Deep Learning				14X050
			Franç	ois FLEURET (PO)
	cours	2	Semestre d'automne	\boxtimes
Nombre d'heures par semaine	exercices	2	Semestre de printemps	
	pratique	2	Total d'heures	84
Cursus			Туре	Crédits ECTS
Master en sciences informatiques (120 ECTS)			Obligatoire	6

OBJECTIFS:

The objective of this course is to provide a complete introduction to deep machine learning: how to design a neural network, how to train it, and what are the modern techniques that specifically handle very large networks.

CONTENU:

The course aims at providing an overview of existing processings and methods, and at teaching how to design and train a deep neural network for a given task, and the theoretical basis to go beyond the topics directly seen in the course.

The course will touch on the following topics:

- What is deep learning, introduction to tensors.
- Basic machine-learning, empirical risk minimization, simple embeddings.
- Linear separability, multi-layer perceptrons, back-prop.
- Generalized networks, autograd, batch processing, convolutional networks.
- Initialization, optimization, and regularization. Drop-out, batchnorm, resnets.
- Deep models for Computer Vision.
- Analysis of deep models.
- Auto-encoders, embeddings, and generative models.
- Recurrent and attention models, Natural Language Processing.

Concepts will be illustrated with examples in the pytorch framework (http://pytorch.org).

Forme de l'enseignement	Ex-cathedra lectures and practical sessions		
Documentation	Course slides and handouts / https://fleuret.org/dlc		
Préalable requis	 Required: Linear algebra (vector, matrix operations, Euclidean spaces). Differential calculus (Jacobian, Hessian, chain rule). Python programming. Basics in probabilities and statistics (distributions, conditional probabilities, Bayes, PCA) Recommended: Basics in optimization (notion of minima, gradient descent). Basics in algorithmic (computational costs). Basics in signal processing (Fourier transform, wavelets). 		
Préparation pour	-		
Mode d'évaluation	Final written exam + mini projects		
Sessions d'examens	J/AS		