. The firms calculate the capital demand at each time and the corre-
sponding total output supply. Rents are paid to the households for capital supplied and the residual
profits are paid out as the total wage bill.

An equilibrium occurs when the households’ savings supply equals the production firms’ capital
demand at every point of time. A form of Walras’ law implies that the total consumption demand
plus supply of savings for the next period equals current output. Thus, in equilibrium, every agent
maximizes its objective function and planned supplies equal planned demands in every market.

Definition 1. Sequences
{
1 + 𝑟𝑡, 𝑤𝑡, 𝐾𝑡,

(
𝑐𝑗𝑡 , 𝑠

𝑗
𝑡

)
, 𝑗 = 1,… , 𝐽 ; 𝑡 = 0, 1,…

}
constitute a Ramsey

equilibrium for a given economy ℰ provided:

(E1) For each 𝑗,
{(
𝑐𝑗𝑡 , 𝑠

𝑗
𝑡

)
∶ 𝑡 = 0, 1,…

}
solves 𝒫 (𝑗) given {1 + 𝑟𝑡, 𝑤𝑡 ∶ 𝑡 = 0, 1,…}.

(E2) For each 𝑡, 𝐾𝑡 solves P(𝐹 ) given 1 + 𝑟𝑡.

(E3) 𝑤𝑡 = 𝑓
(
𝐾𝑡

)
−
(
1 + 𝑟𝑡

)
𝐾𝑡 for 𝑡 = 0, 1,….

(E4)
∑𝐽
𝑗=1 𝑠

𝑗
𝑡−1 = 𝐾𝑡 for 𝑡 = 1, 2,…, and 0 < 𝜅0 = 𝐾0 ≤ 𝐾 .

The output market balance follows by combining (E1) - (E4):

𝐽∑
𝑗=1

𝑐𝑗𝑡 +
𝐽∑
𝑗=1

𝑠𝑗𝑡 = 𝑓
(
𝐾𝑡

)
, 𝑡 = 0, 1,… . (7)

Note that the equilibrium consumption, savings and capital sequences are bounded from above by
the maximum sustainable stock𝐾 . The assumed conditions for households and the firms imply that
in an equilibrium, 𝑐𝑗𝑡 > 0, 𝑗 = 1,… , 𝐽 , and 𝐾𝑡 > 0 for each 𝑡, given that 𝜅0 is positive. At least
one agent’s total income,

(
1 + 𝑟𝑡

)
𝑠𝑗𝑡−1 +

𝑤𝑡
𝐽

is positive. However, it is possible for an agent to have
negative income.
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We also observe that even though non-negative initial savings for each household is a realistic
description of the economy, the equilibrium concept defined above is not inconsistent with some
of the households having negative initial savings. This aspect is further clarified when we describe
the equilibrium for the case of stationary economy. In this case, all but the most patient household
have negative savings on the equilibrium path.

3.4 Existence of Ramsey Equilibrium

In this sub-section we establish the existence of equilibrium in the Ramsey economy with liberal
borrowing. The formal statement of the existence result is contained in the following theorem.

Theorem 1. Consider a Ramsey economy with liberal borrowing, ℰ , with 𝜅0 > 0 and 𝑠𝑗−1 +
𝑤0

𝐽 (1+𝑟0)
≥ 0 for each household. There exists an equilibrium for the Ramsey economy with liberal

borrowing for all 𝑁 ∈ ℕ.

The proof of this theorem consists of several steps. In the first step we restrict the economy to
finite number of time periods (instead of the general infinite time horizon economy) and define a
modified version of equilibrium contained in Definition 1. Next we show that an equilibrium exists
in such Ramsey economy model with finite number of time periods. In the last step, we show
that equilibrium in the infinite time horizon Ramsey economy model with liberal borrowing can be
obtained by applying a process similar to Cantor diagonalization process to the finite time periods
equilibria. The detailed proof is contained in Becker et al. (2015a, Appendix A).

4 Stationary Ramsey Equilibrium

We define the stationary equilibrium for the Ramsey economy with liberal borrowing.

Definition 2 (Stationary Ramsey Equilibrium). A tuple {1+𝑟∗∗, 𝑤∗∗, 𝐾∗∗,
(
𝑐𝑗∗∗, 𝑠𝑗∗∗

)
, 𝑗 = 1,… , 𝐽}

is called a stationary Ramsey equilibrium if the sequences {1 + 𝑟𝑡, 𝑤𝑡, 𝐾𝑡,
(
𝑐𝑗𝑡 , 𝑠

𝑗
𝑡

)
, 𝑗 = 1,… , 𝐽 ∶

𝑡 = 0, 1,…} given by

1 + 𝑟𝑡 = 1 + 𝑟∗∗, 𝑤𝑡 = 𝑤∗∗, 𝐾𝑡 = 𝐾∗∗, 𝑐𝑗𝑡 = 𝑐𝑗∗∗, 𝑠𝑗𝑡 = 𝑠𝑗∗∗ ∶ 𝑡 = 0, 1,…

represent an equilibrium for the Ramsey economy with liberal borrowing with 𝜅0 = 𝐾∗∗ and 𝑠𝑗−1 =
𝑠𝑗∗∗, 𝑗 = 1,… , 𝐽 .

The following proposition shows that there is a unique stationary equilibrium and describes its
structure. Its proof is along the lines of the proof of the main result in Becker (1980) and follows
closely the proof of Proposition 3 in Borissov and Dubey (2015) and a sketch is provided here.

Proposition 1. There is a unique stationary Ramsey equilibrium{
1 + 𝑟∗∗, 𝑤∗∗, 𝐾∗∗,

(
𝑐𝑗∗∗, 𝑠𝑗∗∗

)
, 𝑗 = 1,… , 𝐽

}
,

11



which is determined as follows:

1 + 𝑟∗∗ = 1
𝛿1

= 𝑓 ′ (𝐾∗∗) , 𝑤∗∗ = 𝑓 (𝐾∗∗) −𝐾∗∗ ⋅ 𝑓 ′ (𝐾∗∗) ;

𝑠1∗∗ = 𝐾∗∗ +
(
𝐽−1
𝐽

)
⋅
(
𝛿1
(
1−𝛿𝑁1

)
1−𝛿1

)
⋅𝑤∗∗, 𝑐1∗∗ = 𝑓 (𝐾∗∗) −𝐾∗∗ −

(
𝐽−1
𝐽

)
⋅𝑤∗∗𝛿𝑁1

𝑠𝑗∗∗ = −
(

1
𝐽

)
⋅
(
𝛿1
(
1−𝛿𝑁1

)
(1−𝛿1)

)
⋅𝑤∗∗, 𝑐𝑗∗∗ = 𝛿𝑁1

𝐽
⋅𝑤∗∗, 𝑗 = 2,… , 𝐽 .

⎫⎪⎪⎬⎪⎪⎭
(8)

Proof. Consider problem 𝒫 (𝑗) under the assumption that there are 1 + 𝑟 > 0 and 𝑤 > 0 such that
for all 𝑡, 1 + 𝑟𝑡 = 1 + 𝑟 and 𝑤𝑡 = 𝑤 and denote it by 𝒫 𝑠 (𝑗). We call a pair

(
𝑠𝑗 , 𝑐𝑗

)
a stationary

solution to problem 𝒫 𝑠 (𝑗) if the sequence
{(
𝑐𝑗𝑡 , 𝑠

𝑗
𝑡

)
∶ 𝑡 = 0, 1,…

}
given by

𝑐𝑗𝑡 = 𝑐𝑗 , and 𝑠𝑗𝑡 = 𝑠𝑗 , 𝑡 = 0, 1,… , (9)

represents its solution at 𝑠𝑗−1 = 𝑠𝑗 . Clearly, a tuple
{
1 + 𝑟, 𝑤,𝐾,

(
𝑐𝑗 , 𝑠𝑗

)
, 𝑗 = 1,… , 𝐽

}
is a sta-

tionary equilibrium if and only if it satisfies the following properties:

{
1 + 𝑟 = 𝑓 ′(𝐾); 𝑤 = 𝑓 (𝐾) − 𝑓 ′(𝐾)𝐾; 𝐾 =

∑
𝑗 𝑠

𝑗 ; and(
𝑠𝑗 , 𝑐𝑗

)
is a stationary solution to problem 𝒫 𝑠(𝑗) for every 𝑗 = 1,… , 𝐽 .

}
. (10)

A stationary solution to 𝒫 𝑠(𝑗) exists only if 𝛿𝑗(1+𝑟) ≤ 1 because in the case where 𝛿𝑗(1+𝑟) > 1
no consumption stream which is constant over time can satisfy the first order conditions. Therefore,
on any stationary equilibrium

{
1 + 𝑟, 𝑤,𝐾,

(
𝑐𝑗 , 𝑠𝑗

)
, 𝑗 = 1,… , 𝐽

}
, we have 1 + 𝑟 ≤ 1

𝛿1
.

Let 𝛿𝑗(1 + 𝑟) < 1. Then a pair
(
𝑠𝑗 , 𝑐𝑗

)
such that

𝑠𝑗 > −
( 1
𝐽

)
⋅

(
𝛿1

(
1 − 𝛿𝑁1

)(
1 − 𝛿1

) )
⋅𝑤

cannot be a stationary solution because otherwise, by (4), it would satisfy

1 =
𝑢′𝑗

(
𝑐𝑗
)

𝑢′𝑗 (𝑐𝑗)
= 1
𝛿𝑗(1 + 𝑟)

> 1,

which is impossible. At the same time, the sequence
{(
𝑐𝑗𝑡 , 𝑠

𝑗
𝑡

)
∶ 𝑡 = 0, 1,…

}
given for all 𝑡 =

0, 1,… , by

𝑠𝑗𝑡 = −

(
𝛿1

(
1 − 𝛿𝑁1

)
𝐽
(
1 − 𝛿1

) )
⋅𝑤 and 𝑐𝑗𝑡 =

𝑤𝛿𝑁1
𝐽

is feasible for problem 𝒫 𝑠(𝑗) at
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𝑠𝑗−1 = −

(
𝛿1

(
1 − 𝛿𝑁1

)
𝐽
(
1 − 𝛿1

) )
⋅𝑤

and satisfies the first-order conditions and the transversality condition13. Therefore, the pair
(
𝑠𝑗 , 𝑐𝑗

)
determined by

𝑠𝑗 = −

(
𝛿1

(
1 − 𝛿𝑁1

)
𝐽
(
1 − 𝛿1

) )
⋅𝑤 and 𝑐𝑗 =

𝑤𝛿𝑁1
𝐽

is the only stationary solution to𝒫 𝑠(𝑗) and hence on any stationary equilibrium {1+𝑟, 𝑤,𝐾,
(
𝑐𝑗 , 𝑠𝑗

)
, 𝑗 =

1,… , 𝐽}, we have 1 + 𝑟 ≥ 1
𝛿1

because otherwise we would have

𝐾 = −

(
𝛿1

(
1 − 𝛿𝑁1

)
1 − 𝛿1

)
⋅𝑤 < 0.

Thus, on any stationary equilibrium
{
1 + 𝑟, 𝑤,𝐾,

(
𝑐𝑗 , 𝑠𝑗

)
, 𝑗 = 1,… , 𝐽

}
, we have

1 + 𝑟 = 1
𝛿1

and 𝑠𝑗 = −

(
𝛿1

(
1 − 𝛿𝑁1

)
𝐽
(
1 − 𝛿1

) )
⋅𝑤 for all 𝑗 ≥ 2.

It remains to note that if 𝛿𝑗(1 + 𝑟) = 1, then any pair
(
𝑠𝑗 , 𝑐𝑗

)
such that

𝑠𝑗 ≥ −

(
𝛿1

(
1 − 𝛿𝑁1

)
𝐽
(
1 − 𝛿1

) )
⋅𝑤 and 𝑐𝑗 = 𝑟𝑠𝑗 + 𝑤

𝐽
> 0

is a stationary solution to 𝒫 𝑠(𝑗) and to use (10).

Assumption 1 implies that 𝐾∗∗ is unique. This proposition maintains that in the stationary Ramsey
equilibrium all households except the most patient one are indebted and all their wage incomes are
spent for the payment of their debts. Observe that in a steady state, the annuity𝐴(𝑡+1, 𝑁) collapses
to an ordinary one of the form

𝐴 (𝑡 + 1, 𝑁) = 𝑤
1 + 𝑟

+⋯ + 𝑤
(1 + 𝑟)𝑁

= 𝑤 ⋅ 𝛿1 +⋯ +𝑤 ⋅ 𝛿𝑁1 = 𝑤

[
𝛿1

(
1 − 𝛿𝑁1

)(
1 − 𝛿1

) ]
,

13Here the transversality condition is as follows:

lim
𝑡→∞

𝛿𝑡𝑗𝑢
′
𝑗

(
𝑐𝑗𝑡
)(

𝑠𝑗𝑡 +
𝑤

𝐽 (1 + 𝑟)
+ 𝑤
𝐽 (1 + 𝑟)2

+⋯ + 𝑤
𝐽 (1 + 𝑟)𝑁

)
= lim

𝑡→∞
𝛿𝑡𝑗𝑢

′
𝑗

(
𝑐𝑗𝑡
)(

𝑠𝑗𝑡 +

(
𝛿1

(
1 − 𝛿𝑁1

)
𝐽
(
1 − 𝛿1

) )
⋅𝑤

)
= 0.
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as 1
(1+𝑟)

= 𝛿1. This formula is the tip-off for the steady state borrowing at each time by the impatient
agents. The steady state initial borrowings for the impatient agents is their per capita share of
the above annuity evaluated at the steady state wages 𝑤∗∗, and the most patient agent’s discount
factor 𝛿1. Now shift time forward one unit. The previous first payment has been extinguished and
to maintain a steady state, a new, final period payment factor must be loaded that corresponds to
the borrowing made by that agent in the new period (say, time 1) — this is precisely the amount
𝛿𝑁1

(
𝑤∗∗

𝐽

)
. That is, this is the incremental or new borrowing in each period that maintains the payout

/ loan structure of the fixed annuity 𝐴 (𝑡 + 1, 𝑁) in the stationary state. It is easy to note that all the
remaining expressions in the steady state follow from this observation. Thus, it is only necessary to
prove that in each period the impatient agents take the maximum borrowing allowed – which entails
taking just that increment to their existing debt which maintains the original savings (deficit) with
which they entered the economy in the steady state.

In the steady state, in every period, the impatient agents enjoy consumption equal to the present
value of their wage received 𝑁 periods later discounted at the most patient agents discount factor.
Therefore, their consumption is positive as the borrowing limit is positive in every period. As for the
most patient household, it owns all capital and all debts of the other households. It is clear that the
stationary-equilibrium capital stock and output in our economy are the same as in the no-borrowing
economy. However, the output is distributed among the households in a somewhat different way: the
consumption of the most patient household is higher and the consumption of every other household
is lower than in the no-borrowing economy.

One can make the following observation using a plot of the Lorenz curve for consumption
(plotting the share of the population on the horizontal axis and the share of consumption on the
vertical in the usual manner) and use linear interpolation to draw the graph (i.e., the domain would
need to be split into equally spaced subintervals of length 1∕𝐽 ). Then the consumption of all the
impatient households as a fraction of aggregate consumption (denoted by 𝜙(𝑁)) would be

𝜙(𝑁) = 𝛿𝑁−1
1

(𝐽 − 1
𝐽

)
⋅
(
𝛿1𝑓 (𝐾∗∗) −𝐾∗∗

𝑓 (𝐾∗∗) −𝐾∗∗

)
, 𝑁 = 0, 1,⋯ ,

where the two terms in the brackets are independent of 𝑁 and only the first term 𝛿𝑁−1
1 depends on

𝑁 . In other words,

𝜙(𝑁) = 𝛿𝑁−1
1 ⋅ 𝐶𝐹 ,𝑁 = 0, 1,⋯ , where 𝐶𝐹 =

(𝐽 − 1
𝐽

)
⋅
(
𝛿1𝑓 (𝐾∗∗) −𝐾∗∗

𝑓 (𝐾∗∗) −𝐾∗∗

)
,

where 𝐶𝐹 denotes the constant term.
In this setting the steady state in Becker (1980) Lorenz dominates the steady state in our paper.

This evidently implies a lower Gini coefficient in Becker (1980) for the distribution of consumption
than in the current setup. This is the precise sense in which stationary state inequality increases in
the newer model compared to Becker (1980).
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We further notice that the aggregate steady state consumption is independent of𝑁 as it depends
only upon technology and the most patient agents pure rate of time preference. It is also clear that
for the 𝐽 − 1 impatient agents, their steady state consumption declines with increases in 𝑁 . In
particular, this implies the first agents consumption rises with 𝑁 and approaches the aggregate
consumption as 𝑁 tends to infinity. The Gini coefficient for the distribution of consumption is

Gini Coefficient = 𝐽 − 1
𝐽

− 𝛿𝑁−1
1 𝐶𝐹 .

We infer that the steady state consumption Gini coefficient is increasing with 𝑁 (reinforced by the
Figure 1 for the case of 𝐽 = 5 households) and approaches the long-run consumption distribution
found in Bewley (1982) with complete markets. The more liberal the borrowing constraints, the
higher the Gini coefficient. Fishers notion that the market for loans acts as a redistribution mecha-
nism from impatient to patient individuals is reflected in our steady state results taken together with
the long-run convergence property found in Section 5.

It is generally recognized (see, e.g., Alesina and Perotti (1996)) that income inequality increases
sociopolitical instability and causes social tension, which in turn reduces investment incentives and
affects the security of property rights. Thus, income inequality can have a negative impact on
economic growth. Borissov and Lambrecht (2009) propose to model this impact of inequality on
growth by assuming that inequality increases the impatience of all economic agents. Making this
assumption in our model would imply that the more liberal the borrowing constraints, the lower the
steady-state capital stock, output and aggregate consumption.

It is noteworthy that the total income for agent 1 is

Income1 = 𝑓
(
𝐾∗∗) + (𝐽 − 1

𝐽

)
⋅

(
𝛿1

(
1 − 𝛿𝑁−1

1

)(
1 − 𝛿1

) )
⋅𝑤∗∗,

and the income of the impatient agent is

Income𝑗 = −
( 1
𝐽

)
⋅

(
𝛿1

(
1 − 𝛿𝑁−1

1

)(
1 − 𝛿1

) )
⋅𝑤∗∗,

for 𝑗 = 2,⋯ , 𝐽 . Observe that the income for the impatient households in a stationary economy
depends on the discount factor of only the first (most patient) household. The sum of total incomes
over all agents is equal to the total output in the economy 𝑓 (𝐾∗∗).
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Figure 1: Lorentz Curves in Stationary Ramsey Equilibria for 𝐽 = 5 households
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Figure 1: Lorentz Curves in Stationary Ramsey Equilibria for 𝐽 = 5 households
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5 Turnpike property and equilibrium dynamics

In this section, we examine the dynamic properties of the Ramsey equilibria for the economy with
borrowing horizon 𝑁 ≥ 1. First, we consider convergent equilibria. We show that the following
turnpike property is obtained on any convergent equilibrium path: starting from some time period
𝑡 onward, for every household other than the most patient one, the borrowing at time 𝑡 − 1 equals
the present value (at time 𝑡 − 1) of the wage income in period 𝑡. In addition, the capital sequence
converges to the unique stationary capital stock. The approach adopted in the proof is essentially the
same as the proof of the main result in Becker and Foias (1987). Let {1 + 𝑟𝑡, 𝑤𝑡, 𝐾𝑡,

(
𝑐𝑗𝑡 , 𝑠

𝑗
𝑡

)
, 𝑗 =

1,… , 𝐽 ; 𝑡 = 0, 1,…} be a Ramsey equilibrium.

Proposition 2. If 𝐾∞ = lim𝑡→∞𝐾𝑡 exists, then 𝐾∞ = 𝐾∗∗ and

𝑠𝑗𝑡 +
𝐴 (𝑡 + 1, 𝑁)

𝐽
= 0, for 𝑗 ≥ 2, for all 𝑡 large enough.

Next we consider Ramsey equilibria where the capital stock sequence is bounded above by
𝐾∗∗ from some time period 𝑡 on. In the following Lemma it is shown that all such equilibria are
convergent.

Proposition 3. If 𝐾𝑡 ≤ 𝐾∗∗ for all 𝑡 large enough, then 𝐾𝑡 → 𝐾∗∗ as 𝑡→ ∞.

However in the general case the equilibrium dynamics is more complicated and convergence
need not be observed in every case. We report some partial results on this line. Following claim
is useful to describe the equilibrium dynamics in the general case. It shows the conditions under
which the sum of capital stock in any period 𝑛 + 1 and the maximum possible debt created in the
terminal period of borrowing regime 𝑛 +𝑁 is monotone increasing.

Claim 1. Suppose that for some 𝑛, 𝐾𝑛 ≥ 𝐾𝑛−1 and 𝐾𝑛 > 𝐾∗∗. Let

Γ𝑛 ≡
{
𝑗 ∈ {1,… , 𝐽} ∶ 𝑠𝑗𝑛−1 +

𝐴 (𝑛,𝑁)
𝐽

> 0
}
.

Denote the cardinality of Γ𝑛 by 𝛾𝑛. Then

𝐾𝑛+1+
(
𝐽 − 𝛾𝑛
𝐽

)
⋅

𝑤𝑛+𝑁(
1 + 𝑟𝑛+1

)
⋯

(
1 + 𝑟𝑛+𝑁

) ≥ 𝐾𝑛+
(
𝐽 − 𝛾𝑛
𝐽

)
⋅

𝑤𝑛+𝑁−1(
1 + 𝑟𝑛

)
⋯

(
1 + 𝑟𝑛+𝑁−1

) (11)

holds.

The inequality (11) implies 𝐾𝑛+1 > 𝐾𝑛 when 𝑁 = 1 as it must, in view of Borissov and Dubey
(2015, Lemma 6). For 𝑁 = 1,

𝐾𝑛+1 +
(
𝐽 − 𝛾𝑛
𝐽

)
⋅

𝑤𝑛+1(
1 + 𝑟𝑛+1

) > 𝐾𝑛 +(
𝐽 − 𝛾𝑛
𝐽

)
⋅

𝑤𝑛(
1 + 𝑟𝑛

) ⇒ 𝐾𝑛+1 > 𝐾𝑛.
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and therefore if𝐾0 < 𝐾∗∗, then𝐾𝑡 < 𝐾∗∗ for all 𝑡 because otherwise we would have lim𝐾𝑡 > 𝐾∗∗,
which is impossible. However, if 𝑁 ≥ 2, (11) does not necessarily imply 𝐾𝑛+1 > 𝐾𝑛. This could
potentially lead to emergence of equilibrium cycles as the following example shows for the case of
𝑁 = 2.

5.1 Cyclic Equilibrium: An Example

In this sub-section, for the case of liberal borrowing with 𝑁 = 2, we construct an equilibrium
exhibiting a cycle of period two, i.e. for 𝐾0 ≠ 𝐾1, the sequence 𝐾0, 𝐾1, 𝐾0, 𝐾1, … may arise in
equilibrium. Only the most patient household saves in this example and all other agents take the
maximum borrowing allowed. Our construction is similar to the one in Becker and Foias (1987).

Example 1.

A cyclic equilibrium in which all households except the most patient one are in a maximum
borrowing position is fully determined by 𝐾0, 𝐾1, 𝑐10 , 𝑠10, 𝑐11 , 𝑠11 such that for 1 + 𝑟𝑖 = 1 + 𝑟(𝐾𝑖),
𝑖 = 0, 1, and 𝑤𝑖 = 𝑤(𝐾𝑖), 𝑖 = 0, 1,

𝛿1(1 + 𝑟1)𝑢′1(𝑐
1
1) = 𝑢′1(𝑐

1
0), 𝛿1(1 + 𝑟0)𝑢

′
1(𝑐

1
0) = 𝑢′1(𝑐

1
1), (12)

𝑠10 + 𝑐
1
0 = (1 + 𝑟0)𝑠11 +

𝑤0
𝐽
, 𝑠11 + 𝑐

1
1 = (1 + 𝑟1)𝑠10 +

𝑤1
𝐽
, (13)

𝑠10 = 𝐾1 +
(𝐽 − 1

𝐽

) 𝑤1
1 + 𝑟1

+ 𝐽 − 1
𝐽

𝑤0
(1 + 𝑟0)(1 + 𝑟1)

(14)

𝑠11 = 𝐾0 +
(𝐽 − 1

𝐽

) 𝑤0
1 + 𝑟0

+ 𝐽 − 1
𝐽

𝑤1
(1 + 𝑟0)(1 + 𝑟1)

𝛿𝑗(1 + 𝑟1)𝑢′𝑗

(
𝑤1

(1 + 𝑟0)(1 + 𝑟1)

)
≤ 𝑢′𝑗

(
𝑤0

(1 + 𝑟0)(1 + 𝑟1)

)
, (15)

𝛿𝑗(1 + 𝑟0)𝑢′𝑗

(
𝑤0

(1 + 𝑟0)(1 + 𝑟1)

)
≤ 𝑢′𝑗

(
𝑤1

(1 + 𝑟0)(1 + 𝑟1)

)
, 𝑗 = 2,… , 𝐽 . (16)

A standard argument implies (12) - (13) are sufficient for the sequence{(
𝑐10 , 𝑠

1
0
)
,
(
𝑐11 , 𝑠

1
1
)
,
(
𝑐10 , 𝑠

1
0
)
,
(
𝑐11 , 𝑠

1
1
)
,…

}
to solve the first household’s optimization problem since the transversality condition is obtained.
Condition (15) can also be shown to be sufficient for the impatient households problems provide
𝛿𝑗 > 0, 𝑗 = 2,… , 𝐽 , are sufficiently small.

For determinacy we assume that𝐾0 < 𝐾1 and hence 1+ 𝑟0 > 1+ 𝑟1. Therefore, taking account
of (12), we obtain

𝑐10 > 𝑐
1
1 > 0. (17)
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Note that (12) implies
(1 + 𝑟0)(1 + 𝑟1) =

1
𝛿21
. (18)

and that (13)-(14) can be aggregated to

𝐾1 + 𝑐10 = 𝑓 (𝐾0) −
(𝐽 − 1

𝐽

)
𝛿21𝑤0, 𝐾0 + 𝑐11 = 𝑓 (𝐾1) −

(𝐽 − 1
𝐽

)
𝛿21𝑤1. (19)

To construct the desired example, it is sufficient to find a function 𝑓 and numbers 𝛿21 ,𝐾0,𝐾1, 𝑐10 ,
𝑐11 such that (17)-(19) hold true and to notice that (i) because of (17), it is not difficult to construct a
function 𝑢0 satisfying Assumption 2 and (12); and (ii) for any functions 𝑢𝑗 , 𝑗 = 2,… , 𝐽 , satisfying
Assumption 2, (15) holds true if 𝛿𝑗 , 𝑗 = 2,… , 𝐽 , are sufficiently small.

Let

𝑓 (𝐾) =
{

𝑤 + 𝑎𝐾 𝐾 ≤ 1
𝑤 + 𝑏𝐾 𝐾 > 1 , 𝑎 > 1, 𝑎 > 𝑏, 𝑎𝑏 = 1

𝛿21
, 𝑤 > 0, 𝑤 = 𝑤 + 𝑎 − 𝑏. (20)

We define
𝛾 =

(𝐽 − 1
𝐽

)
𝛿21 .

It is easy to verify that the following inequality holds for all 𝐽 > 1:

(1 − 𝛾)𝑎 − 𝑏
1 + 𝑏

+ 1 < 𝑎 −
1 − 𝛿21
𝛿21(1 + 𝑏)

.

Let us take 𝐾0 < 1 such that

(1 − 𝛾)𝑎 − 𝑏
1 + 𝑏

+ 1 <

[
𝑎 −

1 − 𝛿21
𝛿21(1 + 𝑏)

]
𝐾0

and hence

(1 − 𝛾)
(1 + 𝑏)𝑤 + 𝑎 − 𝑏

1 + 𝑏
+

1 − 𝛿21
𝛿21(1 + 𝑏)

𝐾0 < (1 − 𝛾)𝑤 + 𝑎𝐾0 − 1. (21)

Let us further take 𝑐10 such that

(1 − 𝛾)
(1 + 𝑏)𝑤 + 𝑎 − 𝑏

1 + 𝑏
+

1 − 𝛿21
𝛿21(1 + 𝑏)

𝐾0 < 𝑐
1
0

< min

{
(1 − 𝛾)𝑤 + 𝑎𝐾0 − 1, (1 − 𝛾)

(1 + 𝑏)𝑤 + 𝑎 − 𝑏
𝑏

+
1 − 𝛿21
𝑏𝛿21

𝐾0

}
. (22)

The existence of such 𝑐10 follows from (21) and inequality 𝑏 + 1 > 𝑏.
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Finally, let
𝐾1 = (1 − 𝛾)𝑤 + 𝑎𝐾0 − 𝑐10 ,

𝑐11 = (1 − 𝛾)[(1 + 𝑏)𝑤 + 𝑎 − 𝑏] +
1 − 𝛿21
𝛿21

𝐾0 − 𝑏𝑐10 .

Now we show that, with the function 𝑓 defined by (20), the chosen numbers 𝛿1, 𝐾0, 𝐾1, 𝑐10 , 𝑐
1
1

satisfy (17)-(19). First, notice that since 𝐾0 < 1, 𝑤0 = 𝑤 and 1 + 𝑟0 = 𝑎. Therefore,

𝑓 (𝐾0) −
(𝐽 − 1

𝐽

)
𝛿21𝑤0 = (1 − 𝛾)𝑤 + 𝑎𝐾0

and hence the first equality in (19) holds true.
By the second inequality in (22), 𝐾1 > 1 and hence 𝑤1 = 𝑤 and 1 + 𝑟1 = 𝑏. Therefore, taking

into account the equalities 𝑤 = 𝑤 + 𝑎 − 𝑏 and 𝑎𝑏 = 1∕𝛿21 , we obtain

𝑓 (𝐾1) −
(𝐽 − 1

𝐽

)
𝛿21𝑤1 − 𝑐11 = (1 − 𝛾)𝑤 + 𝑏𝐾1 − 𝑐11

= (1 − 𝛾)[𝑤 + 𝑎 − 𝑏] + 𝑏[(1 − 𝛾)𝑤 + 𝑎𝐾0 − 𝑐10] − (1 − 𝛾)[(1 + 𝑏)𝑤 + 𝑎 − 𝑏]

−
1 − 𝛿21
𝛿21

𝐾0 + 𝑏𝑐10 = 1
𝛿21
𝐾0 −

1 − 𝛿21
𝛿21

𝐾0 = 𝐾0.

This means that the second equality in (19) also holds true.
Observe that (18) follows from the the choice of 𝑎, 𝑏 and 𝛿1 and from the equalities 1 + 𝑟0 = 𝑎

and 1 + 𝑟1 = 𝑏, and note that (22) and the choice of 𝑐11 imply (17). It remains to smooth 𝑓 over
sufficiently small vicinities of 0 and 1.

Following parameter values satisfy all conditions of the example. Take

𝑎 = 8, 𝑏 = 0.5, 𝐽 = 2, 𝛿1 = 0.5, and w = 2.

Then, 𝑤 = 19
2 , 𝛾 = 1

8 , 𝑎−𝑏1+𝑏 = 5, 1−𝛿21
𝛿21

= 3 and 1−𝛿21
𝛿21 (1+𝑏)

= 2. Let 𝐾0 =
15
16 , then

(1 − 𝛾)𝑎 − 𝑏
1 + 𝑏

+ 1 = 7
8
⋅ 5 + 1 = 43

8
<

[
𝑎 −

1 − 𝛿21
𝛿21(1 + 𝑏)

]
𝐾0 = (8 − 2) ⋅ 15

16
= 45

8
.

Take 𝑐10 = 65
8 which satisfies (22) as

7
8
⋅
(1.5)(2) + 8 − 0.5

1.5
+ 15

8
= 64

8
< 65

8
< min

{33
4
, 96
4

}
.

Then 𝐾1 = 7
8 ⋅ 2 + 8 ⋅ 15

16 − 65
8 = 9

8 , and 𝑐11 = 7
8 ⋅ (4 + 8 − 0.5) + 4 ⋅ 15

16 − (0.5) ⋅ 65
8 = 127

16 satisfy
remaining conditions.
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6 Conclusions

In this paper we have devised a method to approach the classical complete markets economy from
the Ramsey model by liberalizing each household’s borrowing constraint. The turnpike property
holds on every convergent equilibrium path independent of the production technology and the pref-
erences of the households. However, not all equilibrium path are convergent as is shown via Exam-
ple 1. Establishing the dynamic properties of equilibria needs further research.

The study also provides a formal model to examine the effect of various credit regimes on the
inequality in the society and shows that the relationship is monotone in the following precise sense.
The steady state consumption Gini coefficient of the liberal borrowing economy exceeds that of
the borrowing constrained economy. Steady state consumption is, in this sense, more unequally
distributed when the borrowing constraint becomes more liberal.

7 Appendix: Proofs

7.1 Proof of Theorem 1

7.1.1 Equilibrium for the finite time horizon Ramsey Economy

Let us define a finite 𝑇 (with 𝑇 > 𝑁) periods equilibrium in the Ramsey economy with liberal
borrowing along the lines of the Definition 1. We consider here the case where agents are allowed
to borrow against their future wage incomes of two periods. The general case where households are
allowed to borrow against their future wage incomes of 𝑁 periods can be proved on similar lines.

Definition 3. Sequences
{
1 + 𝑟𝑡, 𝑤𝑡, 𝐾𝑡,

(
𝑐𝑗𝑡 , 𝑠

𝑗
𝑡 ∶ 𝑗 = 1,… , 𝐽

)
∶ 𝑡 = 0, 1,… , 𝑇

}
, constitute a fi-

nite 𝑇 periods equilibrium in the Ramsey economy with liberal borrowing provided:

(ET1) Given {1 + 𝑟𝑡, 𝑤𝑡 ∶ 𝑡 = 0, 1,… , 𝑇 }, each household 𝑗, solves

𝑇 (𝑗) ∶ sup
𝑇∑
𝑡=0

𝛿𝑡𝑗𝑢𝑗
(
𝑐𝑗𝑡
)

by choice of a non-negative consumption and savings sequences
(
𝑐𝑗𝑡 , 𝑠

𝑗
𝑡 ∶ 𝑡 = 0, 1,… , 𝑇

)
such that

𝑐𝑗𝑡 + 𝑠
𝑗
𝑡 ≤ (

1 + 𝑟𝑡
)
𝑠𝑗𝑡−1 +

𝑤𝑡
𝐽
, 𝑡 = 0, 1,… , 𝑇 ;

𝑠𝑗𝑡 +
𝐴(𝑡+1,2)

𝐽
≥ 0; 𝑡 = 0, 1,… , 𝑇 − 2; 𝑠𝑗𝑇−1 +

𝐴(𝑇 ,1)
𝐽

≥ 0; and 𝑠𝑗𝑇 ≥ 0.

}
(23)

(ET2) For each 𝑡 = 0, 1,… , 𝑇 , 𝐾𝑡 solves P(𝐹 ) given 1 + 𝑟𝑡.
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(ET3) 𝑤𝑡 = 𝑓 (𝐾𝑡) − (1 + 𝑟𝑡)𝐾𝑡 for 𝑡 = 0, 1,… , 𝑇 .

(ET4)
∑𝐽
𝑗=1 𝑠

𝑗
𝑡−1 = 𝐾𝑡 for 𝑡 = 1, 2,… , 𝑇 , and 0 < 𝜅0 = 𝐾0 ≤ 𝐾 .

It is clear that
(
𝑐𝑗∗𝑡 , 𝑠

𝑗∗
𝑡 ∶ 𝑡 = 0, 1,… , 𝑇

)
is a solution to𝑇 (𝑗) if and only if the feasibility constraint

(23) holds and the Ramsey - Euler inequality / equality (3) - (4) hold for 𝑡 = 1,… , 𝑇 . Therefore,{
1 + 𝑟∗𝑡 , 𝑤

∗
𝑡 , 𝐾

∗
𝑡 ,
(
𝑐𝑗∗𝑡 , 𝑠

𝑗∗
𝑡 ∶ 𝑗 = 1,… , 𝐽

)
; 𝑡 = 0, 1,… , 𝑇

}
is an equilibrium if and only if 𝑠𝑗∗𝑇 = 0,

1 + 𝑟∗𝑡 = 𝑓 ′(𝐾∗
𝑡 ); 𝑤

∗
𝑡 = 𝑓 (𝐾∗

𝑡 ) − (1 + 𝑟∗𝑡 )𝐾
∗
𝑡 ;

𝐽∑
𝑗=1

𝑠𝑗∗𝑡−1 = 𝐾∗
𝑡 > 0 ∶ 𝑡 = 1,… , 𝑇 , (24)

(3)-(4) hold for all 𝑗 = 1, …, 𝐽 , and 𝑡 = 1,… , 𝑇 and (23) hold for 𝑡 = 0,… , 𝑇 .
The existence of equilibrium for the finite time horizon Ramsey economy with liberal borrowing

is shown via the following steps.

STEP 1 We reduce the finite time horizon Ramsey economy model to a generalized gameΓ = (𝑋𝑘, 𝜓𝑘, 𝐺𝑘)𝑘∈𝐼 .
Recall that to specify a game, we need to describe the set of players, 𝐼 ; and for each player
𝑘 ∈ 𝐼 ,

(a) the strategy set 𝑋𝑘,
(b) the strategy correspondence

𝜓𝑘 ∶
∏
𝑖∈𝐼

𝑋𝑖 → 𝑋𝑘, and

(c) the loss function
𝐺𝑘 ∶

∏
𝑖∈𝐼

𝑋𝑖 → ℝ.

Elements of
∏

𝑖∈𝐼 𝑋𝑖 are called multistrategies. The equilibrium of the game Γ is defined as
follows.

Definition 4. A multistrategy
(
𝑥∗1,… , 𝑥∗|𝐼|

)
is called a Nash equilibrium of game Γ if for

each 𝑘 ∈ 𝐼 , 𝑥∗𝑘 is a solution to

min
𝑥𝑘

𝐺𝑘
(
𝑥∗1,… , 𝑥∗𝑘−1, 𝑥𝑘, 𝑥

∗
𝑘+1,… , 𝑥∗|𝐼|

)
(25)

subject to 𝑥𝑘 ∈ 𝜓𝑘
(
𝑥∗1,… , 𝑥∗𝑘−1, 𝑥

∗
𝑘, 𝑥

∗
𝑘+1,… , 𝑥∗|𝐼|

)
.

The sufficient conditions for the existence of Nash equilibrium of this game are specified in
the following theorem.
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Debreu’s Theorem. (Debreu (1952, p. 888)) Suppose that for each 𝑘 ∈ 𝐼 , the set 𝑋𝑘 is a
convex and compact subset of a finite dimensional space, 𝜓𝑘 is a continuous correspondence
with nonempty compact convex values and the function𝐺𝑘

(
𝑥1,… , 𝑥𝑘,… , 𝑥|𝐼|) is continuous

in all variables and convex in 𝑥𝑘. Then a Nash equilibrium exists.

In order to specify the game representing the Ramsey economy with liberal borrowing, we
proceed as follows. We use notation

1 + 𝑟 (𝐾) = 𝑓 ′ (𝐾) and 𝑤 (𝐾) = 𝑓 (𝐾) −𝐾 ⋅ 𝑓 ′ (𝐾)

for the competitive rental rate and wage for the capital stock 𝐾 .

STEP 1(a) Bounds of the capital sequence:
We first note that the upper bounds of the capital sequence {𝐾𝑡} is𝐾 . The upper bound
𝑐 of the consumption sequence is defined as

𝑐 ≡ 𝑓
(
𝐾
)
+ 𝑤(

1 + 𝑟
) + 𝑤(

1 + 𝑟
)2 ,

where
𝑤 ≡ 𝑤

(
𝐾
)

and 1 + 𝑟 ≡ 1 + 𝑟
(
𝐾
)

denote the wage and rental rate for capital stock𝐾 . We construct the sequence of lower
bounds for the capital sequence, {𝐾𝑡} recursively. Let 𝐾0 be such that 0 < 𝐾0 < 𝜅0.
Suppose we are given 𝐾𝑡−1 > 0. To construct 𝐾𝑡 > 0, it is sufficient to observe that

𝑢′𝑗

⎛⎜⎜⎜⎝
𝑓
(
𝐾𝑡−1

)
−𝐾

𝐽

⎞⎟⎟⎟⎠ is increasing in 𝐾

for each 𝑗 and choose 𝐾𝑡 > 0 as the (unique) solution to the following equation in 𝐾:

max
𝑗

⎧⎪⎨⎪⎩𝑢
′
𝑗

⎛⎜⎜⎜⎝
𝑓
(
𝐾𝑡−1

)
−𝐾

𝐽

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭ = 𝜃𝑓 ′

(
𝐾
)
, where 𝜃 ≡ min

𝑗

{
𝛿𝑗𝑢

′
𝑗
(
𝑐
)}

.

It is noteworthy that

𝑢′𝑗

⎛⎜⎜⎜⎝
𝑓
(
𝐾𝑡−1

)
−𝐾𝑡

𝐽

⎞⎟⎟⎟⎠ ≤ 𝜃𝑓 ′
(
𝐾
)
, and 𝜃 ≤ 𝛿𝑗𝑢

′
𝑗
(
𝑐
)
, 𝑗 = 1,… , 𝐽 .
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Therefore,

𝑢′𝑗

⎛⎜⎜⎜⎝
𝑓
(
𝐾𝑡−1

)
−𝐾𝑡

𝐽

⎞⎟⎟⎟⎠ ≤ 𝛿𝑗𝑢
′
𝑗
(
𝑐
)
𝑓 ′

(
𝐾
)
, 𝑗 = 1,… , 𝐽 . (26)

STEP 1(b) Multistrategies: Consider the following game with 𝑇 + (2𝑇 + 1) 𝐽 players where,

(i) for each household 𝑗 = 1,… , 𝐽 ,
(a) 𝑇 players determine 𝑠𝑗𝑡 , 𝑡 = 0, 1,… , 𝑇 − 1, by solving

min
𝑠

𝑠

⎛⎜⎜⎜⎝
1

𝛿𝑗
(
1 + 𝑟

(
𝐾𝑡+1

))
𝑢′𝑗

(
𝑐𝑗𝑡+1

) − 1

𝑢′𝑗
(
𝑐𝑗𝑡
)⎞⎟⎟⎟⎠ (27)

subject to −
𝑤
(
𝐾𝑡+1

)(
1 + 𝑟

(
𝐾𝑡+1

))
𝐽
−

𝑤
(
𝐾𝑡+2

)(
1 + 𝑟

(
𝐾𝑡+1

)) (
1 + 𝑟

(
𝐾𝑡+2

))
𝐽

≤ 𝑠

≤ 𝐾 +
(𝐽 − 1

𝐽

)
⋅

𝑤(
1 + 𝑟

) (𝑡 ≤ 𝑇 − 2)

or subject to −
𝑤
(
𝐾𝑡+1

)(
1 + 𝑟

(
𝐾𝑡+1

))
𝐽

≤ 𝑠 ≤ 𝐾 (𝑡 = 𝑇 − 1).

(b) 𝑇 + 1 players determine 𝑐𝑗𝑡 , 𝑡 = 0, 1,… , 𝑇 , by solving

min
𝑐

||||||𝑐 −
[(

1 + 𝑟
(
𝐾𝑡

))
𝑠𝑗𝑡−1 +

𝑤
(
𝐾𝑡

)
𝐽

− 𝑠𝑗𝑡

]|||||| (28)

subject to 0 ≤ 𝑐 ≤ 𝑐; where 𝑠𝑗−1 is given, and 𝑠𝑗𝑇 = 0.

(ii) 𝑇 players determine 𝐾𝑡, 𝑡 = 1,… , 𝑇 , by solving

min
𝐾

||||||𝐾 −
∑
𝑗
𝑠𝑗𝑡−1

|||||| subject to 𝐾𝑡 ≤ 𝐾 ≤ 𝐾 (29)

STEP 1(c) Nash Equilibrium: The existence of a Nash equilibrium of this game, which we denote
by Γ𝑇 , is established in the following lemma.
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Lemma 1. There exists a Nash equilibrium in the game Γ𝑇 with 𝑇 + (2𝑇 +1)𝐽 players
having the strategy sets, strategy correspondences and loss functions described by (27),
(28), and (29).

Proof. We need to show that all the conditions of Debreu’s Theorem are satisfied. For
the players making the consumption decision for the households and making the capital
input stock decision, the strategy sets are closed intervals and the strategy correspon-
dences assign to a multistrategy, the whole strategy set. For the players making the
savings decisions at time 𝑡 = 0, 1,… , 𝑇 − 1, the strategy sets are the closed interval

[
− 𝑤
(1 + 𝑟)𝐽

− 𝑤
(1 + 𝑟)2𝐽

,𝐾 +
(𝐽 − 1

𝐽

)
⋅
(

𝑤
1 + 𝑟

)]
and the strategy correspondences assign to a multistrategy{(

𝑠𝑗𝑡
)
𝑗=1,…,𝐽 , 𝑡=0,1,…,𝑇−1

,
(
𝑐𝑗𝑡
)
𝑗=1,…,𝐽 , 𝑡=0,1,…,𝑇

,
(
𝐾𝑡

)
𝑡=1,…,𝑇

}
the interval

[
−

𝑤(𝐾𝑡+1)
(1 + 𝑟(𝐾𝑡+1))𝐽

−
𝑤(𝐾𝑡+2)

(1 + 𝑟(𝐾𝑡+1))(1 + 𝑟(𝐾𝑡+2))𝐽
,𝐾 +

(𝐽 − 1
𝐽

)
⋅
(

𝑤
1 + 𝑟

)]
if 𝑡 ≤ 𝑇 − 2 or the interval [

−
𝑤(𝐾𝑡+1)

(1 + 𝑟(𝐾𝑡+1))𝐽
,𝐾

]
if 𝑡 = 𝑇 − 1, which contains 0. This last correspondence is upper- and lower- semi-
continuous because the expression 𝑤(𝐾)

(1+𝑟(𝐾)) is a continuous function of𝐾 on the interval[
𝐾𝑡+1, 𝐾

]
. Finally, for each player, the loss function is continuous in all variables and

convex in the player’s own strategy variable.

STEP 2 Equilibrium for finite periods Ramsey economy: In the next lemma, we show that the Nash
equilibrium of the game Γ𝑇 in Lemma 1 is an equilibrium for the 𝑇 periods Ramsey economy
with liberal borrowing.

Lemma 2. Let
{(

𝑠𝑗∗𝑡
)
𝑗=1,…,𝐽 , 𝑡=0,1,…,𝑇−1

,
(
𝑐𝑗∗𝑡

)
𝑗=1,…,𝐽 , 𝑡=0,1,…,𝑇

,
(
𝐾∗
𝑡
)
𝑡=1,…,𝑇

}
be a Nash

equilibrium of the game Γ𝑇 . Let𝐾∗
0 = 𝜅0, and 𝑠𝑗∗𝑇 = 0 for each household 𝑗. Also let 1+𝑟∗𝑡 =

1+𝑟
(
𝐾∗
𝑡
)

and𝑤∗
𝑡 = 𝑤

(
𝐾∗
𝑡
)
. Then

{
1 + 𝑟∗𝑡 , 𝑤

∗
𝑡 , 𝐾

∗
𝑡 ,
(
𝑐𝑗∗𝑡 , 𝑠

𝑗∗
𝑡

)
, 𝑗 = 1,… , 𝐽 ; 𝑡 = 0, 1,… , 𝑇

}
is a 𝑇 periods equilibrium of the Ramsey economy with liberal borrowing.
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First, observe that

• if

1
𝛿𝑗(1 + 𝑟(𝐾𝑡+1))𝑢′𝑗(𝑐

𝑗
𝑡+1)

> 1
𝑢′𝑗(𝑐

𝑗
𝑡 )
,

then the only solution to problem (27) is

𝑠 =

⎧⎪⎨⎪⎩
− 𝑤(𝐾𝑡+1)

(1+𝑟(𝐾𝑡+1))𝐽
− 𝑤(𝐾𝑡+2)

(1+𝑟(𝐾𝑡+1))(1+𝑟(𝐾𝑡+2))𝐽
, 𝑡 ≤ 𝑇 − 2,

− 𝑤(𝐾𝑡+1)
(1+𝑟(𝐾𝑡+1))𝐽

, 𝑡 = 𝑇 − 1,

• if

1
𝛿𝑗(1 + 𝑟(𝐾𝑡+1))𝑢′𝑗(𝑐

𝑗
𝑡+1)

= 1
𝑢′𝑗(𝑐

𝑗
𝑡 )
,

then any element of the interval

⎧⎪⎨⎪⎩
[
− 𝑤(𝐾𝑡+1)

(1+𝑟(𝐾𝑡+1))𝐽
− 𝑤(𝐾𝑡+2)

(1+𝑟(𝐾𝑡+1))(1+𝑟(𝐾𝑡+2))𝐽
, 𝐾 +

(
𝐽−1
𝐽

)(
𝑤
1+𝑟

)]
, 𝑡 ≤ 𝑇 − 2,[

− 𝑤(𝐾𝑡+1)
(1+𝑟(𝐾𝑡+1))𝐽

, 𝐾
]
, 𝑡 = 𝑇 − 1,

is a solution to (27); and
• if

1
𝛿𝑗(1 + 𝑟(𝐾𝑡+1))𝑢′𝑗(𝑐

𝑗
𝑡+1)

< 1
𝑢′𝑗(𝑐

𝑗
𝑡 )
,

then the only solution to problem (27) is

𝑠 = 𝐾 +
(𝐽 − 1

𝐽

)(
𝑤

1 + 𝑟

)
.

Second, notice that minimization problems (28) and (29) are of the form

min
𝑥

|𝑥 − �̂�| subject to 𝑎1 ≤ 𝑥 ≤ 𝑎2.
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The unique solution to this problem, 𝑥∗, is given by

𝑥∗ =

⎧⎪⎨⎪⎩
𝑎1 if �̂� < 𝑎1;
𝑎2 if �̂� > 𝑎2;
�̂� if 𝑎1 ≤ �̂� ≤ 𝑎2.

Remark 1. In the case �̂� ≤ 𝑎2, we have �̂� ≤ 𝑥∗.

Let
{(

𝑠𝑗∗𝑡
)
𝑗=1,…,𝐽 , 𝑡=0,1,…,𝑇−1

,
(
𝑐𝑗∗𝑡

)
𝑗=1,…,𝐽 , 𝑡=0,1,…,𝑇

,
(
𝐾∗
𝑡
)
𝑡=1,…,𝑇

}
be a Nash equilib-

rium of the game Γ𝑇 . Note that for all 𝑡 = 0, 1,… , 𝑇 , 𝐾∗
𝑡 ≥ 𝐾𝑡 > 0. We establish Lemma 2

via the following set of claims.

Claim 2. For each household 𝑗 = 1,… , 𝐽 ,(
1 + 𝑟∗𝑡

)
𝑠𝑗∗𝑡−1 +

𝑤∗
𝑡

𝐽
− 𝑠𝑗∗𝑡 ≥ 𝑐𝑗∗𝑡 > 0, 𝑡 = 0, 1,… , 𝑇 . (30)

Proof. Assume the converse. Then, by the structure of problem (28), there are 𝑗 and 0 ≤ 𝜏 ≤
𝑇 such that (

1 + 𝑟∗𝑡
)
𝑠𝑗∗𝑡−1 +

𝑤∗
𝑡

𝐽
− 𝑠𝑗∗𝑡 ≥ 𝑐𝑗∗𝑡 > 0, 𝑡 = 0, 1,… , 𝜏 − 1,

and
0 = 𝑐𝑗∗𝜏 ≥ (1 + 𝑟∗𝜏 )𝑠

𝑗∗
𝜏−1 +

𝑤∗
𝜏

𝐽
− 𝑠𝑗∗𝜏 . (31)

Now we fix this 𝑗 and omit it for ease of notation. We consider three sub-cases.

(a) 𝜏 ≤ 𝑇 − 2: By (31),

𝑠∗𝜏 ≥ (1 + 𝑟∗𝜏 )𝑠
∗
𝜏−1 +

𝑤∗
𝜏

𝐽
.

Since (1 + 𝑟∗𝜏 )𝑠
∗
𝜏−1 +

𝑤∗
𝜏
𝐽

+
𝑤∗
𝜏+1

(1+𝑟∗𝜏+1)𝐽
≥ 0, and

𝑤∗
𝜏+2

(1+𝑟∗𝜏+1)(1+𝑟
∗
𝜏+2)𝐽

> 0, we have

𝑠∗𝜏 +
𝑤∗
𝜏+1

(1 + 𝑟∗𝜏+1)𝐽
+

𝑤∗
𝜏+2

(1 + 𝑟∗𝜏+1)(1 + 𝑟
∗
𝜏+2)𝐽

≥ (1 + 𝑟∗𝜏 )𝑠
∗
𝜏−1 +

𝑤∗
𝜏

𝐽
+

𝑤∗
𝜏+1

(1 + 𝑟∗𝜏+1)𝐽

+
𝑤∗
𝜏+2

(1 + 𝑟∗𝜏+1)(1 + 𝑟
∗
𝜏+2)𝐽

≥ 𝑤∗
𝜏+2

(1 + 𝑟∗𝜏+1)(1 + 𝑟
∗
𝜏+2)𝐽

> 0. (32)

Taking into account the structure of problem (27), we have
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1
𝛿(1 + 𝑟∗𝜏+1)𝑢

′(𝑐∗𝜏+1)
− 1
𝑢′(𝑐∗𝜏 )

≤ 0,

because otherwise we would have

𝑠∗𝜏 +
𝑤∗
𝜏+1

(1 + 𝑟∗𝜏+1)𝐽
+

𝑤∗
𝜏+2

(1 + 𝑟∗𝜏+1)(1 + 𝑟
∗
𝜏+2)𝐽

= 0

a contradiction of (32). Therefore, 1
𝑢′(𝑐∗𝜏+1)

= 0 and hence

0 = 𝑐𝑗∗𝜏+1 ≥ (1 + 𝑟∗𝜏+1)𝑠
𝑗∗
𝜏 +

𝑤∗
𝜏+1

𝐽
− 𝑠𝑗∗𝜏+1.

Repeating the argument, which take into account the structure of problem (27), for 𝑡 =
𝜏,… , 𝑇 − 2

𝑠∗𝑡−1 +
𝑤∗
𝑡

(1 + 𝑟∗𝑡 )𝐽
+

𝑤∗
𝑡+1

(1 + 𝑟∗𝑡 )(1 + 𝑟
∗
𝑡+1)𝐽

> 0 and 𝑐∗𝑡 = 0.

Moreover, 𝑠∗𝑇−1+
𝑤∗
𝑇

(1+𝑟∗𝑇 )𝐽
> 0 and 𝑐∗𝑇 = 0, which is impossible, because using the structure

of problem (28) for 𝑡 = 𝑇 and 𝑠∗𝑇 = 0, we get

0 = 𝑐∗𝑇 = 𝑐∗𝑇 + 𝑠∗𝑇 ≥ (1 + 𝑟∗𝑇 )𝑠
∗
𝑇−1 +

𝑤∗
𝑇
𝐽

> 0, a contradiction.

(b) 𝜏 = 𝑇 − 1: Since 𝑐∗𝑇−2 > 0 and 𝑐∗𝑇−1 = 0, we have

1
𝛿(1 + 𝑟∗𝑇−1)𝑢

′(𝑐∗𝑇−1)
− 1
𝑢′(𝑐∗𝑇−2)

= − 1
𝑢′(𝑐∗𝑇−2)

< 0

and, by the structure of problem (27),

𝑠∗𝑇−2 = 𝐾 +
(𝐽 − 1

𝐽

) 𝑤
1 + 𝑟

.

At the same time, by (31),

𝑠∗𝑇−1 ≥ (1 + 𝑟∗𝑇−1)𝑠
∗
𝑇−2 +

𝑤∗
𝑇−1
𝐽

.

Therefore,
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𝑠∗𝑇−1 +
𝑤∗
𝑇

(1 + 𝑟∗𝑇 )𝐽
> 0. (33)

Taking into account the structure of problem (27), we have

1
𝛿(1 + 𝑟∗𝑇 )𝑢

′(𝑐∗𝑇 )
− 1
𝑢′(𝑐∗𝑇−1)

≤ 0,

because otherwise we would have

𝑠∗𝑇−1 +
𝑤∗
𝑇

(1 + 𝑟∗𝑇 )𝐽
= 0,

a contradiction of (33). Therefore, 1
𝑢′(𝑐∗𝑇 )

= 0 and hence, using the structure of problem
(28) for 𝑡 = 𝑇 and 𝑠∗𝑇 = 0,

0 = 𝑐𝑗∗𝑇 ≥ (1 + 𝑟∗𝑇 )𝑠
𝑗∗
𝑇−1 +

𝑤∗
𝑇
𝐽

− 𝑠𝑗∗𝑇 = (1 + 𝑟∗𝑇 )𝑠
𝑗∗
𝑇−1 +

𝑤∗
𝑇
𝐽

> 0, a contradiction.

(c) 𝑡 = 𝑇 : Since 𝑐∗𝑇−1 > 0 and 𝑐∗𝑇 = 0, we have

1
𝛿(1 + 𝑟∗𝑇 )𝑢

′(𝑐∗𝑇 )
− 1
𝑢′(𝑐∗𝑇−1)

= − 1
𝑢′(𝑐∗𝑇−1)

< 0

and, by the structure of problem (27),

𝑠∗𝑇−1 = 𝐾 +
(𝐽 − 1

𝐽

) 𝑤
1 + 𝑟

.

Therefore, because using the structure of problem (28) for 𝑡 = 𝑇 and 𝑠∗𝑇 = 0, we get

0 = 𝑐∗𝑇 = 𝑐∗𝑇 + 𝑠∗𝑇 ≥ (1 + 𝑟∗𝑡 )𝑠
∗
𝑇−1 +

𝑤∗
𝑇
𝐽

> 0, a contradiction.

Claim 3.

𝐽∑
𝑗=1

𝑠𝑗∗𝑡−1 ≤ 𝐾∗
𝑡 , 𝑡 = 0, 1,… . (34)
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Proof. It follows from Claim 2 that

𝑐𝑗∗𝑡 + 𝑠𝑗∗𝑡 ≤ (1 + 𝑟∗𝑡 )𝑠
𝑗∗
𝑡−1 +

𝑤∗
𝑡

𝐽
, 𝑡 = 0, 1,… , 𝑇 .

Also, we have
𝐽∑
𝑗=1

[
(1 + 𝑟∗0)𝑠

𝑗∗
−1 +

𝑤∗
0
𝐽

]
= 𝑓 (𝐾∗

0 ) < 𝐾.

Therefore,
𝑠𝑗∗0 ≤ 𝑐𝑗∗0 + 𝑠𝑗∗0 < 𝐾.

Taking account of the structure of problem (29) and Remark 1, we obtain

𝐽∑
𝑗=1

𝑠𝑗∗0 ≤ 𝐾∗
1

Repeating the argument, we obtain (34).

Claim 4. For each household 𝑗 = 1,… , 𝐽 and for 𝑡 = 0, 1,… , 𝑇 ,

(
1 + 𝑟∗𝑡

)
𝑠𝑗∗𝑡−1 +

𝑤∗
𝑡

𝐽
≤
⎧⎪⎨⎪⎩
𝑓
(
𝐾∗
𝑡
)
+
(
𝐽−1
𝐽

)
⋅
𝑤∗
𝑡+1

1+𝑟∗𝑡+1
, 𝑡 = 0, 1,… , 𝑇 − 1,

𝑓
(
𝐾∗
𝑡
)
, 𝑡 = 𝑇 .

Proof. The constraints in (27) imply that for each household 𝑗 = 1,… , 𝐽 ,

𝑠𝑗∗𝑡−1 +
𝑤∗
𝑡

(1 + 𝑟∗𝑡 )𝐽
+

𝑤∗
𝑡+1

(1 + 𝑟∗𝑡 )(1 + 𝑟
∗
𝑡+1)𝐽

≥ 0, 𝑡 = 0,… , 𝑇 − 1, and 𝑠𝑗∗𝑇−1 +
𝑤∗
𝑇

(1 + 𝑟∗𝑇 )𝐽
≥ 0.

Therefore, taking account of Claim 3, for each 𝑗 = 1,… , 𝐽 , 𝑡 = 0, 1,… , 𝑇 − 1

(1 + 𝑟∗𝑡 )𝑠
𝑗∗
𝑡−1 +

𝑤∗
𝑡

𝐽
+

𝑤∗
𝑡+1

(1 + 𝑟∗𝑡+1)𝐽
≤ 𝐽∑

𝑖=1

[
(1 + 𝑟∗𝑡 )𝑠

𝑖∗
𝑡−1 +

𝑤∗
𝑡

𝐽
+

𝑤∗
𝑡+1

(1 + 𝑟∗𝑡+1)𝐽

]

≤ (1 + 𝑟∗𝑡 )𝐾
∗
𝑡 +𝑤

∗
𝑡 +

𝑤∗
𝑡+1

(1 + 𝑟∗𝑡+1)
= 𝑓 (𝐾∗

𝑡 ) +
𝑤∗
𝑡+1

(1 + 𝑟∗𝑡+1)
,
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(1 + 𝑟∗𝑇 )𝑠
𝑗∗
𝑇−1 +

𝑤∗
𝑇
𝐽

≤ 𝐽∑
𝑖=1

[
(1 + 𝑟∗𝑇 )𝑠

𝑖∗
𝑇−1 +

𝑤∗
𝑇
𝐽

]
≤ (1 + 𝑟∗𝑇 )𝐾

∗
𝑇 +𝑤∗

𝑇 = 𝑓 (𝐾∗
𝑇 ).

Claim 5. For each 𝑗 = 1,… , 𝐽 ,

𝑐𝑗∗𝑡 + 𝑠𝑗∗𝑡 = (1 + 𝑟∗𝑡 )𝑠
𝑗∗
𝑡−1 +

𝑤∗
𝑡

𝐽
, 𝑡 = 0,… , 𝑇 .

Proof. By Claim 4 and the constraints in (27) and (29), for 𝑡 = 0, 1,… , 𝑇 − 2,

(1 + 𝑟∗𝑡 )𝑠
𝑗∗
𝑡−1 +

𝑤∗
𝑡

𝐽
− 𝑠𝑗∗𝑡 ≤ 𝑓 (𝐾∗

𝑡 ) +
(𝐽 − 1

𝐽

)
⋅
𝑤∗
𝑡+1

1 + 𝑟∗𝑡+1
+

𝑤∗
𝑡+1

(1 + 𝑟∗𝑡+1)𝐽
+

𝑤∗
𝑡+2

(1 + 𝑟∗𝑡+1)(1 + 𝑟
∗
𝑡+2)𝐽

≤ 𝑓 (𝐾∗
𝑡 ) +

𝑤∗
𝑡+1

1 + 𝑟∗𝑡+1
+

𝑤∗
𝑡+2

(1 + 𝑟∗𝑡+1)(1 + 𝑟
∗
𝑡+2)

≤ 𝑓 (𝐾) + 𝑤
(1 + 𝑟)

+ 𝑤
(1 + 𝑟)2

= 𝑐, and

(1 + 𝑟∗𝑇−1)𝑠
𝑗∗
𝑇−2 +

𝑤∗
𝑇−1
𝐽

− 𝑠𝑗∗𝑇−1 ≤ 𝑓 (𝐾∗
𝑇−1) +

(𝐽 − 1
𝐽

)
⋅
𝑤∗
𝑇

1 + 𝑟∗𝑇
+

𝑤∗
𝑇

(1 + 𝑟∗𝑇 )𝐽

≤ 𝑓 (𝐾∗
𝑇−1) +

𝑤∗
𝑇

1 + 𝑟∗𝑇
≤ 𝑓 (𝐾) + 𝑤

(1 + 𝑟)
+ 𝑤

(1 + 𝑟)2
= 𝑐.

It follows from the structure of problem (28) that for all 𝑗 = 1,… , 𝐽 ,

𝑐𝑗∗𝑡 ≥ (1 + 𝑟∗𝑡 )𝑠
𝑗∗
𝑡−1 +

𝑤∗
𝑡

𝐽
− 𝑠𝑗∗𝑡 , 𝑡 = 0, 1,… , 𝑇 .

Taking account of Claim 2, we obtain (5).

Claim 6. For all 𝑡 = 0, 1,… , 𝑇 , 𝐾∗
𝑡 > 𝐾𝑡 and hence

∑𝐽
𝑗=1 𝑠

𝑗∗
𝑡−1 = 𝐾∗

𝑡 .

Proof. Note that, by the choice of 𝐾0,
∑𝐽
𝑗=1 𝑠

𝑗∗
−1 = 𝐾∗

0 > 𝐾0 and assume that for some
𝑡 = 1,… , 𝑇 ,

∑
𝑗
𝑠𝑗∗𝑡−2 = 𝐾∗

𝑡−1 > 𝐾𝑡−1 and
𝐽∑
𝑗=1

𝑠𝑗∗𝑡−1 ≤ 𝐾∗
𝑡 ≤ 𝐾𝑡.

31



By Claim 5,

𝐽∑
𝑗=1

(
𝑐𝑗∗𝑡−1 + 𝑠

𝑗∗
𝑡−1

) ≥ 𝐽∑
𝑗=1

[
(1 + 𝑟∗𝑡−1)𝑠

𝑗∗
𝑡−2 +

𝑤∗
𝑡−1
𝐽

]
= (1 + 𝑟∗𝑡−1)𝐾

∗
𝑡−1 +𝑤

∗
𝑡−1 = 𝑓 (𝐾∗

𝑡−1) > 𝑓 (𝐾𝑡−1).

Therefore,

𝐽∑
𝑗=1

𝑐𝑗∗𝑡−1 > 𝑓 (𝐾𝑡−1) −
𝐽∑
𝑗=1

𝑠𝑗∗𝑡−1 ≥ 𝑓 (𝐾𝑡−1) −𝐾𝑡.

It follows that there is some household 𝑗 such that

𝑐𝑗∗𝑡−1 >
𝑓 (𝐾𝑡−1) −𝐾𝑡

𝐽
> 0 (35)

and hence, by (26) and the constraints in (29),

1
𝑢′𝑗(𝑐

𝑗∗
𝑡−1)

> 1

𝑢′𝑗
(
𝑓 (𝐾𝑡−1)−𝐾𝑡

𝐽

) ≥ 1
𝛿𝑗𝑓 ′(𝐾)𝑢′𝑗(𝑐𝑡)

≥ 1
𝛿𝑗𝑓 ′(𝐾∗

𝑡 )𝑢
′
𝑗(𝑐

𝑗∗
𝑡 )

= 1
𝛿𝑗(1 + 𝑟∗𝑡 )𝑢

′
𝑗(𝑐

𝑗∗
𝑡 )
.

By the structure of problem (27), for 𝑗 satisfying (35), we have

𝑠𝑗∗𝑡−1 = 𝐾 +
(𝐽 − 1

𝐽

)
⋅
(

𝑤
1 + 𝑟

)
.

Hence, by Claim 4 and the constraints in (29),

(1 + 𝑟∗𝑡−1)𝑠
𝑗∗
𝑡−2 +

𝑤∗
𝑡−1
𝐽

− 𝑠𝑗∗𝑡−1 ≤ 𝑓 (𝐾∗
𝑡−1) +

(𝐽 − 1
𝐽

) 𝑤∗
𝑡

1 + 𝑟∗𝑡
− 𝑠𝑗∗𝑡−1

≤ 𝐾 +
(𝐽 − 1

𝐽

) 𝑤
1 + 𝑟

−
[
𝐾 +

(𝐽 − 1
𝐽

) 𝑤
1 + 𝑟

]
= 0,

which implies 𝑐𝑗∗𝑡−1 = 0, a contradiction of (35).

Claim 7. For all households 𝑗 = 1,… , 𝐽 , the Ramsey - Euler inequalities / equalities (3) -
(4) hold.
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Proof. To prove (3), assume that for some 𝑗 and 𝑡 < 𝑇 ,

1
𝑢′𝑗(𝑐

𝑗∗
𝑡 )

> 1
𝛿𝑗(1 + 𝑟∗𝑡+1)𝑢

′
𝑗(𝑐

𝑗∗
𝑡+1)

and therefore, by the structure of problem (27), 𝑠𝑗∗𝑡 = 𝐾 +
(
𝐽−1
𝐽

)
𝑤
1+𝑟 . This implies that

(1 + 𝑟∗𝑡 )𝑠
𝑗∗
𝑡−1 +

𝑤∗
𝑡
𝐽

− 𝑠𝑗∗𝑡 ≤ 0, a contradiction of Claim 2. This contradiction proves that

1
𝑢′𝑗(𝑐

𝑗∗
𝑡 )

≤ 1
𝛿𝑗(1 + 𝑟∗𝑡+1)𝑢

′
𝑗(𝑐

𝑗∗
𝑡+1)

.

It remains to note that if this inequality fulfills as a strict inequality, then, by the structure of
problem (27),

𝑠𝑗∗𝑡 = −
𝑤∗
𝑡+1

(1 + 𝑟∗𝑡+1)𝐽
−

𝑤∗
𝑡+2

(1 + 𝑟∗𝑡+1)(1 + 𝑟
∗
𝑡+2)𝐽

.

The Claims 2-7 complete the proof of the Lemma 2.

STEP 3 Equilibrium in the finite time horizon Ramsey economy:
Using Lemma 1 and 2 we have established the existence of an equilibrium in the finite time
horizon (𝑇 periods) Ramsey economy with liberal borrowing for the case where borrowing
horizon 𝑁 = 2. The proof for the case of 𝑁 > 2 is similar in nature. Also, in the no
borrowing case, 𝑁 = 0, the savings for each household would need to be non-negative in
each period. It would restrict the savings for households in period 𝑡 − 1 to be in the interval
[0, 𝐾𝑡]. We can show the existence of an equilibrium in the finite time horizon (𝑇 periods)
Ramsey economy with no borrowing, 𝑁 = 0 following similar arguments.

Proposition 4. Consider a Ramsey economy with liberal borrowing, ℰ , with 𝜅0 > 0 and
𝑠𝑗−1 +

𝑤0
𝐽 (1+𝑟0)

≥ 0 for each household. For any 𝑇 ∈ ℕ with 𝑇 > 𝑁 , there exists a 𝑇 periods
equilibrium.

7.1.2 Equilibrium for the infinite time horizon Ramsey Economy

STEP A Candidate Equilibrium path: Let for 𝑇 = 1, 2,…,

ℙ𝑇 =
{
1 + 𝑟∗𝑡 (𝑇 ), 𝑤

∗
𝑡 (𝑇 ), 𝐾

∗
𝑡 (𝑇 ),

(
𝑐𝑗∗𝑡 (𝑇 ), 𝑠𝑗∗𝑡 (𝑇 )

)
, 𝑗 = 1,… , 𝐽 ; 𝑡 = 0, 1,… , 𝑇

}
be a finite 𝑇 periods equilibrium path. We can apply the following process to the sequence
{ℙ𝑇 }𝑇=1,2,….
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(a) At the first step of this process we take a cluster point of the sequence{
1 + 𝑟∗0(𝑇 ), 𝑤

∗
0(𝑇 ), 𝐾

∗
0 (𝑇 ),

(
𝑐𝑗∗0 (𝑇 ), 𝑠𝑗∗0 (𝑇 )

)
, 𝑗 = 1,… , 𝐽

}
𝑇=1,2,…

,

denote it as
{
1 + 𝑟∗0, 𝑤

∗
0, 𝐾

∗
0 ,
(
𝑐𝑗∗0 , 𝑠

𝑗∗
0

)
, 𝑗 = 1,… , 𝐽

}
, and extract a subsequence {𝑇0𝑛}𝑛=1,2,…

from the sequence {𝑇 }𝑇=1,2,… such that

{
1 + 𝑟∗0

(
𝑇0𝑛

)
, 𝑤∗

0
(
𝑇0𝑛

)
, 𝐾∗

0
(
𝑇0𝑛

)
,
(
𝑐𝑗∗0

(
𝑇0𝑛

)
, 𝑠𝑗∗0

(
𝑇0𝑛

))
, 𝑗 = 1,… , 𝐽

}
𝑛=1,2,…

converges to {1 + 𝑟∗0, 𝑤
∗
0, 𝐾

∗
0 ,
(
𝑐𝑗∗0 , 𝑠

𝑗∗
0

)
, 𝑗 = 1,… , 𝐽}.

(b) At the second step we take a cluster point of the sequence

{
1 + 𝑟∗1

(
𝑇0𝑛

)
, 𝑤∗

1
(
𝑇0𝑛

)
, 𝐾∗

1
(
𝑇0𝑛

)
,
(
𝑐𝑗∗1

(
𝑇0𝑛

)
, 𝑠𝑗∗1

(
𝑇0𝑛

))
, 𝑗 = 1,… , 𝐽

}
𝑛=1,2,…

denoting it as
{
1 + 𝑟∗1, 𝑤

∗
1, 𝐾

∗
1 ,
(
𝑐𝑗∗1 , 𝑠

𝑗∗
1

)
, 𝑗 = 1,… , 𝐽

}
, and extract a subsequence {𝑇1𝑛}𝑛=1,2,…

from the sequence {𝑇0𝑛}𝑛=1,2,… such that 𝑇11 > 1 and

{
1 + 𝑟∗1

(
𝑇1𝑛

)
, 𝑤∗

1
(
𝑇1𝑛

)
, 𝐾∗

1
(
𝑇1𝑛

)
,
(
𝑐𝑗∗1

(
𝑇1𝑛

)
, 𝑠𝑗∗1

(
𝑇1𝑛

))
, 𝑗 = 1,… , 𝐽

}
𝑛=1,2,…

converges to
{
1 + 𝑟∗1, 𝑤

∗
1, 𝐾

∗
1 ,
(
𝑐𝑗∗1 , 𝑠

𝑗∗
1

)
, 𝑗 = 1,… , 𝐽

}
,…, and so on, ad infinitum.

As a result, we obtain an infinite path

ℙ∞ =
{
1 + 𝑟∗𝑡 , 𝑤

∗
𝑡 , 𝐾

∗
𝑡 ,
(
𝑐𝑗∗𝑡 , 𝑠

𝑗∗
𝑡

)
, 𝑗 = 1,… , 𝐽 ; 𝑡 = 0, 1,…

}
.

We claim that ℙ∞ is an equilibrium path for the Ramsey economy with liberal borrowing. It
is clear that ℙ∞ satisfies conditions (E2)-(E4). Thus, to prove that ℙ∞ is an equilibrium, it is
sufficient to show that it satisfies (E1).

STEP B Lower bound for 𝐾 on tail of any finite 𝑇 period equilibrium: Let 0 < 𝐾 ′ < 𝜅0 be such
that (1 + 𝑟′)𝛿𝐽 > 1, where 1 + 𝑟′ = 1 + 𝑟(𝐾 ′), and let 𝑤′ = 𝑤(𝐾 ′).

Claim 8. There is a 𝑇 ′ such that, for any finite 𝑇 period equilibrium and any 𝑡 ≤ 𝑇 − 𝑇 ′,

𝐾𝑡 > 𝐾
′, 𝑤𝑡 > 𝑤

′, 1 + 𝑟𝑡 < 1 + 𝑟′.
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Proof. Let 𝜏 be such that 𝐾𝜏 > 𝐾 ′ and 𝐾𝜏+1 ≤ 𝐾 ′. We have

𝐽∑
𝑗=1

𝑐𝑗𝜏 = 𝑓 (𝐾𝜏) −𝐾𝜏+1 > 𝑓 (𝐾 ′) −𝐾 ′.

Therefore, there is 𝑗0 such that 𝑐𝑗0𝜏 > 𝑓 (𝐾 ′)−𝐾 ′

𝐽
. Also, for all 𝑗,

𝑢′𝑗
(
𝑐𝑗𝜏+1

)
<
(
1 + 𝑟′

)
𝛿𝐽𝑢

′
𝑗

(
𝑐𝑗𝜏+1

) ≤ (
1 + 𝑟𝜏+1

)
𝛿𝐽𝑢

′
𝑗

(
𝑐𝑗𝜏+1

) ≤ (
1 + 𝑟𝜏+1

)
𝛿𝑗𝑢

′
𝑗

(
𝑐𝑗𝜏+1

) ≤ 𝑢′𝑗
(
𝑐𝑗𝜏
)

and hence 𝑐𝑗𝜏+1 > 𝑐
𝑗
𝜏 . It follows that

𝑓 (𝐾𝜏+1) −𝐾𝜏+2 =
𝐽∑
𝑗=1

𝑐𝑗𝜏+1 >
𝐽∑
𝑗=1

𝑐𝑗𝜏 = 𝑓 (𝐾𝜏) −𝐾𝜏+1.

Thence 𝐾𝜏+2 < 𝐾𝜏+1 and therefore, for any 𝑗,

𝑢′𝑗
(
𝑐𝑗𝜏+2

)
<
(
1 + 𝑟′

)
𝛿𝐽𝑢

′
𝑗

(
𝑐𝑗𝜏+2

)
<
(
1 + 𝑟𝜏+2

)
𝛿𝐽𝑢

′
𝑗

(
𝑐𝑗𝜏+2

) ≤ (
1 + 𝑟𝜏+2

)
𝛿𝑗𝑢

′
𝑗

(
𝑐𝑗𝜏+2

) ≤ 𝑢′𝑗
(
𝑐𝑗𝜏+1

)
.

Repeating the argument, we obtain for all 𝑗,
(
1 + 𝑟′

)
𝛿𝐽𝑢′𝑗

(
𝑐𝑗𝜏+1

) ≤ 𝑢′𝑗
(
𝑐𝑗𝜏
)

and

(
1 + 𝑟′

)
𝛿𝐽𝑢

′
𝑗

(
𝑐𝑗𝑡+1

)
< 𝑢′𝑗

(
𝑐𝑗𝑡
)
, 𝑡 = 𝜏 + 1, 𝜏 + 2,… , 𝑇 − 1.

Since, clearly, 𝑐𝑗𝑡 < 𝐾 for all 𝑗,

((
1 + 𝑟′

)
𝛿𝐽
)𝑡−𝜏 𝑢′𝑗0 (𝐾)

<
((
1 + 𝑟′

)
𝛿𝐽
)𝑡−𝜏 𝑢′𝑗0 (𝑐𝑗0𝑡 )

≤ 𝑢′𝑗0

(
𝑐𝑗0𝜏

)
< 𝑢′𝑗0

(
𝑓 (𝐾 ′) −𝐾 ′

𝐽

)
, 𝑡 = 𝜏 + 1,… , 𝑇

and thus

((
1 + 𝑟′

)
𝛿𝐽
)𝑡−𝜏 ≤ 𝑢′𝑗0

(
𝑓 (𝐾 ′)−𝐾 ′

𝐽

)
𝑢′𝑗0(𝐾)

≤ max
𝑗

𝑢′𝑗
(
𝑓 (𝐾 ′)−𝐾 ′

𝐽

)
𝑢′𝑗(𝐾)

,

where the RHS is a finite number. This along with the fact that
(
1 + 𝑟′

)
𝛿𝐽 > 1 shows that

𝑡 − 𝜏 cannot be arbitrarily large.
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Let 𝑐′ > 0 be such that (
1 + (1 + 𝑟′) + (1 + 𝑟′)2

)
𝑐′ < 𝑤′

𝐽
, and, (36)(

1 + 1
1 + 𝑟

+…+ 1
(1 + 𝑟)𝑇 ′

)
𝑐′ < 𝑤′

𝐽
. (37)

The following claim will be useful in the proof of Lemma 3.

Claim 9. Suppose that 𝐹𝑟(𝑥, 𝑦), 𝑟 = 1,… , 𝑅, are continuous and concave in 𝑦 functions
defined on𝑋×𝑌 , where𝑋 and 𝑌 are convex compact subsets of finite dimensional spaces. If
there exists �̂� ∈ 𝑌 such that𝐹𝑟(𝑥, �̂�) > 0 for all 𝑥 ∈ 𝑋, 𝑟 = 1,… , 𝑅, then the correspondence

𝑥→
𝑅⋂
𝑟=1

{𝑦 ∈ 𝑌 ∣ 𝐹𝑟(𝑥, 𝑦) ≥ 0}

is upper and lower semi-continuous, and all sets

𝑅⋂
𝑟=1

{𝑦 ∈ 𝑌 ∣ 𝐹𝑟(𝑥, 𝑦) ≥ 0}

are non-empty, convex and closed.

Proof. It is trivial.

Lemma 3. For each 𝑗 = 1,… , 𝐽 ,
{(
𝑐𝑗∗𝑡 , 𝑠

𝑗∗
𝑡

)
, 𝑡 = 0, 1,…

}
is a solution to 𝒫 (𝑗) with

𝑤𝑡 = 𝑤∗
𝑡 and 𝑟𝑡 = 𝑟∗𝑡 , 𝑡 = 0, 1,….

Proof. Without loss of generality we assume that 𝑢𝑗(𝑐′) = 0, 𝑗 = 1,… , 𝐽 . Assume the
converse. Then for some 𝑗 (we fix this 𝑗 and drop its reference for ease of notation in the
remaining part of the proof of Lemma 3) there is a feasible sequence {(𝑐𝑡, �̂�𝑡), 𝑡 = 0, 1,…}
such that

𝑉 > 𝑉 ∗, where 𝑉 ≡ ∞∑
𝑡=0

𝛿𝑡𝑢
(
𝑐𝑡
)
, and 𝑉 ∗ ≡ ∞∑

𝑡=0
𝛿𝑡𝑢

(
𝑐∗𝑡
)
.

Choose 0 < 𝜖 < 𝑉 − 𝑉 ∗ and let Θ be such that

∞∑
𝑡=Θ+1

𝛿𝑡𝑢
(
𝐾
)
< 𝜖

2
.

Further, let
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𝑉 ∗Θ ≡ Θ∑
𝑡=0

𝛿𝑡𝑢
(
𝑐∗𝑡
)
, 𝑉 Θ ≡ Θ∑

𝑡=0
𝛿𝑡𝑢

(
𝑐𝑡
)
;

𝑉 ∗(𝑇 ) ≡ 𝑇∑
𝑡=0

𝛿𝑡𝑢
(
𝑐∗𝑡 (𝑇 )

)
, and 𝑉 ∗Θ(𝑇 ) ≡ Θ∑

𝑡=0
𝛿𝑡𝑢

(
𝑐∗𝑡 (𝑇 )

)
, 𝑇 = Θ+ 𝑇 ′ + 2,Θ+ 𝑇 ′ + 3,… .

Also, we define𝑊 ∗Θ as the Θ period maximum feasible utility given the wage𝑤∗
𝑡 and rental

rate 1 + 𝑟∗𝑡 (i.e., on the candidate infinite horizon equilibrium path) as follows:

𝑊 ∗Θ ≡
⎧⎪⎪⎨⎪⎪⎩

max
∑Θ
𝑡=0 𝛿

𝑡𝑢
(
𝑐𝑡
)
;

subject to 𝑐𝑡 + 𝑠𝑡 ≤ (1 + 𝑟∗𝑡 )𝑠𝑡−1 +
𝑤∗
𝑡
𝐽
, 𝑡 = 0, 1,… ,Θ,

and 𝑠𝑡 +
𝑤∗
𝑡+1

(1+𝑟∗𝑡+1)𝐽
+

𝑤∗
𝑡+2

(1+𝑟∗𝑡+1)(1+𝑟
∗
𝑡+2)𝐽

≥ 0, 𝑡 = 0, 1,… ,Θ,

where 𝑠−1 is given,

and 𝑊 ∗Θ(𝑇 ) as the Θ period maximum feasible utility given the wage 𝑤∗
𝑡 (𝑇 ) and rental rate

1 + 𝑟∗𝑡 (𝑇 ) (i.e., on the finite 𝑇 period equilibrium path) as follows:

𝑊 ∗Θ(𝑇 ) ≡
⎧⎪⎪⎨⎪⎪⎩

max
∑Θ
𝑡=0 𝛿

𝑡𝑢
(
𝑐𝑡
)

subject to 𝑐𝑡 + 𝑠𝑡 ≤ (1 + 𝑟∗𝑡 (𝑇 ))𝑠𝑡−1 +
𝑤∗
𝑡 (𝑇 )
𝐽
, 𝑡 = 0, 1,… ,Θ,

and 𝑠𝑡 +
𝑤∗
𝑡+1(𝑇 )

(1+𝑟∗𝑡+1(𝑇 ))𝐽
+

𝑤∗
𝑡+2

(1+𝑟∗𝑡+1)(1+𝑟
∗
𝑡+2)𝐽

≥ 0, 𝑡 = 0, 1,… ,Θ,

where 𝑠−1 is given,

(38)

for 𝑇 = Θ + 𝑇 ′ + 4,Θ + 𝑇 ′ + 5,…. Since ℙ∞ is obtained as a result of the application
of the process described in sub-section 7.1.2 to the sequence {ℙ𝑇 }𝑇=1,2,…, we have for 𝑡 =
0, 1,… ,Θ

lim
𝑛→∞

𝐾∗
𝑡 (𝑇Θ𝑛) = 𝐾∗

𝑡 , lim
𝑛→∞

𝑤∗
𝑡 (𝑇Θ𝑛) = 𝑤∗

𝑡 , lim
𝑛→∞

1 + 𝑟∗𝑡 (𝑇Θ𝑛) = 1 + 𝑟∗𝑡 ,

lim
𝑛→∞

𝑐∗𝑡 (𝑇Θ𝑛) = 𝑐∗𝑡 and lim
𝑛→∞

𝑠∗𝑡 (𝑇Θ𝑛) = 𝑠∗𝑡 , 𝑗 = 1,… , 𝐽 .

With no loss of generality we suppose that 𝑇Θ𝑛 > Θ + 𝑇 ′ + 4 for any 𝑛.

(a) We show that 𝑊 ∗Θ
𝑛→∞

(𝑇Θ𝑛) → 𝑊 ∗Θ.

It is sufficient to note that, by Claim 9, the correspondence that takes to each
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{(
1 + 𝑟0, 𝑤0

)
,… ,

(
1 + 𝑟Θ+1, 𝑤Θ+1

)}
∈

Θ+1∏
𝑡=0

([
1 + 𝑟

(
𝐾 𝑡

)
, 1 + 𝑟

(
𝐾𝑡

)]
×
[
𝑤
(
𝐾𝑡

)
, 𝑤

(
𝐾 𝑡

)])
the set

((
𝑠0, 𝑐0

)
,… ,

(
𝑠Θ, 𝑐Θ

))
∈ ℝ2(Θ+1) is such that, with 𝑠−1 given,

(
1 + 𝑟∗𝑡 (𝑇 )

)
𝑠𝑡−1 +

𝑤∗
𝑡 (𝑇 )
𝐽

− 𝑐𝑡 − 𝑠𝑡 ≥ 0, and

𝑠𝑡 +
𝑤∗
𝑡+1(𝑇 )(

1 + 𝑟∗𝑡+1(𝑇 )
)
𝐽
+

𝑤∗
𝑡+2(𝑇 )(

1 + 𝑟∗𝑡+1(𝑇 )
)(

1 + 𝑟∗𝑡+2(𝑇 )
)
𝐽

≥ 0, hold ∀𝑡 = 0,… ,Θ,

is lower- and upper- semicontinuous, and to apply the Maximum Theorem.
(b) Let, for some 𝑇 > Θ+𝑇 ′+4, ((�̌�0, 𝑐0),… , (�̌�Θ, 𝑐Θ)) be a solution to (38). Let further for

𝑡 = Θ + 1,… , 𝑇 , (�̌�𝑡, 𝑐𝑡) be defined recursively by

𝑐𝑡 = 𝑐′, �̌�𝑡 = (1 + 𝑟∗𝑡 (𝑇 ))�̌�𝑡−1 +
𝑤∗
𝑡 (𝑇 )
𝐽

− 𝑐𝑡.

We show that the sequence
((
�̌�0, 𝑐0

)
,… ,

(
�̌�Θ, 𝑐Θ

)
,
(
�̌�Θ+1, 𝑐Θ+1

)
,… ,

(
�̌�𝑇 , 𝑐𝑇

))
is feasi-

ble for the problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

max
∑𝑇
𝑡=0 𝛿

𝑡𝑢
(
𝑐𝑡
)
,

subject to 𝑐𝑡 + 𝑠𝑡 ≤ (
1 + 𝑟∗𝑡 (𝑇 )

)
𝑠𝑡−1 +

𝑤∗
𝑡 (𝑇 )
𝐽
, 𝑡 = 0, 1,… , 𝑇 ,

and 𝑠𝑡 +
𝑤∗
𝑡+1(𝑇 )(

1+𝑟∗𝑡+1(𝑇 )
)
𝐽
+

𝑤∗
𝑡+2(𝑇 )

(1+𝑟∗𝑡+1(𝑇 ))(1+𝑟
∗
𝑡+2(𝑇 ))𝐽

≥ 0, 𝑡 = 0, 1,… , 𝑇 − 2,

𝑠𝑇−1 +
𝑤∗
𝑇 (𝑇 )

(1+𝑟∗𝑇 (𝑇 ))𝐽
≥ 0, 𝑠𝑇 ≥ 0, where 𝑠−1 is given.

(39)

We have

�̌�Θ ≥ −
𝑤∗

Θ+1(𝑇 )(
1 + 𝑟∗Θ+1(𝑇 )

)
𝐽
−

𝑤∗
Θ+2(𝑇 )

(1 + 𝑟∗Θ+1(𝑇 ))(1 + 𝑟
∗
Θ+2(𝑇 ))𝐽

. (40)

Therefore,

�̌�Θ+1 = (1 + 𝑟∗Θ+1(𝑇 ))�̌�Θ +
𝑤∗

Θ+1(𝑇 )
𝐽

− 𝑐Θ+1 ≥ −
𝑤∗

Θ+2(𝑇 )(
1 + 𝑟∗Θ+2(𝑇 )

)
𝐽
− 𝑐′.

By Claim 8 and (36), we have
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𝑐′ < 𝑤′

(1 + 𝑟′)2𝐽
<

𝑤∗
Θ+3(𝑇 )

(1 + 𝑟∗Θ+2(𝑇 ))(1 + 𝑟
∗
Θ+3(𝑇 ))𝐽

.

Therefore,

�̌�Θ+1 ≥ −
𝑤∗

Θ+2(𝑇 )(
1 + 𝑟∗Θ+2(𝑇 )

)
𝐽
−

𝑤∗
Θ+3(𝑇 )

(1 + 𝑟∗Θ+2(𝑇 ))(1 + 𝑟
∗
Θ+3(𝑇 ))𝐽

.

Repeating the argument we obtain

�̌�Θ+2 ≥ −
𝑤∗

Θ+3(𝑇 )(
1 + 𝑟∗Θ+3(𝑇 )

)
𝐽
−

𝑤∗
Θ+4(𝑇 )

(1 + 𝑟∗Θ+3(𝑇 ))(1 + 𝑟
∗
Θ+4(𝑇 ))𝐽

.

Now we show that
�̌�Θ+3 > 0. (41)

Indeed, taking account of the choice of �̌�𝑡 for 𝑡 = Θ + 1,Θ + 2,Θ + 3 and (40), we get

𝑐′ + 𝑐′(
1 + 𝑟∗Θ+2(𝑇 )

) + 𝑐′

(1 + 𝑟∗Θ+2(𝑇 ))(1 + 𝑟
∗
Θ+3(𝑇 ))

+
�̌�Θ+3

(1 + 𝑟∗Θ+2(𝑇 ))(1 + 𝑟
∗
Θ+3(𝑇 ))

= 𝑐Θ+1 +
𝑐Θ+2(

1 + 𝑟∗Θ+2(𝑇 )
) +

𝑐Θ+3
(1 + 𝑟∗Θ+2(𝑇 ))(1 + 𝑟

∗
Θ+3(𝑇 ))

+
�̌�Θ+3

(1 + 𝑟∗Θ+2(𝑇 ))(1 + 𝑟
∗
Θ+3(𝑇 ))

= (1 + 𝑟∗Θ+1(𝑇 ))�̌�Θ +
𝑤∗

Θ+1(𝑇 )
𝐽

+
𝑤∗

Θ+2(𝑇 )(
1 + 𝑟∗Θ+2(𝑇 )

)
𝐽
+

𝑤∗
Θ+3(𝑇 )

(1 + 𝑟∗Θ+2(𝑇 ))(1 + 𝑟
∗
Θ+3(𝑇 ))𝐽

≥ 𝑤∗
Θ+3(𝑇 )

(1 + 𝑟∗Θ+2(𝑇 ))(1 + 𝑟
∗
Θ+3(𝑇 ))𝐽

.

Therefore, by Claim 8 and (36)

�̌�Θ+3 ≥ 𝑤∗
Θ+3(𝑇 )
𝐽

−
(
𝑐′ + (1 + 𝑟∗Θ+2(𝑇 ))𝑐

′ + (1 + 𝑟∗Θ+2(𝑇 ))(1 + 𝑟
∗
Θ+3(𝑇 ))𝑐

′)
> 𝑤′

𝐽
−
(
1 + (1 + 𝑟′) + (1 + 𝑟′)2

)
𝑐′ > 0.

This proves (41). To complete the proof it is sufficient to check that �̌�𝑡 ≥ 0, 𝑡 = Θ +
3,Θ + 4,… , 𝑇 . We have proved this inequality for 𝑡 = Θ + 3 and prove it for 𝑡 =
Θ + 3,Θ + 4,… , 𝑇 − 𝑇 ′ − 1 by induction. Suppose we have proved that �̌�𝑡 > 0 for
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Θ + 3 ≤ 𝑡 < 𝑇 − 𝑇 ′ − 1. Then, by Claim 8 and the inequality 𝑐′ < 𝑤′

𝐽
, which follows

from (36), we have

�̌�𝑡+1 = (1 + 𝑟∗𝑡+1(𝑇 ))�̌�𝑡 +
𝑤∗
𝑡+1(𝑇 )
𝐽

− 𝑐𝑡+1 >
𝑤′

𝐽
− 𝑐′ > 0.

Thus, �̌�𝑡 > 0, 𝑡 = Θ + 3,Θ + 4,… , 𝑇 − 𝑇 ′ − 1. In particular, �̌�𝑇−𝑇 ′−1 > 0. Hence, by
(37),

�̌�𝑇−𝑇 ′ = (1 + 𝑟∗𝑇−𝑇 ′(𝑇 ))�̌�𝑇−𝑇 ′−1 +
𝑤∗
𝑇−𝑇 ′(𝑇 )
𝐽

− 𝑐𝑇−𝑇 ′ > 𝑤′

𝐽
− 𝑐′

>
(

1
1 + 𝑟

+…+ 1
(1 + 𝑟)𝑇 ′

)
𝑐′ > 0,

�̌�𝑇−𝑇 ′+1 = (1 + 𝑟∗𝑇−𝑇 ′+1(𝑇 ))�̌�𝑇−𝑇 ′ +
𝑤∗
𝑇−𝑇 ′+1(𝑇 )
𝐽

− 𝑐𝑇−𝑇 ′+1 > (1 + 𝑟)�̌�𝑇−𝑇 ′ − 𝑐′

>
(
1 + 1

1 + 𝑟
+…+ 1

(1 + 𝑟)𝑇 ′−1

)
𝑐′ − 𝑐′ =

(
1

1 + 𝑟
+…+ 1

(1 + 𝑟)𝑇 ′−1

)
𝑐′ > 0,

�̌�𝑇−𝑇 ′+2 = (1 + 𝑟∗𝑇−𝑇 ′+2(𝑇 ))�̌�𝑇−𝑇 ′+1 +
𝑤∗
𝑇−𝑇 ′+2(𝑇 )
𝐽

− 𝑐𝑇−𝑇 ′+2 > (1 + 𝑟)�̌�𝑇−𝑇 ′+1 − 𝑐′

>
(
1 + 1

1 + 𝑟
+…+ 1

(1 + 𝑟)𝑇 ′−2

)
𝑐′ − 𝑐′ =

(
1

1 + 𝑟
+…+ 1

(1 + 𝑟)𝑇 ′−2

)
𝑐′ > 0,

…

�̌�𝑇−1 = (1 + 𝑟∗𝑇−1(𝑇 ))�̌�𝑇−2 +
𝑤∗
𝑇−1(𝑇 )
𝐽

− 𝑐𝑇−1 > (1 + 𝑟)�̌�𝑇−1 − 𝑐′

>
(
1 + 1

1 + 𝑟

)
𝑐′ − 𝑐′ = 1

1 + 𝑟
𝑐′ > 0, and

�̌�𝑇 = (1 + 𝑟∗𝑇 (𝑇 ))�̌�𝑇−1 +
𝑤∗
𝑇 (𝑇 )
𝐽

− 𝑐𝑇 > (1 + 𝑟)�̌�𝑇−1 − 𝑐′ > 𝑐′ − 𝑐′ = 0.

(c) We show that 𝑉 ∗(𝑇 ) ≥ 𝑊 ∗Θ(𝑇 ), 𝑇 = Θ + 𝑇 ′ + 4,Θ + 𝑇 ′ + 5,….
The sequence ((�̌�0, 𝑐0),… , (�̌�Θ, 𝑐Θ), (�̌�Θ+1, 𝑐Θ+1)… , (�̌�𝑇 , 𝑐𝑇 )) is feasible for problem (39)
whereas ((𝑠∗0(𝑇 ), 𝑐

∗
0 (𝑇 )),… , (𝑠∗𝑇 (𝑇 ), 𝑐

∗
𝑇 (𝑇 )) is a solution to this problem. Therefore,
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𝑉 ∗(𝑇 ) =
𝑇∑
𝑡=0

𝛿𝑡𝑢
(
𝑐∗𝑡 (𝑇 )

) ≥ Θ∑
𝑡=0

𝛿𝑡𝑢
(
𝑐𝑡
)
+

𝑇∑
𝑡=Θ+1

𝛿𝑡𝑢
(
𝑐′
)
=

Θ∑
𝑡=0

𝛿𝑡𝑢
(
𝑐𝑡
)
= 𝑊 ∗Θ(𝑇 ).

By the choice of Θ, we have

𝑉 ∗Θ(𝑇 ) ≥ 𝑉 ∗(𝑇 ) − 𝜖
2
, 𝑇 = Θ + 1,Θ + 2,… , and, 𝑊 ∗Θ ≥ 𝑉 Θ > 𝑉 − 𝜖

2
. (42)

Also we clearly have

𝑉 ∗ ≥ 𝑉 ∗Θ, and, 𝑉 ∗Θ(𝑇Θ𝑛) → 𝑉 ∗Θ as 𝑛→ ∞. (43)

Combining (42) - (43) and using results in (a) and (c), we obtain

𝑉 ∗ ≥ 𝑉 ∗Θ = lim
𝑛→∞

𝑉 ∗Θ(𝑇Θ𝑛) ≥ lim
𝑛→∞

𝑊 ∗Θ(𝑇Θ𝑛) −
𝜖
2
= 𝑊 ∗Θ − 𝜖

2
≥ 𝑉 − 𝜖,

which contradicts the choice of 𝜖. This contradiction completes the proof of the Lemma
3.

STEP C Having established Lemma 3, we have proved the following proposition.

Proposition 5. The sequencesℙ∞ =
{
1 + 𝑟∗𝑡 , 𝑤

∗
𝑡 , 𝐾

∗
𝑡 ,
(
𝑐𝑗∗𝑡 , 𝑠

𝑗∗
𝑡

)
, 𝑗 = 1,… , 𝐽 ; 𝑡 = 0, 1,…

}
constitute an equilibrium for the Ramsey economy with liberal borrowing.

Also Proposition 5 completes the proof of Theorem 1 for the case where borrowing horizon
𝑁 = 2. The proof for the case of 𝑁 ≠ 2 is similar in nature.

7.2 Proofs of results in Section 4

7.2.1 Proof of Proposition 2

Let {1 + 𝑟𝑡, 𝑤𝑡, 𝐾𝑡,
(
𝑐𝑗𝑡 , 𝑠

𝑗
𝑡

)
, 𝑗 = 1,… , 𝐽 ; 𝑡 = 0, 1,…} be a Ramsey equilibrium such that 𝐾∞ =

lim𝑡→∞𝐾𝑡 exists. It follows that 1 + 𝑟𝑡 → 1 + 𝑟
(
𝐾∞

) ≤ ∞ as 𝑡 → ∞.

Claim 10. 𝛿1
(
1 + 𝑟

(
𝐾∞

)) ≤ 1 and hence 𝐾∞ ≥ 𝐾∗∗.
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Proof. By applying the Ramsey-Euler inequalities (3) to household 𝑗 = 1 and using the inequality
𝑐1𝑡 < 𝐾, 𝑡 = 0, 1,…, we obtain

𝑇∏
𝑡=1

𝛿1
(
1 + 𝑟𝑡

) ≤ 𝑢′1
(
𝑐10
)

𝑢′1
(
𝑐1𝑇
) ≤ 𝑢′1

(
𝑐10
)

𝑢′1
(
𝐾
) , 𝑇 = 1, 2,… .

Therefore,

lim sup
𝑇→∞

𝑇∏
𝑡=1

𝛿1
(
1 + 𝑟𝑡

)
< ∞ and hence lim

𝑡→∞
𝛿1

(
1 + 𝑟𝑡

) ≤ 1.

Claim 11. If 𝛿𝑗
(
1 + 𝑟

(
𝐾∞

))
< 1, then for any 𝜏 there is 𝑡 > 𝜏 such that

𝑠𝑗𝑡 +
𝐴 (𝑡 + 1, 𝑁)

𝐽
= 0.

Proof. Assume the converse. Then there is 𝑡0 such that

𝑠𝑗𝑡 +
𝐴 (𝑡 + 1, 𝑁)

𝐽
> 0

for all 𝑡 ≥ 𝑡0. By (4),

𝑢′𝑗
(
𝑐𝑗𝑡0−1

)
𝑢′𝑗

(
𝑐𝑗𝑇
) =

𝑇∏
𝑡=𝑡0

𝛿𝑗
(
1 + 𝑟𝑡

)
→ 0 as 𝑇 → ∞.

Therefore, lim𝑇→∞ 𝑢′𝑗
(
𝑐𝑗𝑇
)
= ∞ and hence lim𝑇→∞ 𝑐

𝑗
𝑇 = 0. It follows that

𝑐𝑗𝑡 <
𝑤𝑡+𝑁(

1 + 𝑟𝑡+1
)
⋯

(
1 + 𝑟𝑡+𝑁

)
𝐽

for all 𝑡 large enough, which is impossible because {
(
𝑐𝑗𝑡 , 𝑠

𝑗
𝑡

)
∶ 𝑡 = 0, 1,…} solves problem 𝒫 (𝑗).

Claim 12. If 𝛿𝑗
(
1 + 𝑟

(
𝐾∞

))
< 1, then

𝑠𝑗𝑡 +
𝐴 (𝑡 + 1, 𝑁)

𝐽
= 0 for all 𝑡 large enough.

42



Proof. First note that

lim
𝑡→∞

𝑤𝑡(
1 + 𝑟𝑡

)
𝐽

=
𝑤
(
𝐾∞

)(
1 + 𝑟

(
𝐾∞

))
𝐽
> 0,

there exists 𝑇 such that for all 𝑡 ≥ 𝑇 ,

𝑢′𝑗

(
𝑤𝑡+𝑁−1(

1 + 𝑟𝑡
)
⋯

(
1 + 𝑟𝑡+𝑁−1

)
𝐽

)
> 𝛿𝑗

(
1 + 𝑟𝑡

)
𝑢′𝑗

(
𝑤𝑡+𝑁(

1 + 𝑟𝑡+1
)
⋯

(
1 + 𝑟𝑡+𝑁

)
𝐽

)
. (44)

If the claim is not correct then by Claim 11, there are 𝑡1 > 𝑇 and 𝑡2 > 𝑡1 such that

𝑠𝑗𝑡1−1 +
𝐴
(
𝑡1, 𝑁

)
𝐽

= 0; 𝑠𝑗𝑡−1 +
𝐴 (𝑡,𝑁)
𝐽

> 0, 𝑡 = 𝑡1 + 1,… , 𝑡2; and

𝑠𝑗𝑡2 +
𝐴
(
𝑡2 + 1, 𝑁

)
𝐽

= 0.

Therefore,

𝑐𝑗𝑡1 =
(
1 + 𝑟𝑡1

)
𝑠𝑗𝑡1−1 +

𝑤𝑡1
𝐽

− 𝑠𝑗𝑡1

=
(
1 + 𝑟𝑡1

)[
𝑠𝑗𝑡1−1 +

𝐴
(
𝑡1, 𝑁

)
𝐽

]
−

[
𝐴
(
𝑡1 + 1, 𝑁 − 1

)
𝐽

]
− 𝑠𝑗𝑡1

= −

[
𝑠𝑗𝑡1 +

𝐴
(
𝑡1 + 1, 𝑁 − 1

)
𝐽

]
<

𝑤𝑡1+𝑁(
1 + 𝑟𝑡1+1

)
⋯

(
1 + 𝑟𝑡1+𝑁−1

)
𝐽
, and

𝑐𝑗𝑡2 =
(
1 + 𝑟𝑡2

)
𝑠𝑗𝑡2−1 +

𝑤𝑡2
𝐽

− 𝑠𝑗𝑡2 =
(
1 + 𝑟𝑡2

)
𝑠𝑗𝑡2−1 +

𝐴
(
𝑡2, 𝑁 + 1

)
𝐽

−

[
𝑠𝑗𝑡2 +

𝐴
(
𝑡2 + 1, 𝑁

)
𝐽

]

=
(
1 + 𝑟𝑡2

)[
𝑠𝑗𝑡2−1 +

𝐴
(
𝑡2, 𝑁

)
𝐽

]
+

𝑤𝑡2+𝑁(
1 + 𝑟𝑡2+1

)
⋯

(
1 + 𝑟𝑡2+𝑁

)
𝐽
>

𝑤𝑡2+𝑁(
1 + 𝑟𝑡2+1

)
⋯

(
1 + 𝑟𝑡2+𝑁

)
𝐽
.

These inequalities show that the value of consumption in period 𝑡1 is less than the discounted values
of wage income in period 𝑡1 +𝑁 , and the value of consumption in period 𝑡2 is greater than the dis-
counted values of wage income in period 𝑡2+𝑁 . Since, by (4), 𝛿𝑗

(
1 + 𝑟𝑡

)
𝑢′𝑗

(
𝑐𝑗𝑡
)
= 𝑢′𝑗

(
𝑐𝑗𝑡−1

)
, 𝑡 =

𝑡1 + 1, 𝑡1 + 2,… , 𝑡2, we get

43



𝑢′𝑗

(
𝑤𝑡1+𝑁(

1 + 𝑟𝑡1+1
)
⋯

(
1 + 𝑟𝑡1+𝑁−1

)
𝐽

)
< 𝑢′𝑗

(
𝑐𝑗𝑡1

)
= 𝛿𝑗

(
1 + 𝑟𝑡1+1

)
𝑢′𝑗

(
𝑐𝑗𝑡1+1

)
= …

= 𝛿𝑡2−𝑡1𝑗
(
1 + 𝑟𝑡1+1

)
…

(
1 + 𝑟𝑡2

)
𝑢′𝑗

(
𝑐𝑗𝑡2

)
< 𝛿𝑡2−𝑡1𝑗

(
1 + 𝑟𝑡1+1

)
…

(
1 + 𝑟𝑡2

)
𝑢′𝑗

(
𝑤𝑡2+𝑁(

1 + 𝑟𝑡2+1
)
⋯

(
1 + 𝑟𝑡2+𝑁

)
𝐽

)
.

At the same time, it follows from (44) that

𝑢′𝑗

(
𝑤𝑡1+𝑁(

1 + 𝑟𝑡1+1
)
⋯

(
1 + 𝑟𝑡1+𝑁−1

)
𝐽

)
> 𝛿𝑡2−𝑡1𝑗

(
1 + 𝑟𝑡1+1

)
…

(
1 + 𝑟𝑡2

)
𝑢′𝑗

(
𝑤𝑡2+𝑁(

1 + 𝑟𝑡2+1
)
⋯

(
1 + 𝑟𝑡2+𝑁

)
𝐽

)
.

We have obtained a contradiction which proves Claim 12.

By Claim 10, 𝐾∞ ≥ 𝐾∗∗. Assume that 𝐾∞ > 𝐾∗∗. By Claim 12,

𝑓
(
𝐾𝑡

)
=

𝐽∑
𝑗=1

[(
1 + 𝑟𝑡

)
𝑠𝑗𝑡−1 +

𝑤𝑡

𝐽

]
=
(
1 + 𝑟𝑡

)
⋅
𝐽∑
𝑗=1

[
𝑠𝑗𝑡−1 +

𝑤𝑡(
1 + 𝑟𝑡

)
𝐽

]
= 0

from some time onward, which is impossible. This proves that 𝐾∞ = 𝐾∗∗. To complete the proof
of Lemma ??, it is sufficient to note that 𝛿𝑗

(
1 + 𝑟

(
𝐾∞

))
< 1 for 𝑗 ≥ 2 and to use Claim 12.

7.2.2 Proof of Proposition 3

Proof. We have 𝛿1
(
1 + 𝑟𝑡

) ≥ 1 and thereby 𝐾𝑡 ≤ 𝐾∗∗ for all 𝑡 large enough. Therefore, by (3), for
all sufficiently large 𝑡 we have

𝑢′1
(
𝑐1𝑡
) ≤ 𝛿1

(
1 + 𝑟𝑡

)
𝑢′1

(
𝑐1𝑡
) ≤ 𝑢′1

(
𝑐1𝑡−1

)
. (45)

It follows that from some time onward the sequence {𝑐1𝑡 } is non-decreasing. Since this sequence is
bounded from above, it converges as 𝑡 → ∞. Hence

𝑢′1
(
𝑐1𝑡−1

)
𝑢′1

(
𝑐1𝑡
) → 1 as 𝑡→ ∞.

Taking account of (45), for all 𝑡 large enough we have

1 ≤ 𝛿1
(
1 + 𝑟𝑡

) ≤ 𝑢′1
(
𝑐1𝑡−1

)
𝑢′1

(
𝑐1𝑡
) .

Thus, 𝛿1
(
1 + 𝑟𝑡

)
→ 1 and hence 𝐾𝑡 → 𝐾∗∗ as 𝑡→ ∞.
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7.3 Proof of Claim 1

Proof. The budget constraint for each household 𝑗 ∉ Γ𝑛

𝑠𝑗𝑛 + 𝑐
𝑗
𝑛 =

(
1 + 𝑟𝑛

)
𝑠𝑗𝑛−1 +

𝑤𝑛

𝐽
= −

𝐴 (𝑛 + 1, 𝑁 − 1)
𝐽

,

since 𝑠𝑗𝑛−1 +
𝐴(𝑛,𝑁)
𝐽

= 0. Also for each 𝑗 ∉ Γ𝑛, 𝑠
𝑗
𝑛 +

𝐴(𝑛+1,𝑁)
𝐽

≥ 0, and

𝑠𝑗𝑛 + 𝑐
𝑗
𝑛 +

𝐴 (𝑛 + 1, 𝑁)
𝐽

=
𝐴 (𝑛 + 1, 𝑁)

𝐽
−
𝐴 (𝑛 + 1, 𝑁 − 1)

𝐽
=

𝑤𝑛+𝑁(
1 + 𝑟𝑛+1

)
⋯

(
1 + 𝑟𝑛+𝑁

)
𝐽

⇒ 𝑐𝑗𝑛 ≤ 𝑤𝑛+𝑁(
1 + 𝑟𝑛+1

)
⋯

(
1 + 𝑟𝑛+𝑁

)
𝐽
.

The budget constraint for each household 𝑗 ∈ Γ𝑛 can be used to infer∑
𝑗∈Γ𝑛

𝑠𝑗𝑛 +
∑
𝑗∈Γ𝑛

𝑐𝑗𝑛 =
(
1 + 𝑟𝑛

) ∑
𝑗∈Γ𝑛

𝑠𝑗𝑛−1 +
(𝛾𝑛
𝐽

)
⋅𝑤𝑛

=
(
1 + 𝑟𝑛

)
𝐾𝑛 +

(𝛾𝑛
𝐽

)
⋅𝑤𝑛 +

(
𝐽 − 𝛾𝑛
𝐽

)
⋅𝑤𝑛 +

(
𝐽 − 𝛾𝑛
𝐽

)
⋅
𝐴 (𝑛 + 1, 𝑁 − 1)

𝐽

= 𝑓 (𝐾𝑛) +
(
𝐽 − 𝛾𝑛
𝐽

)
⋅
𝐴 (𝑛 + 1, 𝑁 − 1)

𝐽

since
∑
𝑗∈Γ𝑛 𝑠

𝑗
𝑛−1 = 𝐾𝑛 +

(
𝐽−𝛾𝑛
𝐽

)
⋅ 𝐴(𝑛,𝑁)

𝐽
14. On similar lines, since

∑
𝑗∈Γ𝑛 𝑠

𝑗
𝑛−2 ≤ 𝐾𝑛−1 +

(
𝐽−𝛾𝑛
𝐽

)
⋅

𝐴(𝑛−1,𝑁)
𝐽

, we get∑
𝑗∈Γ𝑛

𝑠𝑗𝑛−1 +
∑
𝑗∈Γ𝑛

𝑐𝑗𝑛−1 =
(
1 + 𝑟𝑛−1

) ∑
𝑗∈Γ𝑛

𝑠𝑗𝑛−2 +
(𝛾𝑛
𝐽

)
⋅𝑤𝑛−1

≤ (
1 + 𝑟𝑛−1

)
𝐾𝑛−1 +

(𝛾𝑛
𝐽

)
⋅𝑤𝑛−1 +

(
𝐽 − 𝛾𝑛
𝐽

)
⋅𝑤𝑛−1 +

(
𝐽 − 𝛾𝑛
𝐽

)
⋅
𝐴 (𝑛,𝑁 − 1)

𝐽

= 𝑓 (𝐾𝑛−1) +
(
𝐽 − 𝛾𝑛
𝐽

)
⋅
𝐴 (𝑛,𝑁 − 1)

𝐽
.

We have 𝐾𝑛 > 𝐾∗∗ and hence 𝛿𝑗
(
1 + 𝑟𝑛

)
< 1. Therefore by (4), for each 𝑗 ∈ Γ𝑛, we get

14In the no - borrowing case, Γ𝑛 ≡ {
𝑗 ∈ {1,… , 𝐽} ∶ 𝑠𝑗𝑛−1 > 0

}
. Then, since

∑
𝑗∈Γ𝑛

𝑠𝑗𝑛−1 = 𝐾𝑛∑
𝑗∈Γ𝑛

𝑠𝑗𝑛 +
∑
𝑗∈Γ𝑛

𝑐𝑗𝑛 =
(
1 + 𝑟𝑛

) ∑
𝑗∈Γ𝑛

𝑠𝑗𝑛−1 +
( 𝛾𝑛
𝐽

)
⋅𝑤𝑛 =

(
1 + 𝑟𝑛

)
𝐾𝑛 +

( 𝛾𝑛
𝐽

)
⋅𝑤𝑛.

Thus in the presence of borrowing, the income of these households increases by
(
1 + 𝑟𝑛

)
⋅
(
𝐽−𝛾𝑛
𝐽

)
⋅ 𝐴 (𝑛,𝑁).

45



𝑢′𝑗
(
𝑐𝑗𝑛
)

𝑢′𝑗
(
𝑐𝑗𝑛−1

) = 1
𝛿𝑗

(
1 + 𝑟𝑛

) = 1
𝛿𝑗𝑓 ′

(
𝐾𝑛

) > 1.

Hence, for each 𝑗 ∈ Γ𝑛, we get 𝑐𝑗𝑛 < 𝑐
𝑗
𝑛−1. Therefore,15

∑
𝑗∈Γ𝑛

𝑠𝑗𝑛 −
∑
𝑗∈Γ𝑛

𝑠𝑗𝑛−1 ≥ [𝑓 (𝐾𝑛) − 𝑓 (𝐾𝑛−1)] +
∑
𝑗∈Γ𝑛

[𝑐𝑗𝑛−1 − 𝑐
𝑗
𝑛] +

(
𝐽 − 𝛾𝑛
𝐽

)
⋅ [𝐴 (𝑛 + 1, 𝑁 − 1) − 𝐴 (𝑛,𝑁 − 1)]

Further
𝐽∑
𝑗=1

𝑠𝑗𝑛 =
∑
𝑗∈Γ𝑛

𝑠𝑗𝑛 +
∑
𝑗∉Γ𝑛

𝑠𝑗𝑛 = 𝐾𝑛+1

It implies ∑
𝑗∈Γ𝑛

𝑠𝑗𝑛 ≤ 𝐾𝑛+1 +
(
𝐽 − 𝛾𝑛
𝐽

)
⋅ 𝐴 (𝑛 + 1, 𝑁) .

Thus we get

𝐾𝑛+1 +
(
𝐽 − 𝛾𝑛
𝐽

)
⋅ 𝐴 (𝑛 + 1, 𝑁) −𝐾𝑛 −

(
𝐽 − 𝛾𝑛
𝐽

)
⋅ 𝐴 (𝑛,𝑁) ≥ ∑

𝑗∈Γ𝑛

𝑠𝑗𝑛 −
∑
𝑗∈Γ𝑛

𝑠𝑗𝑛−1

≥ [𝑓 (𝐾𝑛) − 𝑓 (𝐾𝑛−1)] +
∑
𝑗∈Γ𝑛

[𝑐𝑗𝑛−1 − 𝑐
𝑗
𝑛] +

(
𝐽 − 𝛾𝑛
𝐽

)
⋅ [𝐴 (𝑛 + 1, 𝑁 − 1) − 𝐴 (𝑛,𝑁 − 1)]

It simplifies to

𝐾𝑛+1 +
(
𝐽 − 𝛾𝑛
𝐽

)
⋅

𝑤𝑛+𝑁(
1 + 𝑟𝑛+1

)
⋯

(
1 + 𝑟𝑛+𝑁

) −𝐾𝑛 −
(
𝐽 − 𝛾𝑛
𝐽

)
⋅

𝑤𝑛+𝑁−1(
1 + 𝑟𝑛

)
⋯

(
1 + 𝑟𝑛+𝑁−1

)
≥ [𝑓 (𝐾𝑛) − 𝑓 (𝐾𝑛−1)] +

∑
𝑗∈Γ𝑛

[𝑐𝑗𝑛−1 − 𝑐
𝑗
𝑛] > 0,

which proves (11).

15In the no-borrowing case,∑
𝑗∈Γ𝑛

𝑠𝑗𝑛 −
∑
𝑗∈Γ𝑛

𝑠𝑗𝑛−1 ≥ (
1 + 𝑟𝑛

)
𝐾𝑛 +

( 𝛾𝑛
𝐽

)
⋅𝑤𝑛 −

(
1 + 𝑟𝑛−1

)
𝐾𝑛−1 −

( 𝛾𝑛
𝐽

)
⋅𝑤𝑛−1 +

∑
𝑗∈Γ𝑛

[𝑐𝑗𝑛−1 − 𝑐
𝑗
𝑛], or

𝐾𝑛+1 −𝐾𝑛 ≥ (
1 + 𝑟𝑛

)
𝐾𝑛 +

( 𝛾𝑛
𝐽

)
⋅𝑤𝑛 −

(
1 + 𝑟𝑛−1

)
𝐾𝑛−1 −

( 𝛾𝑛
𝐽

)
⋅𝑤𝑛−1 +

∑
𝑗∈Γ𝑛

[𝑐𝑗𝑛−1 − 𝑐
𝑗
𝑛],

𝐾𝑛+1 −𝐾𝑛 ≥ [𝑓 (𝐾𝑛) − 𝑓 (𝐾𝑛−1)] +
∑
𝑗∈Γ𝑛

[𝑐𝑗𝑛−1 − 𝑐
𝑗
𝑛] −

(
𝐽 − 𝛾𝑛
𝐽

)
⋅
[
𝑤𝑛 −𝑤𝑛−1

]
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