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Abstract

Which industries contribute the most to aggregate economic growth, when tak-
ing into account not only each industry’s own value added, but also technological
spillovers across industries? To shed light on this question, I develop a model of
economic growth in which technological spillovers induce a network structure among
industries. As an endogenous result of the model, the more similar that two indus-
tries’ production functions are to each other, the greater the technological spillovers
between them, i.e., the stronger the link between the two industries in the network.
An industry contributes more to aggregate growth when the industry has a more
central position in the network. The closed-economy version of the model is tested
using data on growth in each industry in the US from 1960 to 2005, while the open-
economy version of the model is tested using data on bilateral, industry-specific trade
flows among 72 countries, from 1962 to 2000; I find that the model explains relative
growth in each industry and changing patterns of trade over this period better than
the null model with no network effects.

JEL Codes: O41, F11, D85

Keywords: economic growth, inter-industry networks, learning-by-doing spillovers

∗First and foremost I would like to thank Dilip Mookherjee for his intellectual guidance and support,
as well as Samuel Bazzi and Stefania Garetto for many valuable contributions. This research has also
been shaped by helpful comments from Kehinde Ajayi, Amrit Amirapu, Dany Bahar, Sebastian Bustos,
Ricardo Hausmann, Frank Neffke, Andrew Newman, Michael Peters, John van Reenen, Esteban Rossi-
Hansberg, and seminar and conference participants at Azim Premji University, Boston University, Columbia
University, Concordia University, and Harvard University.
†Boston University’s Department of Economics, and Harvard University’s Center for International De-

velopment. Email: willj@bu.edu

1



1 Introduction

There are striking asymmetries in the goods that rich countries and poor countries produce
and trade with each other. For example, the leading exports of South Korea are semicon-
ductors, wireless telecommunications, and motor vehicles, while the leading exports of
Mozambique are aluminum, prawns, and cashews.1 This paper explores the hypothesis
that moving into different industries is an important pathway to economic growth, and
poor countries are poor partly because government or market failures block that pathway.

This raises the question, which industries are the most conducive to aggregate growth?
An answer to this question must account not only for growth in each industry’s own value
added, but also technological spillovers across industries. The hypothesis underlying this
paper is that the size of technological spillovers from one industry to another depends on
how similar the two industries are. I develop a model of economic growth in which, as an
endogenous result, this notion of similarity ends up playing a front-and-center role. The
intuition is simple. In the model, the source of economic growth is learning-by-doing among
workers; the learning-by-doing spills over among all workers within a given occupation,
regardless of the industry for which they are working. This generates inter-industry learning
spillovers, where the size of the spillovers between any two industries depends on how similar
the two industries are to each other, in terms of the intensity with which they use each
occupation.

Given these inter-industry learning spillovers, we can then think of industries as form-
ing a network, where each industry is a node in the network, and the strength of the
link between any two industries corresponds to the size of the learning spillovers between
them. The amount that an industry contributes to long-run aggregate economic growth
corresponds to how central the industry is in this network.

The key parameters of the model are simply the intensity with which each industry uses
each occupation, which can be directly taken from data. That makes this, to the best of my
knowledge, the first model of endogenous long-run growth in which “not all industries are
created equal” and which can be taken directly to data. I test the closed-economy version
of the model against data on growth in each industry in the US from 1960 to 2005, and
I test the open-economy version of the model against data on bilateral, industry-specific
trade flows among 72 countries, from 1962 to 2000; in each case I find that the model
performs significantly better than the null model with no network effects.

This paper combines two broad strands of literature. At the heart of my model is the
notion of economic growth through learning-by-doing, which dates back to Arrow (1962).
The first to analyze this within a multi-industry framework were Clemhout and Wan (1970)
and Bardhan (1971), who showed that if certain industries exhibit more learning-by-doing
than others, and if this learning is external to individual firms, then this gives theoretical
(although not necessarily practical) justification for subsidizing the industries with more
learning. These considerations are further amplified by international trade2: if rich coun-

1Source: CIA World Factbook. For more systematic documentation of such differences, see Rodrik
(2006).

2Besides the seminal studies mentioned above, see, for example, Succar (1987), Young (1991), and
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tries have a comparative advantage (in the static sense) in high-growth industries (i.e.,
industries with large learning-by-doing externalities) while poor countries have a (static)
comparative advantage in low-growth industries, then international trade between rich and
poor countries will boost rich countries’ growth but stifle poor countries’ growth.3

The inter-industry learning spillovers that endogenously result from my model connect
this paper with a recently flourishing literature on the macroeconomic implications of net-
work structures among industries. Particularly large is the literature on the business cycle
implications of the input-output structure of the economy, dating back to Long and Plosser
(1983), and more recently Carvalho (2010) and Acemoglu et al (2012).4

Long-run growth implications of the input-output structure of the economy were first
emphasized by Hirschman (1958), who argued for directing investment toward industries
that use many inputs (“backward linkages”) and that in turn are used by many industries
as inputs (“forward linkages”); this view was first formalized by Rodriguez-Clare (1996a)
and Rodriguez-Clare (1996b). Jones (2011) develops a static model in which forward and
backward linkages amplify the effects of exogenous sector-specific distortions on aggregate
total factor productivity, using US input-output data for illustration.

Note, however, that the network of industries in this paper is not based on input-output
linkages, but instead on industries learning from one another, where the size of the learning
spillovers between two industries depends on their similarity. In this respect this paper
complements the work of Hidalgo, Klinger, Barabasi, and Hausmann (2007), in which,
using a very different methodology, they envision industries as forming a network (which
they call the product space), in which a link between two industries represents overlap in
the capabilities required to produce in those industries.

Although the two ideas (input-output linkages and learning spillovers) sound superfi-
cially similar (they both involve “links” in a “network”), they are in fact very different.
Consider, for example, the oil industry. In terms of the input-output structure of the econ-
omy, since many other industries use oil, then oil has a central place in the network, and
a model of long-run development that stresses input-output linkages would imply that if
a country produces oil, this will spur development in those other industries. In contrast,
the framework in this paper calls to our attention the fact that the oil industry has very
little in common with most other industries − the skills that oil workers develop have little
use in other industries. Therefore, in the framework of this paper, the oil industry is at
the periphery of the network5, and according to this model, a country that produces oil is
likely to get stuck producing little else.

The rest of this paper is organized as follows. In section 2, I introduce the model in

Dehejia (1993), among many others; a brief survey of this literature is given by Acemoglu (2008). Note
that these papers are purely theoretical.

3There are also certainly mechanisms by which international trade can stimulate growth in poor coun-
tries, such as technology transfer and access to cheaper physical and human capital. In this paper, however,
I abstract away from these important mechanisms.

4In future drafts, I plan to discuss in further depth how my analysis ties in with this business cycle
literature.

5See Figure 1 in section 3.3.

3



the context of a single closed economy and derive theoretical results. In section 3, I test
the closed-economy model through a quantitative exercise using US data. In section 4, I
extend the theoretical and quantitative analysis into a multi-country framework. In section
5, I conclude and discuss further research.

2 Closed-economy model

The basic intuition underlying the model is as follows. There are multiple industries and
multiple occupations − think of “industries” as the car industry, the finance industry, and
so on, while “occupations” are engineers, economists, and so on.6 There is learning-by-
doing within each occupation, which spills over to everyone in the occupation regardless of
the industry for which they are working.

Consider, then, what happens if production increases in the car industry. Since the car
industry employs a large number of engineers but only a small number of economists, this
will cause a significant increase in learning-by-doing among engineers, not so much among
economists. The extent to which this benefits another industry corresponds to how much
that other industry is engineer-intensive rather than economist-intensive − it will benefit
the airplane manufacturing industry more than the finance industry, since the former is
engineer-intensive while the latter is economist-intensive.

We can then think of industries as forming a network, where, for any two industries, the
strength of the link between them corresponds to how similar they are in their intensity of
usage of different occupations. An industry that is more central in this network generates
more learning spillovers and thereby contributes more to aggregate economic growth.

With this intuition in the back of our minds, let us now turn to the formal model.

2.1 The model

Consider a closed economy with J industries, indexed by j ; K occupations, indexed by k ;
and an arbitrary finite or countably infinite number of time periods, indexed by t.

Let Xjkt be the effective units of labor in occupation k used by industry j at date t, let
Yjt be the amount of industry j’s output at date t, and let Yt be total utility at date t.

At each date t, a representative agent7 chooses how much of each occupation to use in
each industry − that is, she chooses {Xjkt}j,k − in order to maximize date-t utility, which
is a Cobb-Douglas function of how much she produces in each industry:

6We will revisit the issue of what the specific industries and occupations are when discussing different
sources of data in sections 3.1, 3.4, 4.3, and 4.4.

7Rather than a single representative agent, we can alternatively think of a representative consumer, a
representative firm for each industry, and a representative worker in each occupation, with these agents
buying and selling with each other in perfectly competitive markets. It is straightforward to show that such
an alternative formulation would not affect any of the model’s predictions − the key is that I assume the
representative agent efficiently allocates resources in a static sense at each date t but does not internalize
learning-by-doing externalities, exactly as would be the case in the alternative version of the model with
multiple types of agents.
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Yt =
∏
j

Y
βj
jt

I assume 0 ≤ βj ≤ 1 ∀j and
∑

j βj = 1.

Each industry j is produced according to a Leontief production function8; industries
can vary in which occupations they use intensively:

Yjt = min{ 1

αjk
Xjkt}k ∀j

I assume 0 < αjk ∀j, k and
∑

k αjk = 1 ∀j.
The agent faces the following labor endowment constraint at each date t:∑

j

∑
k

ψktXjkt = L

where L is the economy’s total labor force, while ψkt represents the cost at time t of
producing an occupation-k worker of a fixed level of productivity, or equivalently, ψkt = 1

πkt
,

where πkt is the productivity of an occupation-k worker at time t.
Occupational productivity evolves over time from learning-by-doing:

ψk,t+1 = ψkt(X̃kt)
−ρ ∀k, t (1)

where ρ > 0 is the elasticity of learning-by-doing with respect to relative occupational
usage, ψk,0 is given ∀k, and X̃kt denotes one plus the fraction of the effective labor force
employed in occupation k (across all industries) at time t − that is,

X̃kt ≡ 1 +

∑
j Xjkt∑

j

∑
kXjkt

However, the representative agent does not internalize the dynamic returns from learning-
by-doing, and so she does not take into account equation 1 when deciding on {Xjkt}j,k.

Equation (1) is saying, for example, that the higher the fraction of the work force work-
ing as engineers, the more learning-by-doing there will be among engineers. This learning-
by-doing spills over across all engineers, regardless of which industry they are working in.
Note that ρ, the elasticity of learning-by-doing with respect to relative occupational usage,
does not depend on the occupation. One might suspect, however, that some occupations
have more learning-by-doing than others − e.g., only a very exuberant economist would
believe that his field has as much learning-by-doing as engineering. But this is precisely
the kind of asymmetry I do not want to take a stand on, for the reasons expressed by
Hausmann, Hwang, and Rodrik (2007) above, so I let ρ be the same for all occupations.

8In future work I aim to determine how much the results generalize beyond Leontief production func-
tions.
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2.2 Equilibrium

Given the parameters {ψk0}k, {αjk}j,k, {βj}j, and L, an equilibrium of the economy is
defined as a path {Xjkt, Yjt, Yt, ψkt}jkt such that at each date t,

1. Occupational employment choices {Xjkt}jk (along with the corresponding industrial
outputs {Yjt}i and utility Yt) solve the representative agent’s date-t maximization
problem given date-t occupational costs {ψkt}k.

2. Occupational costs {ψkt}k evolve over time according to equation 1.

In equilibrium, because the production functions are Leontief, occupations are always
in fixed proportions with industrial outputs:

Xjkt = αjkYjt ∀j, k, t (2)

Thus the cost of producing one unit of Yjt can be expressed as

Pjt ≡
∑
k

αjkψkt (3)

The agent’s date-t problem then collapses to choosing output in each industry {Yjt}j
to maximize utility Yt given the date-t costs of producing in each industry {Pjt}j. The
solution to this collapsed problem is the standard solution to a Cobb-Douglas maximization
problem:

Yjt =
βjL

Pjt
=

βjL∑
k αjkψkt

∀j, t (4)

For a given specification of parameters, there is a unique equilibrium characterized by
equations 1, 2, and 4.

2.3 Inter-industry spillovers

To see how the learning-by-doing induces a network structure among industries, consider
an increase in production in some arbitrary industry j and what effect this has on some
other arbitrary industry h.

If Yjt increases by one unit, then by equation 2, for each occupation k, Xjkt increases
by αjk units. By taking the derivative of equation 1, we see that for a given occupation k,
a one unit increase in Xjkt causes the next-period cost of occupation k, ψk,t+1, to decrease
by Qkt units, where

Qkt ≡ ρψkt(X̃kt)
−ρ−1[(

∑
k

∑
j

Xjkt)
−1 − (

∑
j

Xjkt)(
∑
k

∑
j

Xjkt)
−2] (5)

Meanwhile, for arbitrary industry h, by (3), a one unit decrease in the cost of occupation
k, ψk,t+1, causes the cost of a unit of production in industry h, Ph,t+1, to decrease by αhk
units.
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Combining the above results, we have, for arbitrary industries j and h, a one unit
increase in industry-j production causes the next-period cost of a unit of industry-h pro-
duction to decrease by

∑
kQktαjkαhk units. Industries can therefore be seen as form-

ing a network in which the strength of the link between industries j and h at date t is∑
kQktαjkαhk.
To gain a more intuitive grasp of this, ignore the Qkt terms for a moment and note that∑
k αjkαhk is the correlation coefficient between the occupational intensities of industries

j and h, which is a natural way of measuring how similar industries j and h are in terms
of their production functions. All else being equal, the more similar two industries are to
each other, the more technological spillovers there will be between them. This is what the
above result is saying, except we weight each occupation k by Qkt, since that tells us where
we are on occupation k’s learning curve.

It is important not to confuse the result in this section with the older idea, a la
Hirschman (1958), that the economy can be thought of as a network of industries in which
the links in the network represent the industries’ direct buying and selling relationships
with one another. Instead, as discussed in the introduction, my paper captures a very
different idea, in which links in the network of industries represent technological spillovers
based on how similar industries are to each other.9

Note that, by (5), the Qkt terms involve endogenous variables, and so the network
structure evolves endogenously over time. Exploring this endogenous evolution of the
network is potentially an interesting direction for future research, but it is difficult to gain
any analytical traction without making further assumptions. For this reason, in the next
section I analyze a tractable log-linear approximation of the model.

2.4 Log-linear approximation

Recall that J is the number of industries. Consider the symmetric case in which, at
some date t, all occupational productivities are the same and production is equal across
industries, that is, ψkt = ψmt ∀k,m and Yjt = Yht ∀j, h.10 I will make use of the following
fact, the proof of which is trivial:

Fact For any arbitrary set of variables {zn}n and constants {an}n, if
∑

n an = 1 and
zn = zm ∀n,m, then log(

∑
n anzn) =

∑
n anlog(zn).

Combining this fact with the three equilibrium equations 1, 2, and 4, we have

9In future drafts of this paper I plan to do a more thorough comparison between my analysis and what
we would get from a Hirschman-type model.

10However, we do not need to assume any symmetry with regard to how much each industry uses each
occupation, which is important − such differences in occupational usage are what we are most interested
in; as we saw in the previous section, these are what give us the network structure of industries.
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log(Yh,t+1) = log(βhL)−
∑
k

αhklog(ψkt)

+ ρ
∑
k

αhklog(
∑
j

αjk) + ρ
∑
k

αhk
∑
j

(
αjk∑
m αmk

)log(Yjt)

− ρ
∑
k

αhklog(J)− ρ
∑
k

αhk
∑
j

(
1

J
)log(Yjt) (6)

By taking the derivative of (6) with respect to log(Yjt), we see that a 1% increase in Yjt
causes an Ajh% increase in Yh,t+1, where

Ajh ≡ ρ
∑
k

αhk(
αjk∑
m αmk

− 1

J
) (7)

The intuition for this result is similar to the intuition from the previous section. An
increase in Yjt corresponds to an increase in the usage of each occupation k. The extent to
which this increases learning-by-doing within occupation k is proprotional to ρ (since ρ is the
elasticity of learning-by-doing with respect to occupational usage) as well as (

αjk∑
m αmk

− 1
J

),

which captures how much usage of occupation k is concentrated in industry j relative to
how much the overall economy is concentrated in industry j (the latter being 1

J
, since there

are J industries and we are assuming symmetry) − if the latter is greater than the former,
then increasing Yjt causes less learning-by-doing in occupation k, since learning-by-doing is
a function of the fraction of the economy’s effective labor force employed in occupation k.
Meanwhile, the extent to which an increase in learning-by-doing for occupation k benefits
industry h is proportional to αhk.

The beauty of this result, compared to the result from the previous section, is that, as
we see from (7), the effect that growth in one industry has on growth in another industry
is now only a function of exogenous parameters. It does not vary over time, which is
important for the theoretical results that follow in the rest of this section.

This result holds exactly only in the symmetric case, but let us take it as an approxima-
tion of the behavior of the model outside of it.11 Consider, then, an arbitrary equilibrium
path {Y ?

jt}j,t and corresponding {Y ?
t }t. Suppose, starting from this equilibrium path, we

increase Yjt by 1% for some industry j at some date t. What effect will this have on total
discounted social welfare from date t onward? How does our answer depend on which
industry we are giving the shock to?

To answer these questions, let lowercase letters denote log-deviations from the previous
equilibrium path. Specifically, let yjt ≡ log(Yjt) − log(Y ?

jt) and yt ≡ log(Yt) − log(Y ?
t ).

Let ~yt denote the J-dimensional vector specifying yjt for each industry j. Let y denote
the discounted sum of log-deviations in utility over time, i.e., let y ≡

∑
t δ

tyt, where
0 < δ < 1 is the representative agent’s discount factor. Let β denote the J-dimensional

11In future work I plan to investigate, analytically and/or numerically, how good the approximation is.
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vector specifying the Cobb-Douglas exponent βj for each industry j, and let I denote the
JxJ identity matrix.

Recall, we are maintaining, as an approximation, that starting from any arbitrary point,
a 1% increase in Yjt causes an Ajh% increase in Yh,t+1, where Ajh is defined by (7). It follows,
then, that if we let A denote the JxJ matrix whose (j, h) element is Ajh, then ~yt+1 ≈ A~yt.
Let us now calculate dy

d~yt
, which is the J-dimensional vector whose jth element gives the

total discounted sum of percent increases in utility from a 1% increase in Yjt. We have the
following result:

dy

d~yt
≈ β + δAβ + δ2A2β + δ3A3β + . . .

= β + δ(I + δA+ δ2A2 + . . . )Aβ

= β + δ(I− δA)−1Aβ (8)

The right-hand side of (8) is the J-dimensional vector whose jth element is the Bonacich
centrality of industry j in the network of industries. Bonacich centrality is a measure of
how important a node is in a network. For example, in a network of friends, the Bonacich
centrality of an individual is her number of friends plus (for some discount factor δ) δ times
the number of friends her friends have, plus δ2 times the number of friends her friends of
friends have, and so on. Equation (8) involves the same thing, except instead of weighting
all nodes equally (as one usually would when analyzing a network of friends), each industry
j is weighted by its Cobb-Douglas exponent βj, since that is how much it contributes
directly to utility.

3 Closed-economy quantitative exercise

In this section I test to see how well the model explains the U.S.’s economic growth, broken
down by industry, over the past half century.

3.1 Data

There are two kinds of data that shed light on the key parameters of the model, namely
the α terms, where αjk is the intensity with which industry j uses occupation k. The
most direct source of data is an industry-occupation table, which tells us the number of
people in each occupation employed by each industry. A more indirect source of data is an
input-output table, which tells us how much each industry uses the output of each other
industry as an input.

We can use an input-output table as a proxy for an industry-occupation table by rela-
beling the columns of the input-output table as occupations (e.g., relabeling “coal mining”
to “coal miners”) − if the electric utilities industry uses a large amount of coal mining out-
put as an input, then the electric utilities industry uses (indirectly) a large number of coal

9



miners. When using an input-output table in this way (unlike the typical way of using an
input-output table), my measure of the strength of the link between two industries (which
I get from the model) is how similar the two industries are in terms of how intensely they
use different inputs, not how much the two industries purchase from each other, just as
when using an industry-occupation table, the measure is how similar the two industries are
in how intensely they use each occupation. These two methods should give similar results.

In this closed-economy section of the paper I use input-output tables, while in the inter-
national section of the paper I use industry-occupation tables. This choice was arbitrary;
in the future, for the sake of robustness, I plan to use both for both.

Here I use KLEMS data from Jorgenson (2007) that divide the U.S. economy into 35
industries (mostly at the 2-digit SIC level), spanning from 1960 to 2005.12 These data
include, for each year, each industry’s output as well as each industry’s usage of 37 inputs
(capital, labor, and 35 intermediate inputs, one for each of the 35 industries). All output
and input variables are adjusted for industry-specific price changes, with 1996 used as the
base year for all prices. The 35 industries, and their corresponding identifying numbers
(which will be used when reporting results) are given in Table 1.

Table 1: The 35 industries and their ID #’s

ID # Industry ID # Industry

1 Agriculture, forestry, fisheries 19 Stone, clay and glass products
2 Metal mining 20 Primary metals
3 Coal mining 21 Fabricated metal products
4 Crude oil and gas extraction 22 Non-electrical machinery
5 Non-metallic mineral mining 23 Electrical machinery
6 Construction 24 Motor vehicles
7 Food and kindred products 25 Other transportation equipment
8 Tobacco manufactures 26 Instruments
9 Textile mill products 27 Miscellaneous manufacturing
10 Apparel and other textile products 28 Transportation and warehousing
11 Lumber and wood products 29 Communications
12 Furniture and fixtures 30 Electric utilities (services)
13 Paper and allied products 31 Gas utilities (services)
14 Printing and publishing 32 Wholesale and retail trade
15 Chemicals and allied products 33 Finance, insurance and real estate
16 Petroleum refining 34 Personal and business services
17 Rubber and plastic products 35 Government enterprises
18 Leather and leather products

12The ultimate source of these data are apparently the Bureau of Economic Analysis (BEA) and Bureau
of Labor Statistics (BLS), but I have yet to find any documentation that pinpoints the specific BEA and
BLS data series used or the specific procedures used to transform the BEA and BLS data into the dataset
with which I am working.
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3.2 The exercise

I perform the following quantitative exercise:

1. Calibrate {βj}j (the Cobb-Douglas exponents in the utility function) and L (the size
of the economy, which in the model is the size of the labor force but in these data I
will take to be GDP, which can be thought of as the same thing in a model where
labor is the only factor of production) using the 1960 data on output in each industry.
Summing output across all industries in 1960 gives us L. For each industry j, dividing
industry j’s 1960 output by total economy-wide 1960 output gives us βj.

2. Calibrate {αjk}j,k (the occupational intensities in the Leontief production functions)
using the 1960 data on each industry’s usage of the 35 different intermediate goods.
Specifically, αjk equals industry j’s 1960 usage of intermediate good k divided by
industry j’s 1960 total usage of all intermediate goods.13 (By construction,

∑
k αjk =

1 ∀j.)

3. Set {ψk0}k (the starting cost of each occupation) equal to one for every occupation.
This may seem strange, but it actually fits with the way I calibrate the above param-
eters, in the sense that, with these values, the model will, by construction, perfectly
fit the 1960 data, whereas any other values for {ψk0}k would throw the model off
from the 1960 data.

4. Use grid search to select ρ (the speed of learning-by-doing). Allow it to take on any
of the following values: 0.00, 0.01, 0.02, ... , 0.98, 0.99, 1.00. The remaining steps
below are for a specific value of ρ; the criterion for selecting ρ is described below.

5. Given the above parameters, the model makes predictions of Yjt (output of industry j
at date t) for all j and t starting from 1960. Run the model for 46 periods, representing
1960 to 2005.

6. Compare the model’s predictions for 2005 with the 2005 data. More specifically,
calculate Corr(Yj,2005, Ŷj,2005) where Ŷj,2005 is what the model predicts for output of
industry j in 2005, and Yj,2005 is from the actual data.

7. Choose the value of ρ that maximizes Corr(Yj,2005, Ŷj,2005).

8. Report the optimal value of ρ and the maximized value of Corr(Yj,2005, Ŷj,2005) (along

with the scatterplot for Yj,2005 vs. Ŷj,2005).

13An alternative approach would be to use all 37 inputs, including labor and capital. However, for most
industries, labor and capital usage dwarf the usage of any given intermediate good, and so if we were to
take such an approach, our measure of how related two industries are would be disproportionately based
on the similarity of their capital and labor intensities, which is not a good measure of relatedness, since it
contains very little information.
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The maximized value of Corr(Yj,2005, Ŷj,2005), as a measure of how successful the model
is in explaining the data, has little meaning in and of itself; we have to ask, the model is
successful relative to what? A natural benchmark is to see how well the model matches
the data when setting ρ to zero, which corresponds to no learning-by-doing and hence no
network effects. This is equivalent to letting the 1960 equilibrium repeat itself over and
over again, i.e., it gives us Corr(Yj,2005, Yj,1960). So we compare Corr(Yj,2005, Ŷj,2005) vs.
Corr(Yj,2005, Yj,1960) − that is, we see how successful the model is at predicting future data
relative to the null model that says that future data will just be the same as past data.

One important remark about this quantitative exercise is that these kind of input-output
data provide us with more information about the structure of the economy than what we
are using here. In particular, if industry j uses a lot of industry h’s output as an input,
this, in and of itself, means that industries j and h have a direct purchasing relationship
with one another, but we are ignoring this aspect of the data in this exercise. Instead we
are using these input-output data to measure the technological relatedness of industries to
each other. This goes back to the difference between this paper and the traditional way of
thinking about the economy as a network, as discussed in the introduction and in section
2.3.

3.3 Results

Before examining the results of the quantitative exercise, let us first examine what the
network of industries actually looks like. To calculate the network structure, we take
the values of ρ (the elasticity of learning-by-doing with respect to occupational usage)
and {αjk}j,k (the intensities with which each industry j uses each occupation k) that we
obtained from the quantitative exercise and then plug these values into equation (7) for
each pair of industries j and h, which gives us the strength of the learning-spillover link
between any two industries. Figure 1 gives a visual depiction of the network. Note that the
strength of the link between any two industries is a continuous variable that can be positive
or negative; in Figure 1, a line is drawn between two industries if they have a positive link,
and no line is drawn if their link is zero or negative.

The value of ρ (the elasticity of learning-by-doing with respect to occupational usage)
that minimizes the objective function14 is 0.46, meaning a 1% increase in relative usage
of an occupation one year increases the productivity of that occupation the next year by
0.46%.15

Figure 2 plots each industry’s share of 2005 aggregate output along the X axis against
the model’s predictions along the Y axis. Industries are marked by their ID# from Table
1. If the model perfectly fit the data, each industry would lie along the 45-degree line,

14Recall from section 3.2 that the objective function here is the sum of squared errors between each
industry’s share of aggregate output in 2005 and the model’s predictions for these shares.

15In the future I plan to examine how this result compares with other studies’ estimates of the rate
of learning-by-doing. Note that making such comparisons is a nontrivial exercise, since different studies
assume a variety of functional forms for learning-by-doing.

12



Figure 1: Visual depiction of the network of industries

which is represented by the dashed line. As we can see, the model fits the data well; the
correlation coefficient between the data and the model’s predictions is .96.

Now consider the null model, i.e., the model when plugging in ρ = 0, or in other words,
the model with no learning-by-doing and hence no network effects. Since the null model
simply predicts the same static equilibrium repeated over and over again, this is equivalent
to examining how well we can predict each industry’s share of 2005 aggregate output by
simply using each industry’s share in 1960. This is plotted in Figure 3.

As we can see, the model matches the data better than the null model; .88 is the
correlation coefficient between the data and the null model’s predictions16, compared to
.96 for the model. Another way of comparing the two is that the sum of squared errors is
0.017 for the null model and 0.0057 for the actual model17; the sum of squared errors of
the actual model is 66% lower than the sum of squared errors of the null model.

Now let us look more directly at how well the model (the actual model, not the null
model) predicts changes in industrial composition. Figure 4 plots the change between 1960
and 2005 in each industry’s share of aggregate output along the X axis against the model’s
predictions along the Y axis. (Note: The reason the 45-degree line [the dashed line] looks
steeper is because of the different axes.)

By this metric, the model still performs reasonably well; the correlation coefficient

16Equivalently, .88 is the correlation between the data in 1960 and the data in 2005.
17These numbers do not have units, since the outcome being measured here is an industry’s fraction of

aggregate output.
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Figure 2:
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Figure 4:

between the data and the model’s predictions here is .84. This is “infinitely” better than
the null model here, since the null model does not predict any changes between 1960 and
2005.

These results are suggestive evidence that the model is indeed getting at something.
Further possible tests of the model are offered in sections 3.4 and 4.5.

3.4 Other sources of data

One can carry out the exercise in section 3.2 with other sources of data. One interesting
direction to go in is to use data at a more disaggregated level. For example, in other work
of mine that is available upon request, I use data from the BEA and BLS at roughly the
three-digit NAICS industry level, in which the U.S. economy is broken into 69 industries.
The results are similar to the results of section 3.3, except that even the null model performs
extremely well, because the data only span from 2007 to 2012, during which time there
was very little change in the U.S.’s industrial composition.18

18These BEA data go back to 1997, but many of the BLS price indices only go back to 2007, which is
why my analysis of these data starts at 2007. If I use the data going back to 1997 and simply do not adjust
for industry-specific price changes, the calibrated value of ρ ends up being nearly zero (specifically, 0.08),
which is what we would expect, because when we do not adjust for industry-specific price changes, what
we are effectively examining is changes in industries’ expenditure shares, and expenditure shares do not
change if the Cobb-Douglas assumption holds.

Given that Jorgenson’s KLEMS data are ultimately derived from BEA and BLS data, I imagine it is
possible to get more disaggregated price-adjusted data spanning a similar time frame as the KLEMS data,
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What these data sources have in common is that I have to proxy for different industries’
usage of different occupations using industries’ usage of intermediate goods. An alternative
source of data is data directly on how many people each industry employs in different
occupations, i.e., an industry-occupation table. This is what I use in the international
section of the paper; in the future, for the sake of robustness, I plan to re-do the closed-
economy quantitative exercise in section 3.2 using industry-occupation tables to see if the
results change.

Lastly, the quantitative exercise in section 3.2 can be performed for any country that
has the relevant data, not just the U.S. It would be particularly interesting to look at
developing countries with data of sufficiently high quality.

4 Open-economy analysis

The closed-economy analysis of sections 2 and 3 extends easily into an international context,
thanks to recent advances in trade theory.

The theory from section 2 involves technological progress through learning-by-doing;
we thus want to extend this into a model in which countries trade with each other based on
technological differences, i.e., a Ricardian model. It was not until Eaton and Kortum (2002)
that this kind of model could be taken to data in a multi-country framework. Costinot,
Donaldson, and Komunjer (2012) were the first to perform this kind of quantitative analysis
in a way that allows for asymmetries across industries, which is what we are interested in.

In this section I combine the model from section 2 with the model from Costinot,
Donaldson, and Komunjer (2012) (henceforth “CDK”), which is a static model of trade.
At each date t, the model in this section is essentially the CDK model (the only difference
is that there are multiple occupations, but this only matters for dynamics). The dynamics
of the model, just as in section 2, are governed by a learning-by-doing equation − as
before, this learning-by-doing is within each occupation, which spills over to everyone in
the occupation regardless of the industry for which they are working, generating network
effects among industries. The important thing to note here, which was a moot point in
the single closed economy case, is that these spillovers are within countries, not across
countries.

4.1 The open-economy model

As before, time is discrete and indexed by t.
There are now I countries, indexed by i. Country i is endowed exogenously with Li

workers; each worker in country i at date t is paid wage wit, which will be determined in
equilibrium.

As before, labor is the only factor of production; workers can work in K different
occupations, indexed by k. Labor is perfectly mobile across occupations but immobile
across countries.

and I am in the process of figuring out how.
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As before, there are J final goods (i.e., industries − the two terms are used interchange-
ably here), but now each final good j comes in a countably infinite number of varieties
indexed by ω ∈ Ω ≡ {1, ...,+∞}.19

The production structure of the economy is analogous to the closed-economy version
of the model, except with the addition of total factor productivity terms, which will be
discussed below. Specifically, the production function for variety ω of final good j in country
i is as follows:

yijt(ω) = zij(ω) min{ 1

αjk
xijkt(ω)}k (9)

where yijt(ω) is the quantity of variety ω of final good j produced in country i at date t;
xijkt(ω) is the effective units of labor in occupation k used in the production of variety ω of
final good j in country i at time t; αjk > 0 ∀j, k; and zij(ω) is the total factor productivity
of variety ω of final good j in country i, to be discussed below.

The TFP term zij(ω) is a random variable drawn independently for each triplet (i, j, ω)
from a Fréchet distribution Fij(·) such that20

Fij(z) = exp[−(
z

zij
)−θ]

for all z ≥ 0, where zij > 0 ∀i, j and θ > 1. zij is the total factor productivity
of country i in good j when averaged across good j’s infinite varieties, while θ governs
the dispersion of productivity, which is an important parameter in the Ricardian trade
literature, because the more that productivity varies, the more important is the force of
comparative advantage. Note that, for my purposes, these parameters are fixed over time;
this will be discussed further below.

From (9) it follows that, in equilibrium,

xijkt(ω) =
αjk
zij(ω)

yijt(ω) (10)

Let ψikt be the inverse of the productivity of occupation k in country i at time t. This
will endogenously evolve over time from learning-by-doing (with starting values ψik0 given
for all i and k), as will be discussed below.

Then, from (10) it follows that

19This is a modeling trick from the literature on Ricardian trade; the reason for it is as follows. If we
did not have the infinite-variety structure, then for each good j and each country i, one hundred percent
of country i’s consumption of good j would be sourced by whichever country n can produce and deliver
good j to country i most cheaply (or, in knife-edge cases in which two or more countries can do so equally
cheaply, the solution is indeterminate). With the infinite-variety structure, this is exactly what happens
at the variety level, but when we aggregate up to the good level we have interior solutions.

20This is another modeling trick from the Ricardian trade literature, first used by Eaton and Kortum
(2002), who realized that if we want a tractable framework in which the distributions of labor requirements,
costs of production, and prices are all in the same family, the distribution that gives us this is the Fréchet
distribution.
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∑
k αjkψikt
zij(ω)

is the number of units of raw labor needed to produce one unit of variety ω of final good
j in country i at time t.

Now let us consider trade between countries. I will make the standard assumption of
iceberg trade costs, meaning that for each unit of good j shipped from country i to country
n, only 1

dijn
< 1 units arrive, with dijn such that diji = 1 ∀i and dijn ≤ dijldljn for any third

country l.
It follows, then, that

cijnt(ω) =
dijnwit

∑
k αjkψikt

zij(ω)

is the cost of producing and delivering one unit of variety ω of good j from country i
to country n at date t. Aggregating up to the good level, define cijnt as follows:

cijnt ≡
dijnwit

∑
k αjkψikt

zij
(11)

Markets are perfectly competitive, and therefore the price pjnt(ω) paid by buyers in
country n for variety ω of good j at date t is

pjnt(ω) = min
1≤i≤I

[cijnt(ω)]

and the set of varieties of good j that are exported by country i to country n at date t
is given by

Ωijnt ≡ {ω ∈ Ω|cijnt(ω) = min
1≤m≤I

cmjnt(ω)}

Each country has a representative consumer whose utility function is a Cobb-Douglas
function of the composite goods, where each composite good is a CES function of its infinite
varieties. Let βij be country i’s Cobb-Douglas exponent on good j, and let σij be country
i’s elasticity of substitution among the infinite varieties of good j. (As in CDK (2012), I
assume 0 ≤ βij ≤ 1 and σij < 1 + θ ∀i, j.) Accordingly, define pijt as follows:

pijt ≡ [
∑
ω∈Ω

pijt(ω)1−σij ]
1

1−σij

Then, defining eijt(ω) as total expenditure by country i on variety ω of good j at date
t, we have

eijt(ω) = (
pijt(ω)

pijt
)1−σijβijwitLit

Furthermore, define eijnt as the value (in dollar terms) of total exports of good j from
country i to country n at date t; that is,
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eijnt ≡
∑

ω∈Ωijnt

enjt(ω)

Then we get the result that

eijnt =
(cijnt)

−θ∑I
m=1(cmjnt)−θ

βnjwntLnt (12)

The date-t equilibrium of the world economy is pinned down by a balanced trade con-
dition. Let πijnt be country i’s share of the world exports (in dollar terms) of good j to
country n at date t; that is,

πijnt ≡
eijnt∑I

m=1 emjnt

Then, for a given wage vector wt = (wit)i,

Zit = (
I∑

n=1

J∑
j=1

πijntβjnwntLnt)− witLi

is the excess demand for country i’s labor at date t. The equilibrium at date t is pinned
down by specifying that Zit = 0 for every country i.

As is typical in the Ricardian trade literature, there is no closed form solution for this
date-t equilibrium, but it can be computed using an algorithm from Alvarez and Lucas
(2007). The basic idea behind their algorithm is simple: start with an arbitrary guess for
the equilibrium wage vector wt = (wit)i, calculate each country’s excess demand for labor
Zit, and then raise the wage of any country i for which Zit > 0 while lowering the wage of
any country i for which Zit < 0. Keep doing this, and, under regularity conditions discussed
by Alvarez and Lucas, the algorithm will converge to a unique equilibrium wage (from which
the equilibrium values of all other variables can be straightforwardly computed).

That completes the description of the economy at date t. The evolution of the economy
from date t to date t + 1 is given by the learning-by-doing equation, which will be given
below. Let xikt be the total efficiency units of labor that country i uses in occupation k
(across all varieties of all goods) at date t, i.e.,

xikt =
J∑
j=1

∑
ω∈Ω

xijkt(ω)

and let x̃ikt be one plus the share of country i’s effective labor force that is employed in
occupation k (across all industries) at date t, i.e.,

x̃ikt ≡ 1 +
xikt∑
m ximt

The learning-by-doing equation is given by
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ψi,k,t+1 = ψikt[x̃ikt]
−ρ (13)

where ρ > 0, with ψik0 given for every country i and occupation k.
Equation (13) is saying that the larger the fraction of country i’s effective labor force

working in occupation k at date t, the more that occupation k’s productivity increases in
country i from date t to date t+ 1.

This learning-by-doing is external to individual agents, and hence individual agents do
not take the learning-by-doing equation into account in their decision-making.

4.2 Theoretical analysis of the open-economy model

In sections 2.3 and 2.4 we asked, in the context of the closed-economy version of the model,
when we give an exogenous positive shock to production in a specific industry, what are the
effects on every other industry? In this section we ask, using the open-economy version of
the model, when we give an exogenous positive shock to production in a specific industry
in a specific country, what are the effects on every other industry in every other country?
Furthermore, what are the effects on each country’s welfare?

As we will see below, the intuition for why there were network effects among industries in
the closed-economy model carries over to the open-economy model. Now, however, thanks
to international trade, the learning-by-doing induced in a country by extra production in
an industry will affect other industries in that country not only through direct learning
spillovers, but also through indirect general equilibrium effects; an increase in learning-
by-doing in a country pushes up the country’s equilibrium wage, which − all else being
equal − makes industries in that country less competitive, and furthermore, consumers in
all countries benefit from the fall in the costs of production (and hence prices) induced by
learning-by-doing, not just the learning country.

In this section I will assume that trade costs are zero. Note that there is nothing
important about the number zero; what is important is that the trade costs are symmetric
across all countries and industries − as discussed in Alvarez and Lucas (2007), asymmetric
trade costs make it impossible to get any analytical traction in a Ricardian trade model like
this one. I will further assume that each country’s labor force is the same size (normalized
to 1), and each country’s Cobb-Douglas utility parameter for each industry is the same
(namely, 1/J , where J is the number of industries), in order to keep expressions simple.

Under the above simplifying assumptions, the first-order approximation of country i’s
wage at date t is21

wit ≈ [
∑
j

(
zij∑

k αjkψikt
)θ]

1
1+θ (14)

Note that this is a weighted average of country i’s date-t productivity in industry j
across all j, as one would intuitively expect. This result trivially holds with exact equality
when the productivity terms are symmetric across countries and industries, but it is only

21The derivation of this result is available upon request, along with all the other results of this section.
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an approximation otherwise. The results in this section, which are only first-order approxi-
mations rather than exact equalities, are derived by plugging (14) into the equations of the
model and then log-linearizing the resulting system of equations22 − hence, this section is
the open-economy analogue of section 2.4.

For the purposes of this section, let ŷijt denote the logarithm of production in country

i in industry j at date t, and let Ŵit denote the logarithm of country i’s welfare at date t.
Further, let

α̃ijk ≡
αjk
zij∑
j
αjk
zij

−
1
zij∑
j

1
zij

(15)

which is the relative intensity with which industry j uses occupation k in country i.

4.2.1 Production analysis

Results (16) and (17) below answer the question, given a positive shock at date t to pro-
duction in industry j in country i, what effect does this have on production at date t + 1
in industry h in country m?

For any country i and any pair of industries j and h:

dŷi,h,t+1

dŷi,j,t
≈ [1 + (

I − 1

I
)θ]ρ

∑
k

αhkα̃ijk − [(
1

J
)(
I − 1

I
)θ]ρ

∑
j′

∑
k

αj′kα̃ijk (16)

and for any pair of countries i and m 6= i and any pair of industries j and h:

dŷm,h,t+1

dŷi,j,t
≈ −[(

1

I
)θ]ρ

∑
k

αhkα̃ijk + [(
1

J
)(

1

I
)θ]ρ

∑
j′

∑
k

αj′kα̃ijk (17)

The intuition behind (16) and (17) is as follows. The increase in production in industry
j in country i has a direct effect and an indirect effect.

The direct effect is as follows. For each occupation k, the extent to which an increase in
production in industry j in country i corresponds to an increase in usage of occupation k
relative to other occupations (and hence an increase in learning-by-doing in occupation k)
is given by α̃ijk (which, examining (15), can be positive or negative, since learning-by-doing
is based on relative occupational usage). The extent to which this extra learning-by-doing
in occupation k benefits industry h is given by αhk. Hence, the size of learning spillovers
between industries j and h is

∑
k αhkα̃ijk. If industries j and h are similar (dissimilar)

enough to each other in their occupational usage, then
∑

k αhkα̃ijk is greater (less) than
zero, and the direct effect on industry h within country i is positive (negative), while it
is negative (positive) in every other country, because in every other country industry h
becomes relatively less (more) competitive compared to country i.

The direct effect is scaled by ρ, since ρ is the rate of learning-by-doing. Furthermore,
the direct effect on each other country is scaled by 1

I
, where I is the number of countries,

22Again, the details are available upon request.
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as well as θ, since θ is the trade elasticity. This is balanced by the fact that the direct effect
on country i itself is scaled by [1 + ( I−1

I
)θ]; note that [1 + ( I−1

I
)θ] − (I − 1)(1

I
)θ = 1, i.e.,

the scale factors on the direct effects across the world sum to one.
The indirect effect on industry h is as follows. Industry h is, of course, not the only

industry directly affected by industry j. Summing the term
∑

k αhkα̃ijk across all industries
gives us

∑
j′
∑

k αj′kα̃ijk, which is the size of the total learning spillovers from industry j
to all other industries − or, using network terminology, it is the first-degree centrality of
industry j in the network of industries. If industry j is sufficiently central (sufficiently
peripheral), then

∑
j′
∑

k αj′kα̃ijk is greater (less) than zero, and the high (low) amount of
learning-by-doing induced by the increase in production in industry j in country i raises
(lowers) country i’s equilibrium wage, which (all else being equal) makes each industry in
country i less (more) competitive and makes each industry in every other country more
(less) competitive.

As with the direct effect, the indirect effect is scaled by ρ, since ρ is the rate of learning-
by-doing. Moreover, the indirect effect (which, bear in mind, is capturing an individual
industry’s effect on the entire economy) is scaled by 1

J
, where J is the number of industries.

As with the direct effect, the indirect effect on each other country is scaled by 1
I
, where

I is the number of countries, as well as θ, since θ is the trade elasticity. In the case of
the indirect effect, this is balanced by the fact that the indirect effect on country i itself is
scaled by ( I−1

I
)θ; note that −( I−1

I
)θ+ (I − 1)(1

I
)θ = 0, i.e., the scale factors on the indirect

effects across the world sum to zero.
Note that if we set I = 1 (i.e., if country i is the only country in the world), then

the indirect effect is zero, and the total effect of the industry-j shock on industry h is
ρ
∑

k αhkα̃ijk, which is exactly the same as the closed-economy results from section 2.4.23

4.2.2 Welfare analysis

Results (18) and (19) below answer the question, given the aforementioned positive shock
at date t to production in industry j in country i. what effect does this have on the date
t+ 1 welfare of country m?

For any country i and any industry j:

dŴi,t+1

dŷijt
≈ (

1

J
)[1− (

I − 1

I
)(

1

1 + θ
)]ρ

∑
j′

∑
k

αj′kα̃ijk (18)

and for any pair of countries i and m 6= i and any industry j:

dŴm,t+1

dŷijt
≈ (

1

J
)[(

1

I
)(

1

1 + θ
)]ρ

∑
j′

∑
k

αj′kα̃ijk (19)

23There is a trivial difference, namely, the z terms, which by (15) are part of the α̃ terms, made no
appearance in the closed-economy results, but that is just because there were no z terms in the closed-
economy model. It would be easy to add them in, in which case we would get exactly the same result as
here.
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The intuition behind (18) and (19) partly carries over from the intuition above for
the indirect effects in Results (16) and (17) − the effects of the date t shock to industry
j on countries’ welfare at date t + 1 is a function of industry j’s first-degree centrality∑

j′
∑

k αj′kα̃ijk, and again this is scaled by ρ and 1
J

(and by 1
I

for countries other than i)
for the same reasons as above.

Note, though, that the right-hand sides of (18) and (19) have the same sign rather than
opposite signs;

∑
j′
∑

k αj′kα̃ijk is greater (less) than zero when industry j is sufficiently
central (peripheral) in the network that an increase in production in industry j in country
i induces more (less) learning in the aggregate economy of country i, in which case other
countries benefit (are hurt) as well, due to the opportunity to buy products from country
i at a lower (higher) cost.

Furthermore, note that the effect on other countries is scaled by 1
1+θ

rather than θ;
a higher θ dampens the effect on other countries rather than exacerbating it − a higher
θ means less heterogeneity in intra-industry productivity, meaning (all else being equal)
international trade is less important for a country’s welfare, meaning extra economy-wide
learning in country i benefits other countries less. (This is in contrast with Results (16)
and (17), which were looking at the effects on a specific industry h, which are exacerbated
when intra-industry productivity varies less.)

Given that the effect on other countries is scaled by (1
I
)( 1

1+θ
), this is balanced by the

effect on country i itself being scaled by [1− ( I−1
I

)( 1
1+θ

)]; note that [1− ( I−1
I

)( 1
1+θ

)] + (I −
1)(1

I
)( 1

1+θ
) = 1, i.e., the scale effects on welfare across the world sum to one.

4.2.3 Analyzing more than one period ahead

Results (16) through (19) are only telling us the effects at date t + 1; now let us consider
the effects arbitrarily far into the future. First we will consider the effects over time on
production in each industry in each country. Let Aim denote the J X J matrix whose (j, h)

element is
dŷm,h,t+1

dŷijt
(which we found an approximation for above, which does not depend

on t). Let A be the (IJ) X (IJ) matrix formed by appending the Aim matrices to each
other, so that the (i,m) block of A is Aim.

Start from an arbitrary equilibrium path {ŷ?ijt}i,j,t and consider an arbitrary vector
of shocks to production in each industry in each country at date t: let yt be the (IJ)-
dimensional vector whose first J elements are ŷ1jt − ŷ?1jt for each industry j in country 1;
the next J elements of yt are ŷ2jt − ŷ?2jt for each industry j in country 2; and so on.

If we take the first-order approximations that we found above and suppose that they
approximately hold at any arbitrary point, then we have the result that for any date t and
any length of time τ beyond t:

yt+τ ≈ (A′)τyt (20)

While the closed-economy model involved a network of industries, (20) is saying that we
can think of the open-economy model as involving a network of countries and industries,
where each node in the network is a country-industry pair, and the network matrix A
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(whose entries we found above) gives us the effect of an increase in production in industry
j in country i on every other industry in every other country, with these effects being
the aforementioned sum of direct learning spillovers and general equilibrium effects via
international trade.24

Now let us consider the effects on each country’s discounted sum of welfare, summing

from date t to∞. Let wm be the (IJ)-dimensional vector whose first J elements are dŴm,t+1

dŷ1jt

for each industry j in country 1 (which we found an approximation for above, which does

not depend on t), whose second J elements are dŴm,t+1

dŷ2jt
for each industry j in country 2,

and so on. Let W̄m denote the discounted sum of country m’s logarithm of welfare over
time, discounted at the rate δ − that is, W̄m ≡

∑∞
t=0 δ

tŴmt. Note, then, that dWm

dyt
is the

(IJ)-dimensional vector whose first J entries are dWm

dŷ1jt
for each industry j in country 1,

whose second J entries are dWm

dŷ2jt
for each industry j in country 2, and so on. Then, for any

arbitrary country m, we have the following result:

dWm

dyt
≈ δwm + δ2Awm + δ3A2wm + ...

= δ(I + δA+ δ2A2 + ...)wm

= δ(I − δA)−1wm

So we have, for any arbitrary country m:

dWm

dyt
≈ δ(I − δA)−1wm (21)

The intuition behind (21) is as follows. The left-hand side is the vector telling us
how much a shock at date t to each country-industry pair affects country m’s discounted
infinite sum of welfare from date t onward. The right-hand side is the vector of each
country-industry pair’s Bonacich centrality (from country m’s perspective) in the network
of country-industry pairs, defined as follows. Recall from section 2.4 that for any arbitrary
network, a node’s Bonacich centrality is equal to the sum of its first-degree links with
every other node discounted by δ, plus the sum of its second-degree links with other nodes
discounted by δ2, and so on. In this case the links are weighted by the vector wm, which tells

24This idea of a “network of countries and industries” is, on the one hand, fairly intuitive, but on the
other hand, I think it would be nice if I could somehow re-interpret these results as simply a network
of industries, where countries have different “positions” in the network based on which industries they
specialize in. I think there would be quite a bit of value added in pinning that down, especially for
purposes of visualization and intuition.

Furthermore, if I can precisely pin down the notion of a country’s “position” in the network of industries,
then an interesting direction to go in would be to try to characterize certain positions in the network as
more “advantageous” than other positions, perhaps using the model to somehow pin down a sufficient
statistic for a country’s future economic growth, as a function only of its initial position in the network of
industries.
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Table 2: The 37 countries

ID # Country ID # Country

1 Morocco 19 Malaysia
2 Tunisia 20 Pakistan
3 Nigeria 21 Philippines
4 Canada 22 Singapore
5 USA 23 Thailand
6 Argentina 24 Taiwan
7 Brazil 25 Belgium and Luxembourg
8 Chile 26 Denmark
9 Colombia 27 France and Monaco
10 Ecuador 28 Greece
11 Mexico 29 Ireland
12 Peru 30 Italy
13 Venezuela 31 Netherlands
14 Israel 32 Portugal
15 Japan 33 Spain
16 Turkey 34 UK
17 China, Hong Kong, and S.A.R.’s 35 Norway
18 South Korea 36 Sweden

37 Switzerland and Lichtenstein

us how much a shock to a given country-industry pair in a given time period affects country
m’s next-period welfare − which, as we found above, relates to each country-industry pair’s
first-degree centrality in the network.

4.3 International trade data

I take the model from Section 4.1 to international trade data from Feenstra et al (2005).
The data report bilateral exports among 72 countries, at the 4-digit SITC Revision 2
product level, annually over the years 1962-2000. This means that a typical observation
is that, in 1978, Japan exported to Italy $2,447,000 (in 1978 nominal US dollars) worth
of silk worm cocoons and silk waste (SITC Rev. 2 code 2614). 696 different products
appear in the 1962 data, and 1288 in the 2000 data. These data include values reported
by importing countries as well as values reported by exporting countries; I use the values
reported by importing countries, which is standard practice, since importing countries are
seen as having more of an incentive to carefully keep track of goods crossing borders.

In order to merge these data with the industry-occupation table described below, I re-
classify exports from 4-digit SITC Rev. 2 product codes into 3-digit 1997 NAICS industry
codes, using a concordance table from Feenstra and Lipsey (n.d.). I restrict the sample to
industries that appear in the industry-occupation table, and I further restrict the sample
to the importer-exporter-industry triplets that appear in both 1962 and 2000. We are left,
then, with 37 countries and 28 industries, which are listed in Tables 2 and 3, respectively.
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Table 3: The 28 industries

NAICS Industry NAICS Industry

113 Forestry and Logging 325 Chemical Manufacturing
211 Oil and Gas Extraction 326 Plastics and Rubber Products
212 Mining (except Oil and Gas) 327 Nonmetallic Mineral Products
221 Utilities 331 Primary Metal Manufacturing
311 Food Manufacturing 332 Fabricated Metal Products
312 Beverages and Tobacco Products 333 Machinery
313 Textile Mills 334 Computers and Electronic Products
314 Textile Product Mills 335 Electrical Equipment and Appliances
315 Apparel Manufacturing 336 Transportation Equipment
316 Leather and Allied Products 339 Miscellaneous Manufacturing
321 Wood Products 483 Water Transportation
322 Paper Manufacturing 512 Motion Pictures and Sound Recording
323 Printing and Related Activities 541 Professional and Scientific Services
324 Petroleum and Coal Products 562 Waste Management

4.4 Calibrating the open-economy model

Recall from the model that αjk is the intensity with which industry j uses occupation k. I
calibrate these parameters (which, by assumption, are fixed over time and across countries)
using the May 2013 industry-occupation table from the Occupational Employment Statis-
tics (OES) program at the Bureau of Labor Statistics (BLS) in the US. For each industry
j and occupation k, I set αjk equal to the number of people in occupation k that industry
j employs, divided by the total number of people that industry j employs. The industries
are at the 3-digit NAICS level and are reported above in Table 3. The occupations are at
the 2-digit SOC level and are reported in Table 4.

Further recall from the model that βj is industry j’s exponent in the Cobb-Douglas
utility function. I calibrate these parameters (which, as with the alpha parameters, I
assume in the model to be fixed over time and across countries) using the 2012 Use Table
from the Bureau of Economic Analysis (BEA) in the US. For each industry j, I set βj equal
to personal consumption expenditures on industry j divided by total personal consumption
expenditures. The industries are at the 3-digit NAICS level and are reported in Table 3.

To calibrate the size of each country’s labor force (which is fixed over time by assump-
tion), I use the 2012 World Development Indicators (WDI) from the World Bank.25 For
each country i, I set Li equal to the number of people in country i’s labor force in 2012.

There is a sizeable literature on how to calibrate trade costs in this kind of model, but
for now, for simplicity, I only consider the case of free (i.e., costless) trade − that is, for
each exporter i, industry j, and importer n, I set dijn equal to 1, meaning that trade costs
are zero.

Recall that the parameter θ governs the dispersion of total factor productivity and
hence the strength of the force of comparative advantage. There is a substantial literature

25Taiwan is not included in the World Development Indicators, so for Taiwan I use the 2012 Monthly
Bulletin of Statistics of the Republic of China.
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Table 4: The 22 occupations

SOC code Occupation

11 Management Occupations
13 Business and Financial Operations Occupations
15 Computer and Mathematical Occupations
17 Architecture and Engineering Occupations
19 Life, Physical, and Social Science Occupations
21 Community and Social Services Occupations
23 Legal Occupations
25 Education, Training, and Library Occupations
27 Arts, Design, Entertainment, Sports, and Media Occupations
29 Healthcare Practitioners and Technical Occupations
31 Healthcare Support Occupations
33 Protective Service Occupations
35 Food Preparation and Serving Related Occupations
37 Building and Grounds Cleaning and Maintenance Occupations
39 Personal Care and Service Occupations
41 Sales and Related Occupations
43 Office and Administrative Support Occupations
45 Farming, Fishing, and Forestry Occupations
47 Construction and Extraction Occupations
49 Installation, Maintenance, and Repair Occupations
51 Production Occupations
53 Transportation and Material Moving Occupations

on calibrating θ; I borrow the value 6.53 from Costinot et al (2012).
Now consider the industrial productivity parameters. Recall that zij is the average

productivity of country i in industry j. I calibrate these parameters using the revealed
productivity method of Costinot et al (2012). Using the 1962 trade data, I run the following
regression:

ln eijn = δin + δnj + δij + εijn (22)

where eijn is the value of exports in industry j from country i to country n, and δin,
δnj, δij are exporter-importer, importer-industry, and exporter-industry fixed effects, re-
spectively.26

Note that according to the model27,

ln eijn = δin + δnj + θ ln zij + εijn

Combining the above two equations, we have

26This is a computationally demanding regression, and so I do this at the 2-digit level. Thus, for any
country i and any industries j and m, industries j and m are given the same calibrated values of zij and
zim if those industries are within the same 2-digit NAICS group of industries.

27This can be seen by plugging equation (11) into equation (12) and noting that at the initial date 1962,
ψik0 is normalized to 1 for every country i and every occupation k, and

∑
k αjk = 1 for every industry j.
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zij = e
δij
θ (23)

Thus, running regression (22) and plugging the exporter-industry fixed effects into equa-
tion (23) gives us revealed measures of the productivity terms zij.

The last parameters to consider are the learning-by-doing parameters. For each occu-
pation k and country i, I normalize the inverse of the initial productivity of occupation k in
country i (ψik0) to 1. Finally, we are left with ρ, the rate of learning-by-doing in equation
(13), which is the only parameter of the model for which there is no immediately obvious
way of calibrating. I grid-search over the values -1.00, -0.99, ..., 0.00, 0.01, ... , 0.99, 1.00
to find the value of ρ that best fits the data, as described in the next section.

4.5 Open-economy quantitative exercise

To test the international model against the international trade data described in section 4.3,
I first calibrate the parameters of the model as described in section 4.4 and then perform
the following quantitative exercise.

For each value of ρ ∈ {0.0, 0.1, ..., 9.9, 10.0}, I run the model for 39 periods, representing
1962 to 2000,28 collect the model’s predictions for each country’s total exports in 2000, and
calculate the correlation coefficient (the “goodness of fit”) between these predictions and
the actual 2000 data. I then choose the value of ρ that best fits the data, and I compare
this goodness of fit with the goodness of fit of the null model (in which ρ = 0 and thus
there there is no learning-by-doing and hence no network effects).

The resulting best-fit value of ρ is 2.8, meaning that an increase of 1% in the share of
a country’s effective labor force in a particular occupation at a particular year corresponds
to a 2.8% increase in that country’s productivity in that occupation the next year. Figure
5 plots the predictions of the model (with ρ set to its best-fit value of 2.8) for the total
exports of each country in 2000 against the actual 2000 data. The goodness of fit of the
model to the data corresponds to how close the points in Figure 5 are to the 45-degree
line. The correlation coefficient between the model’s predictions and the actual data is
.181, whereas for the null model it is .087, so the model outperforms the null model by
more than two-fold.

The model thus does a good job of predicting relative growth in different countries’
total exports. Since the model actually makes predictions for exports at date t in industry
j from country i to country n, for every i, n, j, and t, there are many additional ways to
evaluate the model, which I intend to explore in future drafts of this paper.

28Note that, by normalizing the initial occupational productivity parameters {ψik0} all to 1, and by
calibrating the industrial productivity parameters {zij} using 1962 data, I am essentially calibrating the
model to best match 1962 trade patterns, and then running the model for 39 periods to see how well the
dynamics of the model (coming from the learning-by-doing equation) predict the evolution of world trade
patterns from 1962 to 2000.
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Figure 5: Model vs. Data: Predicting Each Country’s Total Exports in 2000

5 Conclusions

This paper gives us, to my knowledge, the first model that offers an explanation for how
different industries contribute differently to long-run economic growth and that can be
taken directly to data. I show that the model helps explain the evolution of the industrial
composition of the U.S., as well as growth in different countries’ total exports, over the last
half-century. When tested against such data, the model performs significantly better than
the null model in which the strength of learning spillovers across industries is set to zero.

In addition to a variety of possible robustness checks, future steps include incorporating
input-output linkages, seeking more reduced-form evidence that supports the broad ideas
of the theory without hinging on the theory’s structural assumptions, and microfounding
the learning-by-doing equation that lies at the heart of the model.
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