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Abstract

We develop a general equilibrium model of monopolistic competition with a traded

and a non-traded sector. Using preferences that generate variable markups and pro-

competitive effects, we show how trade liberalization reduces markups in the traded

sector and increases markups in the non-traded sector. Hence, while markups in

the traded sector converge across countries due to trade liberalization, they diverge

across sectors within countries. The welfare effects of trade liberalization are therefore

ambiguous: the direct positive effects in the traded sector may be dominated by the

indirect negative effects in the non-traded sector, especially when trade costs are large

and the non-traded sector is small.
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1 Introduction

The remainder of the paper is organized as follows. Section 2 lays out the preference

structure that we build upon and describes the trade model. Section 3 studies the equi-

librium in the non-traded sector, whereas Section 4 studies the equilibrium in the traded

sector. Section 5 explores the consequences of trade liberalization in both sectors. Finally,

Section 6 concludes.
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2 The model

We develop a general equilibrium model of monopolistic competition with costly trade

between two countries, ‘home’, H , and ‘foreign’, F . For simplicity, countries are assumed

to have the same population, L. We relax that assumption in Appendix and show that our

key results extend to the case of asymmetric population sizes. There are two sectors in

each country. The first one produces a continuum of horizontally differentiated varieties

of a traded good (‘manufacturing’), whereas the second one produces a continuum of

varieties of a non-traded good (‘services’). There is a single production factor, labor.

Countries have identical technologies.

2.1 Preferences

We work with homothetic preferences that are not exactly ces but that lie in a ‘small

neighborhood’ of ces preferences – in a mathematical sense that will become clear below.

There are two main reasons for using these preferences. First, homotheticity implies that

(ideal) price indices are well-defined, which simplifies the analysis considerably. Second,

that class of preferences retains some desirable properties of the ces and nests them as a

special case. Since ces preferences are the most popular ones in the international trade

literature (e.g., Krugman, 1980; Eaton and Kortum, 2002; Melitz, 2003), staying close to

them does not require us to go into completely new modeling directions. It also allows

us to strike a balance between generality and tractability. As we show later, using such

‘ε-ces preferences’ makes our analysis of the interactions between the traded and the

non-traded sectors fairly tractable even when allowing for empirically relevant features

like variable markups and varying firm sizes, which generally make the analysis fairly

involved. now define in a rigorous way what we mean by ‘being in a small neighborhood

of ces preferences’. To this end, we proceed in two steps:

Step 1: Implicitly additive homothetic preferences. As shown by Zhelobodko et al.

(2012), under symmetric additive preferences the elasticity of substitution between vari-

eties i and j, σ(xi,xj , x), is independent of the remaining consumption pattern x, given

that both varieties are consumed in equal quantities. Put differently, if xi = xj = x, we

have σ(x,x, x) = σ(x). Thus, additive preferences have a simple behavior with respect

to the elasticity of substitution. Since the substitutability across varieties is a key feature

of the demand side in models of imperfect competition, the aforementioned property

2



explains, at least partly, why additive preferences are so popular.1 However, additive

non-ces preferences are well-known to be non-homothetic, i.e., they do not have a well-

defined (ideal) price index.

To combine both desirable properties mentioned above – additivity and the existence

of an (ideal) price index – we focus on homothetic preferences for which there exists a

function s(x,u) such that

σ(x,x, x) = s(x,u(x)). (1)

In expression (1), u(x) is the consumption index, which is increasing, strictly quasi-

concave, and positive homogeneous of degree 1 in x. Moreover, observe that at a symmet-

ric consumption pattern, given by x = x 1[0,N ], where N is the mass of available varieties,

we have

u(x) = xν(N), so that s(x,u(x)) = s(x,xν(N)). (2)

As shown by Parenti et al. (2014), when preferences are homothetic the elasticity of

substitution σ depends solely on N at a symmetric consumption pattern. Combining this

fact with (2) shows that s(x,u) is positively homogeneous of degree 0. Hence, expression

(1) boils down to

σ(x,x, x) = σ(x/u(x)). (3)

The intuition behind expression (3) is as follows. If σ(z) is a decreasing function, then

a higher consumption level of both varieties makes them worse substitutes, while an in-

crease in the overall level of consumption captured by u(x) does the opposite.2 However,

a proportional change in the consumption of all varieties leaves the degree of substitutability

between any two of them unchanged.

The following proposition provides an alternative characterization of the preferences

satisfying (3).

1 [Implicitly additive homothetic preferences] A symmetric homothetic preference relationship

satisfies (3) if and only if the utility function u is described by Kimball’s (1995) flexible aggregator
ˆ N

0
θ
(xi
u

)
di = 1, (4)

where θ(·) is an arbitrary non-negative, increasing, concave, and twice continuously differentiable

function.
1Examples include, among others, Krugman (1979, 1980); Eaton and Kortum (2002); Melitz (2003);

Behrens and Murata (2007); Simonovska (2010); and Zhelobodko et al. (2012). Most of these papers stick to

ces preferences, though non-ces preferences have attracted more attention lately.
2Of course, if σ(z) is decreasing then the opposite properties hold.

3



Proof. See Appendix A.1.

Note that Kimball (1995) uses (4) to represent a production function for a fixed range

of varieties. Dotsey and King (2005) use the same approach for modeling preferences in a

macroeconomic context, having again a fixed range of varieties, while Barde (2008) does

the same in the context of a new economic geography model with a variable range of

varieties.

Step 2: Neighborhood of the ces (ε-ces). We now consider preferences of the implicitly

additive class defined above, with

θ(z) = zρ exp
(
ϕ(z)

)
, ρ ∈ (0, 1), (5)

where ϕ(·) is a twice continuously differentiable function that is sufficiently small in a

mathematical sense. To be precise, we assume that ϕ ∈ C2 (R+) and ||ϕ||C2 < ε, where

|| · ||C2 is the standard norm in the space of twice continuously differentiable functions:

||ϕ||C2 ≡ ||ϕ||C + ||ϕ′||C + ||ϕ′′||C ,

with || · ||C being the norm of uniform convergence defined as ||ϕ||C ≡ supz≥0 |ϕ(z)|. To

use (5) when solving the equilibrium conditions of the model, we need the expressions

for θ′(·) and rθ(·), which are given by

θ′(z) = zρ−1 exp [ϕ(z)]
[
ρ+ zϕ′(z)

]
, (6)

and

rθ(z) = 1− ρ− ξ(z), (7)

respectively. The residual term, ξ(·), is given by

ξ(z) ≡ zϕ′(z)

ρ+ zϕ′(z)

[
1 + ρ+ zϕ′(z)

]
+

z2ϕ′′(z)

ρ+ zϕ′(z)
. (8)

To guarantee that ||ξ||C → 0 as ||ϕ||C2 → 0, we need that zϕ′(z) and z2ϕ′′(z) uniformly

converge to zero. Therefore, we restrict ourselves to perturbations ϕ ∈ F , where F is the

closed subspace of C2 (R+) defined as

F ≡
{
ϕ ∈ C2 (R+) | lim

z→∞
z2ϕ′(z) = lim

z→∞
z3ϕ′′(z) = 0

}
. (9)

The second restriction in (9) guarantees that ||ξ||C → 0, so that we can make (5) arbitrarily

close to the standard ces case.
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2.2 Consumers

Each country has L consumers, who share identical preferences given by

Uk = U(u(xkk, xlk), v(yk)), k, l ∈ {H , F}, k 6= l, (10)

where U is a homothetic upper-tier utility; u and v are lower-tier utilities for the consump-

tion of, respectively, traded and non-traded goods; and where xkk, xlk, and yk are vectors

of individual consumption of, respectively, varieties of the traded good produced and

consumed in country k, varieties of the traded good imported from country l to country

k, and varieties of the non-traded good.

We assume that U , u, and v are strictly increasing, strictly quasi-concave and positively

homogeneous of degree 1. We also assume that the lower-tier utilities are implicitly

additive, as defined in Section ??, i.e., there exist increasing and concave functions θ and

ψ, such that for any xkk, xlk, and yk, the lower-tier utilities u and v satisfy

ˆ Nk

0
θ

(
xkki
uk

)
di+

ˆ N l

0
θ

(
xlkj
uk

)
dj = 1,

ˆ Mk

0
ψ

(
yki
vk

)
di = 1, k, l ∈ {H , F}, (11)

where uk ≡ u(xkk, xlk), vk ≡ v(yk); where Nk and N l are the (endogenously determined)

masses of firms in the traded sector in countries k and l, respectively; and where Mk is

the number of firms in the non-traded sector in country k.

Letting the wage w = 1 by choice of numéraire – and recalling that countries are

symmetric and thus have the same equilibrium wage – consumers maximize their utility

(10) subject to the budget constraint

ˆ Nk

0
pkki x

kk
i di+

ˆ N l

0
plki x

lk
i di+

ˆ Mk

0
℘ki y

k
i di = 1,

where pkki and plki are the prices of domestic and imported tradable varieties in country

k; and where ℘ki are the prices of non-tradable varieties.

Let P k and Pk denote the price indices in the traded and in the non-traded sectors

in country k, respectively. Let also α(P k/Pk) denote the share of consumer expenditure

for traded goods, which depends on the ratio of the traded and the non-traded sectoral

price indices. The functional form of α(·) is determined by the upper-tier utility, while

the value of α(P/P) is perceived by consumers as a constant (though it changes with the

price aggregates in the two sectors).
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The inverse demands can then be derived as follows. First, note that the consumers’

subproblem for the consumption of the traded good is given by:3

max
uk, xkk, xlk

uk

s.t.
ˆ Nk

0
pkki x

kk
i di+

ˆ N l

0
plki x

lk
i di = α

(
P

P

)
(12)

ˆ Nk

0
θ

(
xkki
uk

)
di+

ˆ N l

0
θ

(
xlkj
uk

)
dj = 1.

Setting zkk ≡ xkk/uk and zlk ≡ xlk/uk for notational convenience, we reformulate the

constraints asˆ Nk

0
pkki z

kk
i di+

ˆ N l

0
plki z

lk
i di =

α(P/P)
u

, and
ˆ Nk

0
θ
(
zkki

)
di+

ˆ N l

0
θ
(
zlki

)
dj = 1.

Since maximizing uk is equivalent to minimizing 1/uk, we have the following equiva-

lent reformulation of (12) as an expenditure minimization problem:

min
z

ˆ Nk

0
pkki z

kk
i di+

ˆ N l

0
plki z

lk
i di s.t.

ˆ Nk

0
θ
(
zkki

)
di+

ˆ N l

0
θ
(
zlki

)
dj = 1. (13)

The first-order conditions of (13) are given by pi = λθ′(zi), which implies that

θ′(zkki )

µk
= pkki ,

θ′(zlkj )

µk
= pklj , (14)

where µk is a sectoral market aggregate that involves the Lagrange multiplier of the

budget constraint as well as the marginal utilities of consuming tradable varieties. Using

the subproblem for the non-traded sector, we can obtain the inverse demands for the

non-traded good as follows:

ψ′
(
yki
v

)
λk

= ℘ki , (15)

where λk is sectoral market aggregate for non-tradable varieties.

2.3 Firms

Firms in both sectors incur a constant fixed cost, f , and a constant marginal cost, c, both

paid in terms of labor.4 The costs for shipping goods between countries in the traded
3Because of homothetic preferences in both the upper- and the lower-tier of the utility functions, be can

apply standard two-stage budgeting techniques.
4Introducing technological differences between sectors does not add anything substantial to the analysis

but makes the algebra more complicated.
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sector are of the standard ‘iceberg form’: τ ≥ 1 units of the good have to be shipped for

one unit to arrive. We now turn to the profits of firms in country k. The profits of firm i

in the traded sector and of firm j in the non-traded sector in country k are given by

πki = (pkki − c)Lxkki + (pkli − c)Lxkli − f and πkj = (℘kj − c)Lykj − f ,

respectively. Because countries are symmetric, we naturally focus on a symmetric out-

come. In what follows, we use the following notation, where d denotes domestic and m

denotes import values of variables:

xd ≡ xHH = xFF , xm ≡ xFH = xHF , y ≡ yH = yF ,

pd ≡ pHH = pFF , pm ≡ pFH = pHF , ℘ ≡ ℘H = ℘F ,

λ ≡ λH = λF , µ ≡ µH = µF ,

N ≡ NH = NF , M ≡ MH = MF .

u ≡ uH = uF , v ≡ vH = vF .

Because we work with a continuum of monopolistically competitive firms, no single firm

has any impact on the market aggregates µ and λ. Thus, at a symmetric outcome, the

profit-maximizing prices are given by

pd =
c

1− rθ(zd)
, pm =

cτ

1− rθ(zm)
, ℘ =

c

1− rψ(y/v)
, (16)

where rθ(zd) is the markup for domestically produced varieties of the non-traded good;

where rθ(zm) is the markup for imported varieties; and where rψ(y/v) is the markup for

non-traded varieties.

Combining (14) and (16), we readily obtain

θ′(zd)
[
1− rθ(zd)

]
= µc, θ′(zm) [1− rθ(zm)] = µcτ , θ′

(y
v

) [
1− rψ

(y
v

)]
= λc. (17)

The conditions (17), which equate marginal revenue and marginal cost, allow us to pin

down the quantities zd, zm, and y/v as functions of the market aggregates µ and λ only.

3 Equilibrium in the non-traded sector

We now study how the equilibrium in the non-traded sector changes in response to trade

liberalization, as measured by a decrease in trade costs τ . The key finding is that the
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impacts of trade liberalization on the non-traded sector are entirely channeled through

changes in the price index for traded varieties.

(11) and (16) for a given mass, M , of non-traded varieties, the symmetric equilibrium

conditions are given by

Pv = M
cy

1− rψ
(y
v

) = 1− α
(
P

P

)
, (18)

and

Mψ
(y
v

)
= 1. (19)

Solving (19) for the ratio y/v yields

y

v
= ψ−1

(
1
M

)
. (20)

Since ψ is an increasing function, the relationship (20) implies that the relative consump-

tion of each variety of the non-traded good decreases with an expanding range of varieties

in the non-traded sector. (16) and (20), the equilibrium markup for a variety of the non-

traded good is thus given by rψ
(
ψ−1 (1/M)

)
. the definition of rψ(·) in (A-1) in Appendix

A, this implies varieties decrease in response to entry if and only if rψ(·) is increasing

or, equivalently, if the elasticity of substitution σ(·) is decreasing (see Zhelobodko et al.,

2012).5

We next analyze how the price index P varies with entry. Dividing (18) by v and using

(20), we can express the price index as a function of the mass of firms as follows:

P =
cMψ−1(1/M)

1− rψ
(
ψ−1(1/M)

) . (21)

As can be seen from (21), if rψ(·) is increasing, additional entry leads to a fall in prices. In

other words, in that case more firms means tougher competition.6 The total expenditure

for the varieties of the non-traded good is given by

E(M , P ) = L [1− α(P/P)] , (22)

where we use the fact that the price index in the non-traded sector depends on M only by

(21). Combining (21) and (22) shows that E increases in response to an expansion of prod-

uct diversity because consumers value variety. Furthermore, E naturally decreases when
5The latter condition may be interpreted as follows: an increase in the consumption index v(y) makes

varieties more differentiated or, conversely, a decrease in v(y) makes varieties closer substitutes.
6Actually, rψ(·) could also be ‘moderately decreasing’ without changing that result. For simplicity, we

henceforth consider only the case where it is increasing, as this seems to be empirically more relevant.
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traded goods become cheaper due to the substitution effect between tradables and non-

tradables. This effect will be key in what follows to understand how trade liberalization

affects the economy as a whole.

Finally, using (22) and the expressions for markups imply that the equilibrium firm

size, qn, and operating profit, πn, in the non-traded sector are given by

qn(M , P/P) = cL

M

1− α(P/P)
1− rψ

(
ψ−1(1/M)

) , (23)

and

πn(M , P/P) = L

M
(1− α(P/P))rψ

(
ψ−1(1/M)

)
, (24)

respectively. These expressions will be helpful to analyze how firms’ sizes change in

response to trade liberalization.

We now need to determine the equilibrium mass, M , of firms. To this end, we assume

that there is free-entry so that profits are zero. The zero-profit condition is given by

L

M

(
1− α(P/P)

)
rψ
(
ψ−1(1/M)

)
= F . (25)

Condition (25) allows us to pin down the mass of firms in the non-traded sector as a

function of the price index, P , of traded varieties. We can show the following result.

2 [Traded prices and the mass of non-traded firms] Assume that rψ(·) is increasing and that the

budget share of non-traded goods, α(P/P), decreases not too fast. Then there exists a unique

symmetric free-entry equilibrium in the non-traded sector.

Proof. See Appendix A.2.

What is the economic contents of the assumptions underlying Proposition 2? As dis-

cussed above, the first assumption r′ψ > 0 is a necessary and sufficient condition for

entry to generate pro-competitive effects. We believe that this is the empirically plausible

case. Moreover, this condition has a purely demand side-related interpretation: a higher

consumption index is equivalent to more product differentiation. The second assump-

tion, namely that α(P/P) is a moderately decreasing function, means that traded and

non-traded goods are poor substitutes for consumers. If we think about the former as

including mostly manufactured goods, whereas the latter consist mostly of services, this
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seems to be a fairly natural assumption to make.7 In what follows, we take r′ψ(·) > 0 and

α(P/P) decreases not too fast as our benchmark assumptions.

To illustrate the latter assumption by means of a simple example, consider the follow-

ing ces upper-tier utility:

U =
[
βu(σ−1)/σ + (1− β)v(σ−1)/σ

]σ/(σ−1)
, 0 < β < 1 < σ.

In that case, we have

α

(
P

P

)
=

(P/P)1−σ

[(1− β)/β]σ + (P/P)1−σ . (26)

From equation (26) we see that when σ → 1 (i.e., goods become less and less substi-

tutable), the slope of α(·) is less and less steep. Hence, the operating profit (24) is more

likely to decrease in M since tradables and non-tradables are poor substitutes.

Equations (21) and (25) uniquely pin down the equilibrium price index, P∗(P ), and

the equilibrium number of firms, M∗(P ). More precisely, we can solve (25) for M and

plug the solution into (21). We then obtain a decreasing function P = P∗(P ). allows

us to express the equilibrium expenditure share for non-traded goods as a function of

P only: a(P ) ≡ α(P/P∗(P )). Since the expenditure share is the only channel through

which the traded sector impacts on the non-traded sector, the impact of a fall in trade costs

on the non-traded sector is fully captured by changes in the price index in the traded sector.

How does a change in P affect the consumers’ expenditure shares? Two effects are

at work. First, there is the standard substitution effect between traded and non-traded

goods, which increases α when tradables become cheaper. Second, there is the effect that

arises because an increase in α leads to more demand for traded goods, thus enticing

more firms to enter the tradable sector. This makes competition tougher in that sector

and leads to an additional fall in P . both effects work in the same direction, we have that

a(P ) unambiguously decreases with P . In other words, if trade liberalization reduces

the price index P for traded goods, expenditures on non-traded goods always decrease.

We now show that trade liberalization indeed has this effect on both sectors under fairly

plausible assumptions.

7When these two conditions do not jointly hold, there could be multiple free-entry equilibria. In that

case, we naturally focus on stable equilibria, i.e. those where

∂π

∂M

∣∣∣∣
M=M∗

< 0.
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4 Equilibrium in the traded sector

We now look at the impacts of freer trade on the traded sector. We first examine the

general case, and then discuss in detail the ε-ces case.

To simplify notation, let zd ≡ xd/u and zm ≡ xm/u. A symmetric equilibrium in the

traded sector then satisfies the following four equilibrium conditions:

(i) zero profit condition:

xd
rθ
(
zd
)

1− rθ (zd)
+ τxm

rθ (z
m)

1− rθ (zm)
=

F

cL
; (27)

(ii) Kimball’s (1995) flexible aggregator condition:

N
[
θ
(
zd
)
+ θ (zm)

]
= 1; (28)

(iii) profit maximization:

θ′
(
zd
)
(1− rθ

(
zd
)
)

θ′ (zm) (1− rθ (zm))
=

1
τ

; (29)

(iv) sectoral budget constraint:

Pu = a(P ) = Nu

[
czd

1− rθ (zd)
+

cτzm

1− rθ (zm)

]
. (30)

We first solve (28)–(29) for the relative consumption levels, zd and zm. Given the mass

of firms, N , in each country, the locus in (28) is a downward-sloping curve in (zH , zF )-

space, because θ(·) is an increasing function. The slope of the locus in (29) is positive,

which comes from the second-order condition for profit maximization (that condition is

given by rθ′ < 2; see Zhelobodko et al., 2012). As a consequence, the two curves have a

unique intersection, which we denote by
(
zd(N , τ ), zm(N , τ )

)
.

How do zd(N , τ ) and zm(N , τ ) vary with the mass of firms, N , and trade costs, τ?

When N increases, the locus in (28) is shifts downwards, while the locus in (29) remains

unchanged. Thus, both zd and zm decrease in the mass of firms. An intuitive explanation

for this result is ‘love for variety’: additional entry leads consumers’ to fragment their

budget over a broader range of varieties. Higher trade costs, τ , lead to a downward

shift of the locus in (29), while the locus in (28) remains unchanged. Thus, zd increases

with trade costs, while zm decreases with trade cost. Intuitively, freer trade shifts relative

demands away from domestically produced varieties and towards imported varieties.
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Observe that domestic markups are given by rdθ (N , τ ) ≡ rθ
(
zd(N , τ )

)
, while foreign

markups equal rmθ (N , τ ) ≡ rθ (z
m(N , τ )). Entry drives both markups downward if and

only if rθ(z) is an increasing function. In other words, whether the effect of entry is pro- or

anti-competitive is fully determined by the nature of consumers’ variety-loving behavior.

Note that for a given mass of firms, trade liberalization always shifts domestic and foreign

markups in opposite directions. More precisely, a decrease in τ drives domestic markups

downwards – and foreign markups upwards – if and only if rθ(z) is an increasing function

of z. Otherwise, the result is reversed. Hence, in the empirically plausible case, domestic

markups and foreign markups converge as trade becomes freer (in the limit, when trade

is costless, domestic and export markups are the same). We will see later that while

markups converge across countries in the traded sector, markups diverge within countries

between the traded and the non-traded sector.

We summarize the foregoing results in the following proposition:

3 [Equilibrium in the traded sector] Assume that r′θ(z) > 0. Then: (i) there exists a unique

symmetric equilibrium for any given N ; (ii) the equilibrium markups rdθ (N , τ ) and rmθ (N , τ )

both decrease with N ; and (iii) rdθ (N , τ ) decreases with τ , while rmθ (N , τ ) increases.

Proof. In the text.

How do the price index, P , and the consumption index, u, vary with the mass of firms

N and trade cost τ? We first rewrite (30) as follows:

P = P (N , τ ) ≡ cN

[
zd(N , τ )

1− rθ(zd(N , τ ))
+

τzm(N , τ )
1− rθ(zm(N , τ ))

]
,

and use the definition of homothetic preferences to obtain

u = u(N , τ ) ≡
a
(
P (N , τ )

)
P (N , τ )

.

We still need to pin down N , which is endogenously determined by free entry. To this

end, we use the zero profit condition (27), which now takes the following form:

u(N , τ )
[
zd(N , τ )

rθ(z
d(N , τ ))

1− rθ(zd(N , τ ))
+ τzm(N , τ )

rθ(z
m(N , τ ))

1− rθ(zm(N , τ ))

]
=

F

cL
. (31)

How the left-hand side of (31) varies in general with N is ambiguous, so that multiple

equilibria may a priori arise. Since the left-hand side of (31) is the traded good producers’

operating profit π(N , τ ), we focus in what follows on “stable” equilibria, i.e., those where
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∂π/∂N < 0 at N = N∗ (where N∗ denotes a solution to (31)). By doing so, we do of

course not rule out the possibility of multiple stable equilibria. We will do this in the

next subsection where we focus on a specific instance of preferences that lead to a unique

stable equilibrium.

The impact of variations in τ on firms’ profits is twofold: (i) trade liberalization re-

duces costs, which leads to rising profits; and (ii) trade liberalization shifts the price index

P (N , τ ), which may result in tougher competition, hence in lower profits. In any case, it

is implied by (31) that at any stable equilibrium trade liberalization leads to an increase in

the equilibrium mass of firms N∗ if and only if the former effect dominates the latter, i.e.,

when ∂π/∂τ < 0. If, in addition, P (N , τ ) decreases in N and increases in τ , then trade

liberalization also drives down the equilibrium value of the price index P ∗ ≡ P (N∗, τ ).

Thus, we have the following result.

4 [Decreasing price index] A sufficient condition for dP ∗/dτ > 0 is given by: (i) ∂P/∂N < 0;

and (ii) dN∗/dτ < 0.

Proof. In the text.

Can we explain the assumptions underlying Proposition 4 in terms of the model’s

primitives? The answer is ‘yes’ when preferences are “not too far from the ces”, i.e.,

when they are ε-ces. This is why we now perturb the ces equilibrium conditions to

focus on ε-ces equilibria. Doing so will allow us to derive clear-cut results while making

use of homothetic non-ces preferences. We will derive most of our analytical results by

continuity in the neighborhood of ces preferences. We show in Section ?? below – using

numerical illustrations – that these results extend to larger ‘neighborhoods’ of the ces.

Plugging expressions (6)–(7) into the equilibrium conditions (27)–(30) yields

zd
1− ρ− ξd
ρ+ ξd

+ τzm
1− ρ− ξm
ρ+ ξm

=
F

cL

P

a(P )
, (32)

N
[
(zd)ρ exp(ϕd) + (zm)ρ exp(ϕm)

]
= 1, (33)(

zd
)ρ−1 exp(ϕd)(ρ+ ξd)

[
ρ+ zdϕ′(zd)

]
(zm)ρ−1 exp(ϕm)(ρ+ ξm) [ρ+ zmϕ′(zm)]

=
1
τ

, (34)

P = cN

(
zd

ρ+ ξd
+ τ

zm

ρ+ ξm

)
, (35)

where ϕk ≡ ϕ(zk) and ξk ≡ ξ(zk) for k ∈ {d, m} for notational convenience. Clearly,

when ϕ ∈ F , we have ξk → 0 when ||ϕ||C2 → 0 (refer to Section ?? for details). In the
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limiting case we have ϕd = ϕm = 0 and ξd = ξm = 0, so that equations (32)–(35) boil

down to the standard equilibrium conditions under ces preferences (see Appendix B for

these expressions).

Plugging (35) into (32), we obtain

(1− ρ) P
cN
− ζ = F

cL

P

a(P )
, where ζ(ξd, ξm) ≡ zdξd

ρ+ ξd
+ τ

zmξm

ρ+ ξm
, (36)

is a residual term. Since ϕ ∈ F , we have ||ζ ||C → 0 when ||ϕ||C2 → 0. Solving the first

equation in (36) for N , we obtain

N = (1− ρ) La(P )

F + cL
a(P )
P ζ

. (37)

Solving (33)–(34) for zd and zm, we obtain

zm(N , τ ) =
[
N
(
τρ/(1−ρ)Aρ exp(ϕd) + exp(ϕm)

)]−1/ρ
, (38)

zd(N , τ ) = τ1/(1−ρ)Azm(N , τ ), (39)

where

A(ϕd,ϕm, ξd, ξm) ≡
[

exp(ϕd)(ρ+ ξd)
(
ρ+ zdϕ′(zd)

)
exp(ϕm)(ρ+ ξm) (ρ+ zmϕ′(zm))

]1/(ρ−1)

.

Note that A → 1 as ||ϕ||C2
0
→ 0. Finally, plugging (38)–(39) into (35) yields the expression

for the price index:

P = cN−(1−ρ)/ρ
[
Aρ exp(ϕd) + τ−ρ/(1−ρ) exp(ϕm)

]−1/ρ
(
A

ρ+ ξd
+
τ−ρ/(1−ρ)

ρ+ ξm

)
. (40)

We can now establish the following result.

5 [Existence of an ε-ces equilibrium] For ε-ces preferences, with ε ‘sufficiently small’, an equi-

librium: (i) exists; and (ii) is a small perturbation of the ces equilibrium.

Proof. See Appendix A.3.

5 The impacts of trade liberalization

We are now equipped to investigate how trade liberalization, i.e., a decrease in τ , influ-

ences the equilibrium in the traded and in the non-traded sectors. First, we look at the

traded sector. We then look at the indirect effects of trade liberalization on the non-traded

sector. As shown in Section 3, those effects stem entirely from changes in the price index

associated with the traded sector.
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5.1 Traded sector

Using the implicit function theorem, we show in Appendix A.4 that the following com-

parative statics hold in the ε-ces case when ε is small and when a(·) decreases not too

quickly:
dzd∗

dτ
> 0 >

dzm∗

dτ
,

dP ∗

dτ
> 0, and

dN∗

dτ
< 0. (41)

These comparative statics are important for assessing how markups and firm sizes in the

traded sector react to trade liberalization in the traded sector.

Markups. We first look at how domestic and export markups in the traded sector change

in response to trade liberalization. Recall that in the ces case, markups are invariant.

This is, however, no longer the case under ε-ces preferences, even when ε is small. Put

differently, even small departures from the ces lead to variable markups, and we can

investigate their behavior in response to freer trade.

In what follows, we focus on perturbations, ϕ, that generate r′θ(z) > 0 whenever

||ϕ||C2 > 0.8 In that case, which features pro-competitive effects, dzd∗/dτ > 0 > dzm∗/dτ

directly implies
drm∗θ

dτ
> 0 >

drd∗θ
dτ

. (42)

In words, trade liberalization leads to a reduction in markups for locally produced vari-

eties, and to an increase in the markups of imported varieties. Since domestic markups

exceed export markups, this means that freer trade leads to the convergence of markups

across countries. Yet, as we show in the next subsection, it also leads to a divergence of

markups across industries within countries.

Firm size. We now study how trade liberalization affects firm size, q ≡ L(xd + τxm). In

the ces case, it is well known that trade liberalization does not affect firm size but leads

to a decrease in domestic sales, xd, and an increase in exports, τxm. Perturbing the ces

preferences slightly reveals additional effects of trade liberalization on firm size. To see

this, we rewrite (32) as follows, using (7):

q
rθ(z

d)

1− rθ(zd)
+ L

a(P )

P
τzm

[
rθ(z

m)

1− rθ(zm)
− rθ(z

d)

1− rθ(zd)

]
=
F

c
. (43)

8It is worth noting that the method of establishing comparative statics “by continuity” like in Appendix

A.4 does not work with markups, for under the ces we have ∂rd∗θ /∂τ = ∂rm∗θ /∂τ = 0. Hence, we can say

nothing using continuity arguments.
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As we have shown before, a reduction in trade costs τ leads to: (i) a decrease in the

price index, P , and an increase in the expenditure share, a(P ), associated with tradables,

i.e., a(P )/P increases unambiguously; (ii) an increase in output for the foreign market,

τxm; and (iii) an increase in the markups of imported varieties, rθ(zm), and a decrease in

the markup of domestic varieties, rθ(zd). Note that the opposite effect of a fall in τ on

the markups implies that the expression in square brackets in (43) increases. Thus, the

second term on the left-hand side of (43) increases with trade liberalization. This implies

that the first term must decrease for the zero-profit condition to hold. Since domestic

markups, rθ(zd), decrease with a fall in trade costs, we can conclude that firm output q

must hence increase with trade liberalization.

The following proposition summarizes our key results concerning the impacts of trade

liberalization on firms in the traded sector.

6 [Effects of trade liberalization on the traded sector] Consider the case of ε-ces preference with

r′θ > 0. Then there exists ε such that for every 0 < ε < ε, trade liberalization leads to: (i)

lower markups for domestically produced traded varieties; (ii) higher markups for imported traded

varieties; (iii) more firms in the traded sector; (iv) larger firms, as measured by their total output,

in the traded sector.

Proof. In the text.

Observe that the results of Proposition 6 are guaranteed to hold in a ‘small neighbor-

hood’ of the ces by continuity. Furthermore, the same qualitative properties also hold

in other models of monopolistic competition, such as those by Krugman (1979), Behrens

and Murata (2007, 2012), Zhelobodko et al. (2012), and Kichko et al. (2014). Those models

feature pro-competitive effects, although they do not rely on homothetic preferences. We

hence do not claim that our results are particularly novel, but we show that they hold

more generically for a potentially large class of homothetic preferences derived from im-

plicitly additive relationships. We further show in Section ?? below that the results of

Proposition 6 may also continue to hold outside of a ‘small neighborhood’, i.e., when we

move farther away from the ces case.

5.2 Non-traded sector

We now turn to the non-traded sector. As shown in Section 3, the impacts of trade costs

on the non-traded sector are fully captured by the changes in the price index associated
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with the traded sector. Since we have established the impact of trade costs on the price

index in the foregoing subsection, the analysis is now straightforward.

Markups. Because trade liberalization makes competition in the traded sector tougher,

as shown in Section 5.1, the price index for tradables falls as trade gets freer. Furthermore,

when traded goods get relatively cheaper, operating profits in the non-traded sector are

shifted downwards because of tougher competition from the traded sector, which reduces

the expenditure share on non-tradables. As a consequence, if r′ψ > 0 and α(·) is a slowly

decreasing function, a decrease in P reduces the equilibrium mass of firms in the non-

traded sector, M∗. This, in turn, leads to an increase in both the price index and the

markups in that sector, as shown in Section 3. Put differently, trade liberalization in the

traded sector has ‘anti-competitive effects’ in the non-traded sector, whereas it has pro-

competitive effects in the traded sector. It is worth pointing out here that this effect is

entirely driven by the general equilibrium demand nature of the model, which leads to

a reallocation of expenditure across industries in the wake of trade liberalization. There

is no ‘anti-competitive behavior’ of firms, although such behavioral reactions of firms

to trade liberalization have often been put forward to explain the increase in markups

in service industries in the wake of deeper European integration (see Badinger, 2007).

With trade liberalization, the markups in the traded and non-traded sectors move in opposite

directions, and this is simply a market reaction to a change in relative prices and the

associated changes in expenditures, entry and, ultimately, toughness of competition.

Firm size. Recall that firm size in non-traded sector is given by (23), i.e.,

qn(M , P ) =
cL

M

1− a(P )
1− rψ[ψ−1(1/M)]

.

Since we assume that a(P ) decreases slowly with the price index, a change in the de-

nominator of qn, M
[
1− rψ

(
ψ−1(1/M)

)]
, provides the first-order effect for changes in

qn. Because M∗ increases with τ , so does the denominator in (23), and hence the whole

fraction decreases.

The following proposition summarizes our key results concerning the impacts of trade

liberalization on firms in the non-traded sector.

7 [Effects of trade liberalization on the non-traded sector] Consider the case of ε-ces preference

with r′ψ > 0. Then trade liberalization leads to: (i) an increase in the markups for non-traded
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varieties; (ii) an increase in the prices of non-traded varieties; (iii) fewer firms in the non-traded

sector; and (iv) larger firm sizes in the non-traded sector.

Proof. In the text.

5.3 Welfare

We now turn to the welfare effects of trade liberalization. As we have shown in Propo-

sitions 6 and 7, a decrease in τ increases market power and reduces product diversity in

the non-traded sector, whereas the opposite holds in the traded sector. Hence, the wel-

fare effects of trade liberalization are a priori ambiguous. With an unspecified upper-tier

utility function, consumers may gain or loose from freer trade, depending crucially on

the cross-sectoral versus the within-sectoral elasticities of substitution.

To make our point most clearly and to show that the impacts of freer trade are a priori

ambiguous, we consider in what follows the simplest possible instance of our framework.

Assuming that traded and non-traded goods are relatively poor substitutes, we now look

at the impacts of trade liberalization on welfare in a setup where both the upper- and

the lower-tier utilities are ces, with the upper-tier elasticity, σ, being smaller than the

lower-tier elasticity, γ (formally, we assume that 1 < σ < γ). simplicity, we assume that

the lower-tier elasticity γ is the same for traded and for non-traded goods.

Due to homotheticity, the following relationships:

u =
a(P )

P
and v =

1− a(P )
P .

Assuming ces upper-tier preferences we then have:

U =
[
βu

σ−1
σ + (1− β)v σ−1

σ

] σ
σ−1

=

[
β

(
a(P )

P

)σ−1
σ

+ (1− β)
(

1− a(P )
P

)σ−1
σ

] σ
σ−1

,

where 0 < β < 1 are weights, and where

P =
cγ

γ − 1
N

1
1−γ
(

1 + τ1−γ
) 1

1−γ and P =
cγ

γ − 1
M

1
1−γ .

are the ces price aggregates in the symmetric case for the traded and the non-traded

sectors, respectively.

As shown in Appendix C, the indirect utility is given as follows:

U =
β

σ
σ−1 (γ − 1)

cγ
γ
γ−1

(
L

f

) 1
γ−1

(
ϕ
σ−1
γ−σ + 1

) σ
σ−1

(
ϕ
σ−1
γ−σ +B

) γ
γ−1

. (44)
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Welfare changes in response to freer trade are thus given by

dU
dϕ

=

(
L

f

) 1
γ−1 β

σ
σ−1ϕ

σ−1
γ−σ−1

(
ϕ
σ−1
γ−σ + 1

) 1
σ−1
(
ϕ
σ−1
γ−σ +B

) 1
γ−1

cγ
γ
γ−1 (γ − σ)

×
σ(γ − 1)

(
ϕ
σ−1
γ−σ +B

)
− γ(σ− 1)

(
ϕ
σ−1
γ−σ + 1

)
(
ϕ
σ−1
γ−σ +B

) 2γ
γ−1

.

The sign of this derivative depends only on the sign of the numerator of the second term,

i.e., on the sign of

σ(γ − 1)
(
ϕ
σ−1
γ−σ +B

)
− γ(σ− 1)

(
ϕ
σ−1
γ−σ + 1

)
.

Using the definition of B, there are gains from freer trade if and only if

σ(γ − 1)

ϕ σ−1
γ−σ +

(
1− β
β

)σ(γ−1)
γ−σ

− γ(σ− 1)
(
ϕ
σ−1
γ−σ + 1

)
> 0. (45)

Condition (45) naturally depends on the relative sectoral weights, β, the two elasticities

of substitution, γ and σ, as well as trade costs ϕ (which contains τ ). Since ϕ ∈ [1, 2] there

are gains from trade irrespective of the value of τ if and only if the foregoing condition

holds for ϕ = 1. This yields,

σ(γ − 1) +
(

1− β
β

)σ(γ−1)
γ−σ

σ(γ − 1)− 2γ(σ− 1) > 0

or, equivalently,

β <
1[

2γ(σ−1)
σ(γ−1) − 1

] γ−σ
σ(γ−1)

+ 1
. (46)

The right-hand side of (46) is between 1/2 and 1. Stated differently, there are gains from

freer trade in the traded sector for all values of trade costs if and only if the weight β of

the traded sector in the utility is sufficiently small.

Several comments are in order. First, we can show that 2γ(σ−1)
σ(γ−1) > 1 for all values of

γ > σ. One can check that as β → 0, dU/dϕ goes to zero as well. In a nutshell, if the

traded sector is small, there are gains from trade in that sector, though the gains to the

overall economy are small too. The gains in the traded sector are a direct effect of trade

liberalization on welfare. That effect is always positive. The indirect effect of the traded
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sector on the non-traded sector is very small when β is small (since the price index barely

changes). In that case, the direct effect in the traded sector dominates the indirect effect

in the non-traded sector, and there are gains from trade. Note also that gains from trade

are more likely to arise if trade costs are low. Indeed, we can express condition (45) in

term of ϕ as follows:

ϕ >

γ(σ− 1)− σ(γ − 1) ((1− β)/β)
σ(γ−1)
γ−σ

γ − σ


γ−σ
σ−1

,

which shows that gains are more likely to arise of ϕ is large, i.e., trade is sufficiently free.

This result is similar to the result in Brander and Krugman (1983), that trade integration

may actually reduce welfare if trade costs are sufficiently large, whereas it may yield gains

once trade is sufficiently free. The reason in our model is, however, very different from

the reciprocal dumping of Brander and Krugman (1983). It is in our case fully driven

by the effect of trade on the non-traded sector via the traded price index. If trade costs

are high, a decrease in ϕ has a large impact on the price index for traded goods and,

therefore, on the non-traded sector. In that case, the direct effect may be dominated by

the indirect effect and losses from trade may occur. When trade costs are low, however,

the direct may dominate the indirect effect and gains from trade may occur.

It should be clear from the foregoing discussion that losses from trade may arise for

a broad class of utility functions and model specifications if there are: (i) pro-competitive

effects in the traded and in the non-traded sectors; (ii) if the traded sector is relatively

large, so that the indirect price effect on the non-traded sector is large; and (iii) if trade

costs are relatively high. Since trade costs are relatively low nowadays, whereas the traded

sector represents only a small share of most developed economies, gains from trade in

those economies seem the more likely outcome.

Last, it is also worth emphasizing that our welfare results are a simple illustration of

the general theory of the second-best (see Lipsey and Lancaster, 1956). As is well known,

when markets are not perfectly competitive, correcting the distortions in one market (the

traded good sector in our case, where freer trade reduces monopoly distortions) may

exacerbate the distortions in another market (the non-traded good sector in our case,

where monoply distortions increase). The resulting welfare effects are ambiguous in that

case, and we have used the simplest possible example to illustrate that they can go either

way and that no pathological example is required for this.
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6 Conclusion

In this paper, we have developed a two-country trade model with a traded and a non-

traded sector in each country. Both sectors are monopolistically competitive. Consumers

have generally non-ces preferences, so that markups and firm sizes are variable. Using

preferences described by Kimball’s (1995) flexible aggregator, these preferences remain

homothetic, which simplifies the analysis significantly. Furthermore, these preferences

encompass the ces as a special case, which allows us to derive a number of results for

non-ces preferences in a ‘small neighborhood’ of the ces.

Our two key results relate to markups and welfare. First, we show that while trade

liberalization promotes the convergence of markups across countries, it leads to the diver-

gence of markups across sectors within countries. This finding may explain the empirical

evidence that suggests that markups for traded manufacturing goods has decreased in the

wake of the Single Market Program of the European Union in the 1990s, where markups

for non-traded services has increased (Badinger, 2007). Although anti-competitive prac-

tices have been put forward as a possible explanation, our model shows that simple

market-driven general equilibrium effects are enough to generate that outcome.

Second, as markups fall and product diversity rises in the traded sector, yet markups

rise and product diversity shrinks in the non-traded sector, the welfare impacts of trade

integration are a priori ambiguous. In particular, if trade costs are high, if preferences are

such that pro-competitive effects arise in both industries, and if the traded sector is large,

losses from trade may arise. Even when all preferences are ces this may occur, which

suggest that this finding is not a theoretical curiosum. However, since trade costs are

relatively low nowadays, whereas the traded sector represents only a small share of most

developed economies, gains from trade in those economies seem to be the empirically

more plausible outcome.
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Appendix

A. Proofs of Propositions

A.1. Proof of Proposition 1 Given θ(z), the proof of the “if” part essentially boils down

to choosing a σ(z) which satisfies

1
σ(z)

= rθ(z) ≡ −
zθ′′(z)

θ′(z)
. (A-1)

Conversely, to prove the “only if” part, we choose θ(z) satisfying (A-1) for a given σ(z).

Assume that (4) holds. Then, since the inverse demands are given by (14), the elasticity

ηi of the inverse demand for variety i is given by

ηi = rθ

(
xi
u(x)

)
, (A-2)

where rθ(·) is defined by (A-1). As shown by Parenti et al. (2014), for any symmetric

preferences defined over a continuum of goods, the following equality holds:

σ(xi,xj , x)
∣∣
xi=xj

=
1
ηi

. (A-3)

Combining (A-2) with (A-3) and setting σ(z) ≡ 1/rθ(z), we obtain (3). This proves the

“if” part of Proposition 1.

To prove the “only if” part, assume that (3) holds for a given σ(z). It is straightforward

to verify that implicitly additive preferences with θ(·) defined by

θ(z) ≡
ˆ z

0
exp

(
−
ˆ ς

1

dξ
ξσ(ξ)

)
dζ

also satisfy (3) for the same σ(z). Since a preference relationship is uniquely determined

by its elasticity of substitution, this completes the proof. �

A.2. Proof of Proposition 2 When r′ψ(·) > 0, and α(P/P) decreases not too fast, then

the operating profit (24) is a decreasing function of M . In this case, (25) has a unique

solution M∗. Plugging M∗ into equations (22) and (23) and using the definition of the

markups then determines a unique symmetric free-entry equilibrium. �
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A.3. Proof of Proposition 5 Denote by ε ≡ (ϕd, ϕm, ξd, ξm, A, ζ) the vector of ‘shocks’

entering (37) and (40). We first show that equations (37) and (40) have a unique solution

(P ∗CES , N∗CES) when ε = 0.

To see this, observe that when ε = 0, equations (37) and (40) boil down to

N = (1− ρ)L
F
a(P ), (A-4)

and

P = N1/(1−σ)
(

cσ

σ− 1

)(
1 + τ1−σ

)1/(1−σ)
, (A-5)

which are the standard expressions for the ces case. Plugging (A-5) into (A-4) yields an

equation which uniquely pins down the equilibrium number of firms, N∗CES , provided

that a(·) is a sufficiently slowly decreasing function (which we assume, as explained

before). Substituting N∗CES back into (A-5), we then obtain the unique equilibrium value

of the price index for traded varieties, P ∗CES .

It then follows from the implicit function theorem that there exists an open set V ⊆ R6,

such that: (i) 0 ∈ V ; (ii) (37) and (40) have a solution (P ∗(ε), N∗(ε)) for any ε ∈ V ; and

(iii) this solution converges to (P ∗CES , N∗CES) as ε→ 0. �

A.4. Expressions for comparative statics The implicit function theorem implies that, for

a small enough vector ε, the solution
(
zd∗, zm∗, P ∗, N∗

)
of equations (32)–(35) is twice

continuously differentiable in (ε, τ ). This implies then that ∂zd∗/∂τ , ∂zm∗/∂τ , ∂P ∗/∂τ ,

and ∂N∗/∂τ are all continuous in ε. We may thus conclude that if, for example, ∂zd∗/∂τ >

0 in the ces case, this result will be preserved by continuity for the ε-ces case when ε is

small. Thus, it suffices to conduct comparative statics of
(
zd∗, zm∗, P ∗, N∗

)
for the ces

case, and all results for the ε-ces case are then obtained by continuity.

The expressions for the ces case are given in Appendix A.3. Denote the right-hand

side of (A-5) by P (N , τ ). We have

∂P

∂N
< 0 and

∂P

∂τ
> 0. (A-6)

Totally differentiating (A-4) with respect to τ yields

dN∗

dτ
= (1− ρ)L

F
a′
[
P (N∗, τ )

] ( ∂P
∂N

dN∗

dτ
+
∂P

∂τ

)
,

so that
dN∗

dτ
=

(1− ρ)La′
[
P (N∗, τ )

]
F − (1− ρ)La′

(
P (N∗, τ )

)
∂P
∂N

∂P

∂τ
. (A-7)
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Since we assume that a′(·) is small enough in absolute value, (A-7) immediately implies

dN∗

dτ
< 0. (A-8)

It is worth pointing out, however, that when a′(·) is sufficiently small, dN∗/dτ is also

small in absolute value.

Turning to the relative consumptions zd(N , τ ) and zm(N , τ ), they are determined

from expressions (32)–(33) and are given by

zm(N , τ ) =
[
N
(

1 + τρ/(1−ρ)
)]−ρ

, and zd(N , τ ) = τ1/(1−ρ)
[
N
(

1 + τρ/(1−ρ)
)]−ρ

.

Plugging N = N∗ into the foregoing expression and totally differentiating it

dzd∗

dτ
=

(
∂zd

∂N

dN∗

dτ
+
∂zd

∂τ

)∣∣∣∣
N=N∗

,
dzm∗

dτ
=

(
∂zm

∂N

dN∗

dτ
+
∂zm

∂τ

)∣∣∣∣
N=N∗

. (A-9)

Because, as discussed above, the magnitude of dN∗/dτ is small, (A-9) implies

dzd∗

dτ
> 0 >

dzm∗

dτ
.

We next study how the price index P ∗ varies with trade costs τ . Totally differentiating

P ∗ = P (N∗, τ ) with respect to τ yields

dP ∗

dτ
=

(
∂P

∂τ
+
∂P

∂N
· dN∗

dτ

)∣∣∣∣
N=N∗

.

Combining this expression with (A-6) and (A-8), we finally obtain

dP ∗

dτ
> 0.

B. Expressions for the ces case

The equilibrium conditions for the traded sector under ces preferences are given by:

zH + τzF =
ρ

1− ρ
F

cL

P

a(P )
, (B-1)

N
[(
zH
)
ρ +

(
zF
)
ρ
]
= 1, (B-2)

(
zH

zF

)ρ−1

=
1
τ

, (B-3)

P =
c

ρ
N ·

(
zH + τzF

)
. (B-4)
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C. Welfare in the ces-ces case

In this appendix, we derive the expression for the indirect utility in the case where both

the upper- and the lower-tier utilities are of the ces form.

The zero-profit conditions in the two sectors take the following form:

(℘− c)Ly = f and (pd − c)Lxd + (pm − τc)Lxm = f .

Given constant markups in each sector, we then have the following quantities:

y =
(γ − 1)
cL

f and xd + τxm =
(γ − 1)
cL

f .

Using the budget constraints M℘y = 1−α, and Npdxd+Npmxm = α, we can then derive

the equilibrium masses of firms in both sectors:

M =
L

fγ
(1− α) and N =

L

fγ
α. (C-1)

Plugging (C-1) into the price indices, the ratio P/P of the price indices is given by:

P

P =

cγ
γ
γ−1

γ−1

(
L
f α
) 1

1−γ (1 + τ1−γ) 1
1−γ

cγ
γ
γ−1

γ−1

[
L
f (1− α)

] 1
1−γ

=
α

1
1−γ
(
1 + τ1−γ) 1

1−γ

(1− α)
1

1−γ
.

The expenditure share for the tradables takes the following form

α

(
P

P

)
=

(P/P)1−σ

[(1− β)/β]σ + (P/P)1−σ

=
α
σ−1
γ−1
(
1 + τ1−γ)σ−1

γ−1

[(1− β)/β]σ (1− α)
σ−1
γ−1 + α

σ−1
γ−1 (1 + τ1−γ)

σ−1
γ−1

.

Solving this equation for α we obtain

α =

(
1 + τ1−γ) σ−1

γ−σ

(1 + τ1−γ)
σ−1
γ−σ + [(1− β)/β]

σ(γ−1)
γ−σ

.

For notational convenience, let B = [(1− β)/β]
σ(γ−1)
γ−σ > 0 and ϕ = 1 + τ1−γ ∈ (1, 2), so

that the expenditure shares can be expressed as follows:

α =
ϕ
σ−1
γ−σ

ϕ
σ−1
γ−σ +B

and 1− α =
B

ϕ
σ−1
γ−σ +B

. (C-2)
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Using (C-2), we first rewrite the price indices as follows:

P =
cγ

γ
γ−1

γ − 1

(
L

f
α

) 1
1−γ (

1 + τ1−γ
) 1

1−γ
=
cγ

γ
γ−1

γ − 1

(
L

f

) 1
1−γ
(

ϕ
σ−1
γ−σ

ϕ
σ−1
γ−σ +B

) 1
1−γ

ϕ
1

1−γ

=
cγ

γ
γ−1

γ − 1

(
L

f

) 1
1−γ
(

ϕ
γ−1
γ−σ

ϕ
σ−1
γ−σ +B

) 1
1−γ

so that

α

P
=

γ − 1

cγ
γ
γ−1

(
L

f

) 1
γ−1
(

ϕ
γ−1
γ−σ

ϕ
σ−1
γ−σ +B

) 1
γ−1

ϕ
σ−1
γ−σ

ϕ
σ−1
γ−σ +B

=
γ − 1

cγ
γ
γ−1

(
L

f

) 1
γ−1
(

ϕ
γ−1
γ−σ

ϕ
σ−1
γ−σ +B

) γ
γ−1

1
ϕ
=
γ − 1

cγ
γ
γ−1

(
L

f

) 1
γ−1
(

ϕ
σ−1
γ−σ

ϕ
σ−1
γ−σ +B

) γ
γ−1

.

Turning to the non-traded sector, we have:

P =
cγ

γ
γ−1

γ − 1

(
L

f
(1− α)

) 1
1−γ

=
cγ

γ
γ−1

γ − 1

(
L

f

) 1
1−γ
(

B

ϕ
σ−1
γ−σ +B

) 1
1−γ

.

We can now derive the expression for the indirect utility as follows:

U =

(
β
(α
P

)(σ−1)/σ
+ (1− β)

(
1− α
P

)
(σ−1)/σ

)σ/(σ−1)

=

β
 γ − 1

cγ
γ
γ−1

(
L

f

) 1
γ−1
(

ϕ
γ−1
γ−σ

ϕ
σ−1
γ−σ +B

) γ
γ−1

1
ϕ


σ−1
σ

+ (1− β)

 γ − 1

cγ
γ
γ−1

(
L

f

) 1
γ−1
(

B

ϕ
σ−1
γ−σ +B

) γ
γ−1
σ−1

σ


σ
σ−1

=

=
γ − 1

cγ
γ
γ−1

(
L

f

) 1
γ−1

β( ϕ
γ−1
γ−σ

ϕ
σ−1
γ−σ +B

) γ(σ−1)
σ(γ−1) (

1
ϕ

)(σ−1)/σ

+ (1− β)
(

B

ϕ
σ−1
γ−σ +B

) γ(σ−1)
σ(γ−1)


σ/(σ−1)

=
γ − 1

cγ
γ
γ−1

(
L

f

) 1
γ−1

βϕ σ−1
γ−σ + (1− β)B

γ(σ−1)
σ(γ−1)(

ϕ
σ−1
γ−σ +B

) γ(σ−1)
σ(γ−1)


σ
σ−1

=
β

σ
σ−1 (γ − 1)

cγ
γ
γ−1

(
L

f

) 1
γ−1

 ϕ
σ−1
γ−σ + 1(

ϕ
σ−1
γ−σ +B

) γ(σ−1)
σ(γ−1)


σ
σ−1

=
β

σ
σ−1 (γ − 1)

cγ
γ
γ−1

(
L

f

) 1
γ−1

(
ϕ
σ−1
γ−σ + 1

) σ
σ−1

(
ϕ
σ−1
γ−σ +B

) γ
γ−1

.
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Hence, the indirect utility is given as follows:

U =
β

σ
σ−1 (γ − 1)

cγ
γ
γ−1

(
L

f

) 1
γ−1

(
ϕ
σ−1
γ−σ + 1

) σ
σ−1

(
ϕ
σ−1
γ−σ +B

) γ
γ−1

. (C-3)
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