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Different specifications of the constant elasticity of substitution (CES) production functions 

essentially differ in their properties; this leads to a non-robustness with respect to functional 

form in well-known models of production, economic growth and international trade. Klump and 

de La Grandville (20000 introduced a concept of normalized CES production function. This 

class of functions insures robustness and now is used intensively in various economic research. 

However, such contraction of the class of production function needs more profound motivation. 

The work on developing microfoundations and studying general properties of this class of 

production function is just begun. In our paper, for the analysis of the class of normalized CES 

functions, we use an approach based on representation of a ‘global’ neoclassical production 

function as a solution of a problem of optimal choice of a ‘local’ technology from a 

technological menu. We introduce a concept of a family of normalized technological menus and 

use it to derive a series of new properties of normalized CES production functions. Special 

attention is devoted to families of functions which are induced by some other production 

function and, symmetrically, to families of technological menus which are induced by some 

other technological menu. We study duality of these objects and demonstrate their relationship to 

some results known in the literature on production functions: the production function with 

“variable” elasticity of substitution introduced by Antony (2009) and the representation of the 

Cobb-Douglas function used by Jones (2005).  
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1. Introduction 

 

Constant elasticity of substitution (CES) production function is an important tool in 

analysis of production and efficiency. However, different specifications of the CES function 

essentially differ in their properties. In particular, two-factor function ppp LKY /1)(   under 

fixed ),( LK  decreases in p  on each of the intervals )1,0(),0,( , while function 

10,))1(( /1   ppp LKY  – increases in p (see Martemyanov and Matveenko, 2014). 

This leads to unrobustness with respect to functional form in several well-known models of 

production, economic growth and international trade.  

Klump and de La Gandville (2000) and Klump and Preissler (2000) introduced a concept 

of normalized CES production function; one of its equivalent representations is  
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where ,,, 000 YLK  are some fixed benchmark (baseline) values, 10  . This function is an 

immediate generalization of the CES function ppp LKA

1

))1((    introduced by Arrow et al. 

(1961).  

Being a special case of the general class of CES production function, the family of 

normalized production functions has attractive properties. As it is expressed by Klump and Saam 

(2008), normalization is necessary to avoid “arbitrary and inconsistent results”. 

 Due to this “consistency”, the normalized CES production functions have become a 

popular tool in a variety of economic research (see Klump et al., 2012). Here are several 

examples of usage of normalized CES production functions. Klump and de La Gandville (2000), 

Klump and Preissler (2000), Papageorgiou and Saam (2008), Mallick (2012), Xue and Yip 

(2012) investigate the effect of the elasticity of substitution on the transitional dynamics in 

models of economic growth. Miyagiwa and Papageorgiou (2003) study the effect of change of 

the elasticity of substitution on wages. Saam (2004) studies the role of a rise in the elasticity of 

substitution in distributional effects of reforms aimed to promote economic growth; she shows 

that the choice of the point of normalization influences the existence of a trade-of between 

growth and equality. Guo and Lansing 2009, Wong and Yip 2010 and Photphisutthiphong and 

Weder, 2012 examine the role of the elasticity of substitution under conditions in which there is 
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uncertainty in the local equilibrium model of the business cycle. Growiec et al. (2015) use a 

model with normalized CES production functions for analysis of dynamics of labor share in 

different countries.  

Though normalized CES production functions are actively used in research for fifteen 

years, work on the construction of microfoundations and theoretical analysis of this class of 

functions has only just begun. The usage of normalized CES production functions meets 

criticism which is connected, in particular, with the absence of interpretation of the benchmark 

point (see, for example, Temple, 2012). 

In the present paper for analysis of the class of normalized CES functions we use an 

approach which is connected with representation of any ‘global’ neoclassical production function 

as a solution of a problem of optimal choice of a ‘local’ technology from a technological menu:

),(max),( LlKlLKF LK
l




 , where Λ is technological menu, LK ll ,  are factor efficiencies (‘local’ 

technology), and   is ‘local’ production function. A universal ‘local’ production function which 

can be used for representation of any ‘global’ production function is the Leontief function 

 LlKlLlKl LKLK ,min),(   which possesses a zero elasticity of substitution.  

This approach was initially proposed by Rubinov and Glover (1998) for abstract 

increasing positively homogeneous function, used by Matveenko (1997) for production functions 

(see also Rubinov, 2000), and was later reopened by Jones (2005) for the special case of ‘global’ 

Cobb-Douglas production function. The approach is developed in Growiec, 2008a, Growiec, 

2008b, Matveenko, 2010, Matveenko, 2011, Growiec, 2013, Hrendash and Matveenko, 2015. 

As a primal object, we consider not production function, but the technological menu 

which generates it. Technological menu is a dual object in relation to the production function, 

and is associated with the idempotent duality, not with the usual linear.  We introduce a concept 

of family of normalized technological menus, study its properties, and derive a series of new 

properties of normalized production functions. Such approach allows to use a direct description 

of changes of production technologies. As result, we obtain a possibility to evaluate, from the 

point of view of technological changes, assumptions concerning normalized production functions 

which were not motivated by previous authors; in particular, we provide economic interpretation 

for the benchmark point. The use of technological menus as a primary object, which generates 

production function, opens broad possibilities to study models of technological changes. In 

particular, it is more natural and simple to speak about creation of new technologies in terms of 

technological menus.  
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   Despite the fact that normalized production functions are broadly used to-day, many 

authors (among them Grossman, Maggi, 2000, Bentolila and Saint-Paul, 2003, Fan, 2005, Jones, 

2011, Ngienthi et al., 2013) use the CES production function of type ppp LKA /1)(  , which 

cannot be normalized. We study differences in properties of normalized and non-normalized 

technological menus and, on this base, explain differences in properties of various types of 

production functions, and identify situations, in which it is more natural to use one or another 

specification of production function. We also discuss, in what way parameters of the CES 

production functions are determined by parameters of probability distributions in models of ideas 

flow, which serve probability-theoretic foundations of production functions.  

 

2. Normalized CES production functions 

 

Families of normalized CES production functions can be defined as possessing the following 

properties:  

(a) Function in the family for different values of the parameter p  (i.e. for different values of 

the elasticity of substitution )1/(1 p )  has the prototype form  

ppp LKAY

1

))1((   ,   (1) 

where A and  , generally speaking, depend on p .  

(b) For a family of normalized CES production functions a point of normalization 

(benchmark point) is specified. At this point all the functions of the family for any p   have the 

same benchmark values 
0000 ,,, MRTSYLK  

1
. 

The intensive form of the prototype form (1) is obtained by dividing both sides of 

equation (1) by L and transition to the variables LKkLYy /,/  :   

ppkAy

1

)1(   .    (2) 

 

                                                           
1
 The MRTS  - marginal rate of technical substitution for production function function ),( LKF  - is defined as 

).//()/(/ KFLFdLdKMRTS 
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Building normalized CES functions  

Let the benchmark values ,,, 000 YLK  dLdKMRTS /0   be given. To build a family 

of the normalized CES function, we can use the intensive prototype form (2). Then
  

pk 
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where ./ 000 LKk   Hence, 
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Substituting into (2), we obtain 
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Now extract A from (4) and substitute into (3): 
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where the coefficient )1,0(
00

0 






k

k
 does not depend on p . Equation (5) describes the 

family of the normalized CES function in the intensive form. The same family in the extensive 

form is: 
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 PROPOSITION 1. For any function of normalized family (i.e. for any p), in the 

benchmark point 
0k  factors receive shares which are equal to   and  .1   In any point  

0)( kk   ratio of factor shares, LK  / , is increasing(decreasing) in elasticity of 

substitution between factors. 

 Proof: See the Appendix. 

 This result is consistent with empirically supported fact that for developed countries (i.e., 

for sufficiently large k) elasticity of substitution increases together with an increase in the capital 

share (e.g., Duffy and Papageorgiou, 2000, Karabarbounis and Neiman, 2014). 

 

A differential equations approach to the CES functions 

For production function with constant returns to scale 

L

K
kkLfLKFY  ),(),(

 

elasticity of substitution satisfies the equation
2
 

f

f

r

e


1
 ,            (7) 

where 
f

kf
e f


  is elasticity of function f , 

f

kf
rf




  is its “convexity”

3
. Given 1 , a 

solution of the second order differential equation (7) is the intensive form CES function 

1

2

1

1)(




















 kkf

,  (8)  

                                                           
2
 In the literature this identity occurs in a cumbersome form with usage of function f  and its derivatives, f   and

f  . 

3
 The function fr  is known as the Arrow-Pratt coefficient of relative risk aversion.  
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where 
1  and 

2  are constants which specify partial solutions of the differential equation. They 

may depend on  . Forms  (2) and (8) are equivalent, with ,/1

1

pA  ./)1(2    

For 1  the solution of (7) is Ak , i.e. the intensive form Cobb-Douglas function.  For 

02   (8) is linear function. When ,0  (8) turns into Leontief function. 

We have to note that (8) describes various families of the CES functions, not only 

normalized ones. For example, for 1,1 21     we come to the family of the CES functions 

ppp LK

1

)(   which cannot be written as normalized. 

The normalized CES functions families are those partial solutions of equation (7) which 

are defined by fixed benchmark values for each  .  

PROPOSITION 2. For each  , there exists a unique partial solution of the differential 

equation (7) which corresponds to given fixed benchmark values, 
000 ,, yk . This solution 

defines a normalized CES function in the intensive form (5).  

Proof: See the Appendix.  

 

Induced family of normalized CES functions  

Till now the benchmark values 
000 ,, YLK  and 

0   have been chosen arbitrarily and were 

not connected with each other. However, it is natural to consider the case when the benchmark 

values are generated by a function or are solution of an optimization problem.  

Let a function ),( LKF  be given. Let us assume that this function has CRS and other  

standard neoclassical properties of production function. Let us take arbitrarily ),( 00 LK ,  

),( 000 LKFY   and ),(
/

/
000 LK

KF

LF




  as benchmark values. In such case we say that the 

family of normalized CES production functions is induced by function F  at point ).,( 00 LK    

LEMMA 1.  For the induced family, coefficients   and 1  in equation (6) are the 

factor shares of the inducing function F at point ),( 00 LK .   

Proof: See the Appendix. 



9 
 

 By Lemma 1, the family of normalized CES functions, which is induced by the function

F at point ),,( 00 LK has the form  
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Because of homogeneity of function F , of importance for the induced CES function is 

the capital to labor ratio, ,/ 000 LKk  but not the precise values ., 00 LK  Function (9) can be 

rewritten as  

p
pp

p

L
kf

kkf
K

kf

kkf
kfY

1

0

00

0

1

00
0

)(

)(
1

)(

)(
)( 


















 







, 

where )1,()( 00 kFkf  .  

 In particular, let us find families of normalized CES production functions which are 

induced by Cobb-Douglas function and CES function.  

In the case when the inducing function is the Cobb-Douglas function 

  1),( LAKLKF ,  where 10,0  A , because of Lemma 1,   11, ; 

therefore, the induced family of CES functions (9) is  
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.    (10) 

In the limit, when 0p , function (10) is the initial inducing Cobb-Douglas function  

  1),( LAKLKF . 

When the inducing function is the CES function qqq bLaKALKF

1

)(),(  , where 

,0,, baA )1,0()0,( q , by Lemma 1, )/(1),/( 000000

qqqqqq bLaKbLbLaKaK   ; 

therefore, the induced family of normalized CES functions is 

 p
ppqppqpqqq LbLKaKbLaKAY

1

00

11

00 )( 


 .  (11) 

If qp   then the induced function  (11) coincides with the inducing function   
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qqq bLaKALKF

1

)(),(  . 

Function (11), after simple transformation, can be rewritten in the intense form as  
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Antony (2009) took into consideration production function (12), suggesting that it has a 

variable elasticity of substitution and used this function in a number of economic studies 

supposing this property. It is hard to agree with that since our derivation of function (12) shows 

that it is actually usual NCESF. The fact that under given  p function  (12) at benchmark point 

0kk   takes benchmark value qq bakAy

1

0 )(  seems to us as natural property of NCESF; and 

this fact does not mean, as Antony suggests, that the elasticity of substitution of function (12) at 

point  0k  differs from )1/(1 p . 

 Coefficients before pK  and pL in formulas (10) and (11) depend on p, except the case 

00 LK  . When 
00 LK    (10) is 

 p
pp LKAY

1

)1(   ,   (13) 

and (11) is 

p
ppq L

ba

b
K

ba

a
baAY

1
1

)( 












 .   (14) 

If not only
00 LK  , but also 1 ba , then forms of normalized CES functions (13) and 

(14) coincide; (14) does not depend on q.  Vice versa, when 
00 LK   and 1 ba ,  (14) 

depends on q: 

 ppppq LKAY
111

2 


.    

Such approach makes it possible to consider the preferred benchmark point. Let some 

basket of factors ),( LK  be given and fixed. Let an inducing function F  be given, but let a 

freedom be in the choice of benchmark point. Which point of normalization 
0k  should be chosen 

in order to maximize output of the induced normalized CES production function at the point
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),( LK ? We answer this question for the case when inducing functions are Cobb-Douglas and 

CES functions.  

 PROPOSITION 3. If the inducing function is the Cobb-Douglas function

  1),( LAKLKF , then, under given basket of factors ),( LK , the maximum of the induced 

normalized CES production function for any 0p  is achieved when LKk /0  . 

 Proof: See the Appendix. 

 PROPOSITION 4. If the inducing function is the CES function 

qqq LKALKF

1

))1((),(   , then, under given basket of factors ),( LK , the maximum of the 

induced normalized CES production function for any 0p   is achieved when LKk /0  . 

Proof: See the Appendix. 

 

Induced family of production functions with arbitrary MRTS  

Again, let the Cobb-Douglas function   1),( LAKLKF , where 10,0  A be 

inducing function; let us take as  a benchmark point arbitrary point ,),( 00 MLK 
  

where

}1:),{( 1   LAKLKM . Above, while building induced family of normalized CES 

functions, we used 0  equal to the MRTS in point  ),,( 00 LK  i.e. .
1

00 k






  Now let us 

expand our opportunities and while defining
0 , let us take arbitrary positive number 
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and  family of normalized CES functions has the form 
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Again, let us consider the problem of optimal choice of point ).,( 00 LK  
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PROPOSITION 5. For any 0, LK ,  

),,(~max ),(,
),(

1

00
00

LKgLAK LKp
MLK 

 

  
 (15) 

and in point of maximum, .// 00 LKLK   

Proof: See the Appendix. 

 

3. Production function as a result of optimal choice of technology from a technological 

menu 

 

Representations of production functions 

Let us consider production function ),( LKAF , where A is TFP, K is capital, L is labor. It is 

assumed that the function F possesses the standard neoclassical properties (has constant return to 

scale – CRS, increases, has decreasing returns). The contribution of individual factors can be 

identified on the basis of their marginal or average productivity. Accordingly, there are two 

representations of the production function. Well-known is the representation of the production 

function by use of the Euler theorem: 
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  ,  (where 1);1,0(,  LKLK  ) are, correspondingly, 

capital share and labor share in the income. For a set of factor prices )},{( LK pp  the 

production function can be represented as a result of solution of the choice problem
4
: 

)(min),(
),(

LpKpLKAF LK
pp LK




.  (16) 

 A parallel in many respects representation is the following representation
5
  

},min{max),(
),(

LlKlLKAF LK
ll LK 

 .  (17) 

                                                           
4 A model providing microfoundations for this equation is proposed by Matveenko (2013). 

5
 This representation was first introduced by Rubinov and Glover (1998) and Matveenko (1997) for general type n-

factor production function and later by Jones (2005) for the special case of two-factor Cobb-Douglas function. See 

also Rubinov, 2000 and Matveenko, 2010.  
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Here },min{ LlKl LK  is the Leontief production function
6
.  

Representation (17) is a model of choice of technology. A firm (country) has available a 

set of Leontief ‘local’ technologies – a technological menu . Given bundle ),( LK of 

production factors and searching for the maximum output, the firm (country) chooses a Leontief 

technology ),( LK ll  from the technological menu  . In result of this choice, the ‘global’ 

production function ),( LKAF  is obtained. Such approach corresponds to the known view that 

only one ‘local’ technology can be effective under given ratio of production factors
7
.  

 Following  mathematical notion of the conjugate function (Rubinov, Glover, 1998), it is 

possible to associate to any neoclassical production function ),( LKAF  a unique  technological 

menu as the following set of Leontief technologies: 

}1
1

,
1

:),{( 









LK

LK
ll

AFll .   (18) 

For example, the technological menu 

}:,{ 1 Allll LKLK  
 

(where 10  ) generates the Cobb-Douglas production function .),( 1   LAKLKAF   

The following theorem shows that the coefficients of Leontief technologies, which form 

the technological menu has a simple economic meaning, which allows to associate them to 

available data. 

 THEOREM 1.  The elements of the technological menu (18) are all pairs of the average 

product of capital and the average product of labor, which are feasible in the economy  under 

                                                           
6
 The principle difference between representations (16) and (17) is that (16) uses the common inner product, 

LpKp lK  , while (17) uses the Leontief function, },min{ LlKl LK , which is the inner product in tropical 

mathematics with idempotent operation .min  In particular, tropical mathematics considers analogues of the 

objects of linear algebra which are defined by use of an idempotent operation. A binary operation  on a set M is 

called idempotent if aaa  for each Ma . Basic examples of idempotent operations are min and 

max . See Kondrakov and Shananin, 2011, Matveenko, 2014 and Baldwin and Klemperer, 2015 for examples 

of application of tropical mathematics in economic analysis. 

7
 This point of view is most clearly formulated by Basu and Weil (1998), who write that “each technology is 

appropriate for one and only one capital-labor ratio”.  This idea is close to the concept of localized technological 

progress  (Atkinson and Stiglitz, 1969, Nelson and Winter, 1982, ch. 9, Stiglitz, 1989, Antonelli, 1995, 2008). 

Models of ‘appropriate technology’ are also constructed in Acemoglu, 2002, 2003, Caselli and Coleman, 2006, 

Leon-Ledesma and Satchi, 2013.   
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use of production function ),( LKAF   given technological level A. For any particular bundle of 

factors )
~

,
~

( LK  the maximum in the R.H.S. of (17), 

}
~

,
~

min{max
),(

LlKl LK
ll LK 

, 

is achieved in such point of the technological menu, for which Leontief productivities are equal 

to the average product of capital and the average product of labor, correspondingly:  

L

LKAF
l

K

LKAF
l LK ~

)
~

,
~

(~
,~

)
~

,
~

(~
 . 

Moreover, equation (17) is fulfilled with maxarg  equal to )
~

,
~

( LK ll . 

Proof: See the Appendix. 

 

More on the notion of technological menu 

The notion of technological menu links two important economic concepts:  production 

function and choice of technology. For any neoclassical production function )(xF there exists a 

unique set of Leontief technologies,  , – a technological menu – such that )(xF is the result of 

optimal choice of “local” Leontief technology from the set  .  

To formulate this fact more precisely, let us consider production functions )(xF on the 

space nR 
consisting of all n-dimensional vectors x with strictly positive coordinates and of the 

оrigin
8
. Let 1M  be the unit level set of function (.)F , i.e. }1)(:{1  xFxM . Now let us define 

the set }:{ 1

1 Mll   , where ),...,( 11

1

1   nlll .  

As usually, we will use notation yx  if niyx ii ,...,1,   and will assume that 

0)0( F , and 0)( xF for 0x . Function (.)F is called increasing if yx  implies )()( yFxF  . 

THEOREM 2. If (.)F  is increasing, positively homogeneous of degree one (IPH) 

function,  then  

n

ii
il

ii
il

RxxlxlxF 


 ,maxminminmax)( . 

                                                           
8
Thus, except the origin, vectors of costs which have a zero component are excluded from consideration. This does 

not narrow the class of production functions itself.   
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 Proof: See the Appendix. 

 The technological menu is closely related to a notion of conjugate function. We should 

remind that concepts of conjugate space and conjugate function, developed originally in 

functional analysis, were used in mathematical economics, in particular, in application to 

sublinear and superlinear functions– see (Makarov and Rubinov, 1975)
9
. From this point of 

view, Theorem 2 means that the neoclassical production function (which is, of course, an IPH 

function) is an analogue of both superlinear and sublinear functions simultaneously. Continuing 

this analogy, we can define conjugate objects for the production function.  

 Departing from (Rubinov and Glover, 1998), let us introduce a pair of mutually conjugate 

sets: }1)(:{  xFx  and 1min:{  ii
i

xll for all }x . They have a transparent 

economic meaning:  is the set of all bundles of physical resources which allow to produce , by 

use of production function (.)F , not more than one unit of product; while  is the set of 

Leontief technologies (the technological menu)  which is, in some sense, equivalent to 

production function (.)F : the set  allows to produce not more than one unit of product by use 

of any bundle of physical resources taken from the set  10
. 

 According to Theorem 2, function (.)F  satisfies the equation 

ii
il

xlxF minmax)(


 ,  

which can serve as a prototype for definition of conjugate function:  

ii
ix

xllF minmax)(


 11
.         

The latter has an evident economic sense: for each Leontief technology l it shows the maximal 

output which can be obtained if a bundle of physical resources is taken from the set  .  

The following theorem provides a formula for calculating conjugate functions.  

 THEOREM 3. If (.)F  is an IPH function then 

0,
)(

1
)(

1



h

hF
hF  . 

                                                           
9
Function F  on 

nR  is called sublinear if it is positively homogeneous of degree one and subadditive, i.e. 

)()()( yFxFyxF   for any 
nRyx , .  The definition of superlinear function is similar but with  .  

10
Geometrically,   is the set of points which are located not higher than the unit level surface 1M ; and

  is the 

set of points located not higher than the surface  . It can be checked that   )( . 

11
It can be checked that the conjugate function (.)F

 
is IPH and (.)(.))( FF 

. 
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Proof: See the Appendix. 

Results of applications of Theorem 3 to Leontief, Cobb-Douglas and CES production 

functions are collected in Table 1. 

 Table 1. Some production functions and their conjugate functions. 

 Production function Conjugate function 

Leontief 
ii

i
xlxF min)(   

ii
i

hlhF 1max)(   

Cobb-

Douglas 

n

nxAxxF


...)( 1

1 , 

where 



n

i

iiA
1

1,0,0   

n

nhhAhF


...)( 1

1

1
 

CES 
...)([)( 111  pxAxF 

pp

nnn xA

1

])( , 





n

i

iiiA
1

1,0,0  , 0,1  pp  

pp

nnn

p hAhAxF

1

1

1

1

11 ])(...)([)(


    

 

 The relations between the sets 1M  and   and the functions (.)F  and (.)F  introduced 

above, can be termed idempotent duality, as far as the dual relations are based on the functions 

,max,max,min ii
i

ii
i

ii
i

xhxlxl
1max 

ii
i

lh  which are analogues of inner products with the use of 

idempotent operations min  and max .  

In contrast to the general form production function, an interesting feature of Cobb-

Douglas function is that the representation similar to (17) remains if one uses as 'local' 

production functions not Leontief functions, but CES functions with elasticity of substitution less 

than  1, while continuing to use the same technological menu.  

Let (a) technological menu  , consisting of technologies ),( LK ll  feasible for firm, i.e. 

factors efficiency vectors, and (b) ‘local’ CES production function ),;,( LK llLK  be given. The 

firm possessing quantities ),( LK of production factors chooses technology ),( LK ll  from the 

technological menu   in order to maximize the ‘local’ production function.  

Proposition 5 implies the following statement.  
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PROPOSITION 6. Let parameters 0,10  p  be fixed; let ‘local’ production 

function   pp

L

p

KLK LlKlllLK

1

)))(1((),,,(    and technological menu 

}:),{( 1 Allll LKLK    be given. Then  

 


 1

),(
),,,(max LAKllLK LK

ll LK

;     

i.e. Cobb-Douglas production is the result of solution of the firm’s choice problem.  

  

4. Technological menus in economic growth models  

 

Let us remind that Solow (1956) believed that neoclassical production functions must be 

an alternative to Leontief production function for analysis of economic growth. The 

representation (16) shows that in fact the presence of 'global' production function with non-zero 

elasticity of substitution does not deny the presence of Leontief production functions. On the 

contrary, 'local' Leontief production functions are the "building blocks" that serve as the basis of 

any neoclassical production function. If a 'global' neoclassical production function is used in an 

economic growth model, then a choice of 'local' Leontief technology takes place at each step of 

the trajectory. 

  Paths of economic growth models can be described in terms of technologies chosen 

from the technological menu. As an example let us remind equation of capital dynamics in the 

discrete time economic growth model in the absence of technological change: 

tttt ckfknk  )()1()1(1  , 

where 
tk  is capital, )( tkf  is output, 

tc  is consumption per capita, n  is rate of labor growth,   

is depreciation coefficient. In terms of technological menu an analogous equation describes the 

path of Leontief technologies ),( t

L

t

K ll  which are chosen from the technological menu and 

used: 

.
1

1)1(
1

1

tt

K

t

Lt

K

t

L c
l

ln
l

l








 




 
    (19) 



18 
 

 Equation (19) implies that on each stationary path some definite Leontief technology 

 ),( LK lll  is used, and per capita consumption is equal to 








 


K

L
l

n
llс


1)( .   (20) 

The sense of Equation (20) is clear: in steady state each unit of production pays for amortization 

and creation of new working places, and the rest is consumed. Since expenditures n   are 

calculated per unit of capital, the coefficient Kl/1  recalculates them into expenditures per unit of 

output. It is clear that consumption is non-negative iff ).( nlK     

Phelps’ golden rule corresponds to the solution of the problem of choice of Leontief 

technology from menu   which maximizes per capita consumption (20):  

).(max lc
l 

   (21) 

If the technological menu   is graph ,0),( LK llG  then using Lagrange method it is easy to 

obtain FOC for problem (21):   

,

K

L

K

L

l

G

l

G

l

c

l

с



















    (22) 

i.e. 

0








K

K

L

L

dl
l

c
dl

l

c
 

Condition (22) has simple economic sense: golden rule corresponds to such Leontief technology 

),( LK ll  deviation from which to any direction in the menu is equally unfruitful from the 

consumption point of view.  

Technological menu which generates Cobb-Douglas production function 

10,1  LAK  is the curve 0)( 1   AlllG LK

 . Condition (22) characterizing the golden 

rule steady state is reduced to 

.
1)(







 






n

nlK  



19 
 

Hence, in the golden rule steady state the Leontief technology for which  



 n
lK


  

is used. Then (20) implies that consumption in the golden rule steady state is   1)( Lllс , i.e. 

the saving rate is s . 

 For the Solow model with arbitrary constant saving rate s  Equation  (19) of  ‘local’ 

technology’s non-stationary dynamics transforms into 

.
1

)1(
1

1
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L

l
sln

l
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Convergence to stationary technology for which snlK /)(    takes place. 

Then for the case of Cobb-Douglas production function 10,1  LAK  it is possible to 

obtain two equations which describe dynamics of ‘local’ technology separately for coefficients 

t

Ll  and :t

Kl   

,)(
1

1

1

1
1

1




 























 t

L

t

L

t

L l
n

l
n
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1

1
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1

1
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5. Families of the normalized technological menus and representation of the 

normalized CES production functions 

 

 In this section we introduce notion of family of normalized technological menus. We will 

show that a family of CES production function is normalized iff their generating family of the 

technological menus is normalized. 

 

Construction of normalized family of technological menus 
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Now we define a normalization in the space of technologies. Let us consider 

technological menus, i.e. sets of ‘local’ Leontief technologies ),( LK ll . Let a family of the 

technological menus have prototype form
12

 

,)1( constHll q

L

q

K       (23) 

where 10   . The technological menus of the family are indexed by parameter ;q  and 

coefficient  , generally speaking, depends on q . Let technological benchmark point be defined 

by technology ),( 00 LK ll , the slope  of
 
 

the technological menu in this point is 
K

L

dl

dl
, and the 

value of  H
 
is 0H .  

The normalized family of technological menus corresponding the technological 

benchmark point, can be defined as the set of technological menus with different values of 

parameter q  which have prototype form (23) and for the technology ),( 00 LK ll
 
achieve the same 

0HH   and   for all q : 

,)1( 000 Hll q

L

q

K     

.
1

1

0

0 v
l

l
q

L

K 















 

Figure 1 illustrates the normalized family of technological menus. 

                                                           
12

 The prototype form of technological menu can be justified by the ideas models of technological progress. In 

Jones’ (2005) model random productivities of capital and labor corresponding to new technological ideas are drawn 

from independent Pareto distributions; this model leads to Cobb-Douglas production function. Versions of this 

model which lead to normalized CES functions are based on one or another joint distribution based on Pareto 

distribution (Growiec, 2008a, Matveenko, 2010) or on independent Weibull distributions (Growiec, 2008b). There 

are  also versions leading to non-normalizable families of CES production functions of the shape 
ppp LKA /1)(  ; 

they are based on independent exponential distributions (Matveenko, 2011) or on independent Weibull distributions 

(Hrendash and Matveenko, 2015).  
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Figure 1. Normalized family of technological menus. Each of the alternative technological 

menus includes the benchmark technology ),( 00 LK ll , is characterized by the same 0HH  , 

and
 
has the same slope (MRTS) in the technological benchmark point. 

The technological benchmark point can be interpreted as the best existing (or frontier) 

technology. The prototype form can be interpreted as a forecast for the future technological 

development which would be able to create such technological menus which (i) include the 

frontier benchmark technology and (ii) possess a spectrum of various elasticities of substitution.  

A different interpretation of the family of prototype technologies is a set of possible 

(expected or alternative) technologies which could exist under different conditions, e.g. in 

different countries.  

 In the technological benchmark point: 
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We see that, generally,   depends on q . Substituting   into (23) we have 
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and after transformation, 

0

0

1

0

1

0

0

0

1

0

1

0

0 H
l

l

ll

l

l

l

ll

l
q

L

L

q

L

q

K

L

q

K

K

q

L

q

K

K 































 


.  (24) 

In the benchmark point, Equation (24) turns into 

01

0

1

0

00 H
ll

ll
q

L

q

K

LK 






. 

Hence, Equation (24), describing the family of technological menus, has the form 

,1)1(
00


















 q

L

L

q

K

K

l

l

l

l
     (25) 

where )1,0(
00

0 



LK

K

ll

l




  does not depend on q . 

 THEOREM 4. For each normalized family, M , of technological menus there is a 

normalized family,  , of CES production functions, such that each menu Mm  generates a 

function f , and vice versa, each function f  is generated by a menu Mm . 

Proof: See the Appendix. 

 The equations 
000

0 ,
kk

k













  and    imply 

2

00 k . 

 Figure 2 illustrates unit level lines for the normalized family of CES production 

functions. 
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Figure 2. Unit level lines for the normalized family of CES production functions.  

 

Induced family of normalized technological menus  

It is interesting to consider the case when the technological benchmark point is not arbitrary but 

is generated by some particular technological menu. Let a function ),( LK llG  be given which 

possesses constant returns to scale and other standard neoclassical properties, and let the unit 

level line of this function determine technological menu  

 .1),(:),()(  LKLK llGllG  

Let us take as technological benchmark values some ‘local’ Leontief technology 

)(),( 00 Gll LK  , the corresponding slope ),(/ 00 LK

LK

ll
l

G

l

G








  and the value 

1),( 000  LK llGH . As we have shown, the normalized family of technological menus with 

prototype form (23) is (25), where 
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By Euler theorem, 
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and correspondingly, 

01 L
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 . 

Thus, the normalized family of technological menus has form  

.1
),(),(

:),( 1

0
001

0
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q

L

L

LKq

K

q

K

K

LK
LK ll

l

llG
ll

l

llG
ll     (26) 

We will say that this family is induced by technological menu )(G  at point ).,( 00 LK ll   

 Each of technological menus from family (26) generates corresponding CES production 

function 

q
qq

L

qq

K LlKl

1

00
1

11













.  (27) 

Functions (27) form a family of normalized CES production functions.   

 On the other hand, technological menu )(G  generates production function 

).,(),( LKGLKF  The latter, in its turn, induces normalized family of CES production 

functions. 

 The following theorem tells that the families of CES production functions which can be 

obtained in two ways from technological menu )(G  do coincide. 

 THEOREM 5. Production function ),(),( LKGLKF   at point  ),( 00 LK  such that  

000 / KL llk  , induces the same normalized family of CES production functions which is 

generated by the family of technological menus (26), induced by technological menu   )(G  at 

point ).,( 00 LK ll  

Proof: See the Appendix. 
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APPENDIX: Proofs  

Proof of Proposition 1. In arbitrary point ),( LK  factor shares ratio is equal to  
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in the benchmark point it is  , and labor share is, correspondingly, 1 . If 
0kk   then 

)1/(   . If 
0)( kk   then   increases (decreases) in p as well as in the elasticity of 

substitution )1/(1 p .  □   

Proof of Proposition 2. The well-known expressions for the marginal products, 
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which is the normalized CES production function in the intensive form (5).  □  

Proof of Lemma 1. Capital share for function F  is equal to  
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Correspondingly, labor share is 1 . □ 

 Proof of Proposition 3. According to the theorem about a generalized mean (Hardy et 

al., 1952, Theorem 16, pp. 26-27) while comparing cases 0p  and 0p , the induced 

production function satisfies 
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But at LKk /0  , i.e. at ,0),,(),( 00   LKLK  we have   1LAKY . Hence, LKk /0   is 

the maximum point. □ 

Proof of Proposition 4.  The induced production function is 
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Its derivative with respect to
0k  is  
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which can be represented as  ,)( 00

ppp KLkkH   where 0)(,0)( 00  kHkH . Thus, FOC for 

maximization with respect to 
0k  is LKk /0  . The second derivative in this point is 

,)( 1

00

pp LpkkH 
 which is negative under 0p ; i.e. it is point of maximum. □  

Proof of Proposition 5. The following inequality takes place:  
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Applying again the theorem about a generalized mean (Hardy et al., 1952, Theorem 16, pp. 26-

27), we see that for any positive LKLK ,,, , and ,0p  the equality in (28) is achieved iff  

LLKK //  . If MLK ),( ,  then ),(),( LKLK   and both sides of (28) are equal to 1, i.e. 

the value of function   1),( LAKLKF . Hence, for any MLK ),( and for any 0p  (15) is 

held.  Because of homogeneity, Equation (28) holds not only for MLK ),( , but for all 

2),( RLK .  □ 

Proof of Theorem 1. Equation YLKAF ),( , where Y is output, is equivalent to 

equation   1/,/ YLYKAF . Hence, any admissible pair of average products of capital and 

labor satisfies equation 1
/

1
,

/

1










LYKY
AF . Thus, the set of such pairs of average products is a 

subset of the technological menu (18). Conversely, let ),( LK ll  be a technology from the 

technological menu. For an arbitrary Y  let us consider the bundle LK lYLlYK /,/  . Equation 

(18) implies that 1)/1,/1(
/

1
,

/
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LK llAF

LYKY
AF , hence YLKAF ),( . The first part of 

the theorem is proved. 

 To prove the second part of the theorem one needs to show that for any pair ),( LK ll  

the following inequality is fulfilled: 

}
~

,
~

min{ LlKl LK )
~

,
~

(}
~~

,
~~

min{ LKAFLlKl LK  .     (29) 
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Then, according to the first part of the theorem, there exists such point ),( LK  that 
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Inequalities (30) take form 
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which is equivalent to 
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which, in its turn, is equivalent to 
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The latter system is incompatible, and this contradiction proves validity of (29).  □ 

LEMMA 2. If (.)F is increasing function, homogeneous of degree 0q , then  

ii
i

ii
i

xlxFxl max1)(min   

for each 1Mx  and l . 

 Proof. Let us prove that 1min ii
i

xl . Assume the opposite: 1ii xl for all ni ,...,1 . 

Then .1 lx We can pick up such number 1  that .1 lx  Then 

)()( 1 lFxF  )()( 11   lFlFq  

which is impossible, since 
1

1, Mlx  . The inequality 1max ii
i

xl is proved in a similar way.  

□ 

Proof of Theorem 2. Each vector 0x can be represented as xxFx )( , where 1Mx .  

By Lemma 2, for each l ,  

1)(min  xFxl ii
i

. 

This implies 

)(min)(min xFxlxFxl ii
i

ii
i

 . 

Here the inequality is fulfilled as equality if 1 xl , thus the maximum is achieved:  

)(minmax xFxl ii
il




. 

 The equation 

)(maxmin xFxl ii
il




 

is proved similarly.  □ 

Proof of Theorem 3. 
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Proof of Theorem 4. According to Theorem 2 for each q technological menu (25) 

generates production function which possesses constant returns to scale and is characterized by 

the following unit level set: 

    .1)1(:),( 00 
q

L

q

K LlKlLKM 

 

Because of homogenuity, this production function is determined by equation  

 qq
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K LlKlLKF
1

00 ))(1()(),(       (31) 

For all 0,0  LK . Since 
0000 /1,/1 LK lLlK  , for each q equations 1),( 00 LKF  and
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 take place,  and equation (31) with  different values of parameter q 

describes the normalized family of CES production functions with benchmark point  
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.  □ 

 Proof of Theorem 5. Let technological menu )(G  generate production function F. The 

ratio of factor shares  and its analogue calculated by use of function G  are equal to  
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Since each of the pairs of shares is equal to 1 in sum, and since  // 00 kk  , the following 

equalities take place: 
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Substituting into Equation (9), we obtain that the family of normalized CES functions which is 

induced by function  F have the form  
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which can be rewritten as (27). □  

 


