Evaluating Water-Related Ecosystem Serviceswith NatCap Software RIOS and MESH

Erica C. Honeck, Lorenzo J. Frau, Anthony Lehmann

General Context

- The study takes place in Geneva (Switzerland):
 - 282 square kilometers (109 sq miles)
 - Surface: 33.4% urban setting and 39.5% agriculture
 - Six main watersheds (Figure 1) with the Rhône river crossing the canton form East to West
- Based on "Environment 2030":
 - Political program to be implemented by Geneva between 2014 and 2030
 - Details objectives, actions and timeframes regarding the administration of the waters on the territory
 - Provides information with which to construct scenarios

- Based on the "SPAGE":
 - Plan of the administration of the waters for each watershed
 - Coordinates different institutions and objectives for a global action plan
 - Reviewed every 6 years
 - Analyzes a range of factors: hydrological, biological, socioeconomic, etc.
 - Enables to see where authorities place priorities regarding water related ES
 - Provides economical and physical parameters for NatCap software

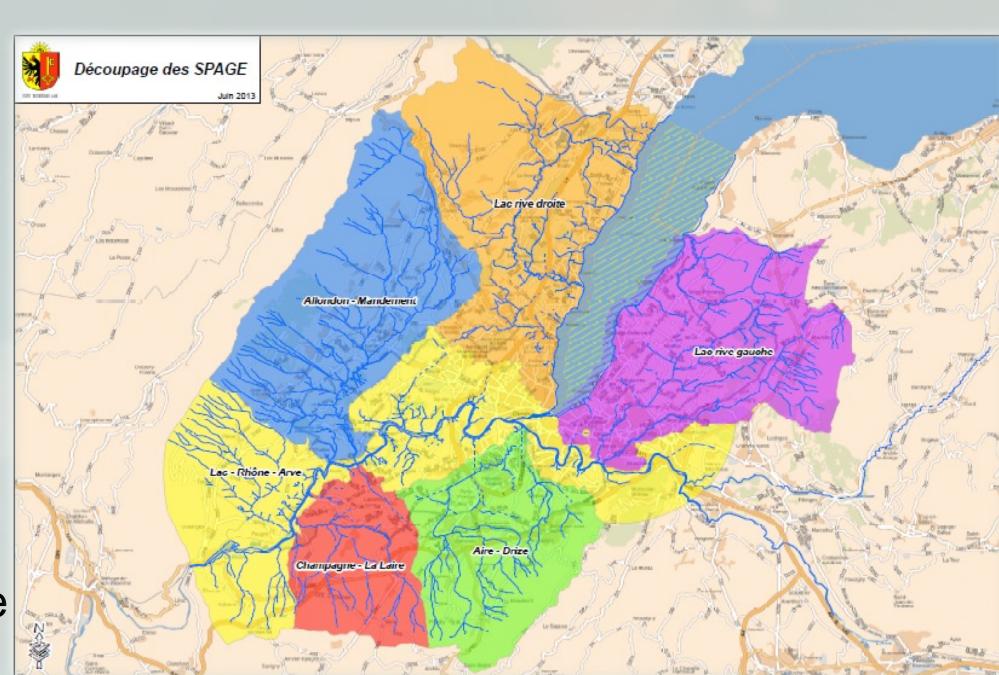


Image 1: SPAGE Watershed distribution(Département de l'Intérieur et de la Mobilité, 2012)

Studied Ecosystem Services (ES):

- > Water yield
- > Nutrient retention (P, N)
- > Sediment retention

Objectives and Research Questions

InVEST

integrated valuation of ecosystem services and tradeoffs

Are NatCap software suited to the needs of urbanized areas?

M E S H

Evaluating decision-making tools based on ES

How would the 3 ES evolve with different scenarios?

What is the best investment strategy in a watershed for a given budget?

Methodology and Workflow

1. Prepare input data

Scenarios

Best and worst cases for:

- Climate change (temperature)Land use
- Water use
- Fertilizer use

InVEST inputs

- Watersheds
- Land use / land cover
- Biophysical tables
- Parameters

Socio-economic data

- Budget
- Activity costs
- Activity-transition table
- Objective and transition weights table

2. Run the software and analyze the outputs

ES forecasts for 2030, 2050, 2100

3. Answer research questions and present conclusions to authorities

RIOS

Investment portfolios for different budgets

- Synthesis maps
- Synergies and trade-offs
- Recommendations

Expected Results and Perspectives

- Extrapolation of current trends would be in between the worst and best case scenarios.
- Representing the best and worst case scenarios through maps would help understand the importance of considering ES in decision-making.
- The benefits generated by improved quality of the watersheds would be greater than the implementation costs.
- NatCap software would be adapted to cities in developed countries such as Geneva
- NatCap software would be suited to respond to decision-maker's demand for simple and concise recommendations for environmental management.

References

- Canton de Genève. (2016, January 29). Environnement 2030: Concept cantonal de la protection de l'environnement. Canton de Genève. Retrieved from
- http://ge.ch/environnement/environnement-2030
- Département de l'Intérieur et de la Mobilité. (2012, September 1). SPAGE: Outil cantonal de gestion intégrée des eaux par bassin versant. Département de l'Intérieur et de la Mobilité. Retrieved from http://ge.ch/eau/planification-evacuation-et-gestion-des-eaux/gestion-integree-des-eaux/gestion-des-eaux-la-parcelle/spage
- Office Fédérale de la Statistique OFS. (2016, August 26).
 Chiffres clés: Portraits régionaux 2016: cantons. Retrieved February 23, 2017, from https://www.media-stat.admin.ch/maps/profile_kt/data/257/fr/pdf/Portraits-regionaux-2016-cantons.pdf

INSTITUTE FOR ENVIRONMENTAL SCIENCES

