

Deep Learning Some case studies

L. Blondé, A. Mollaysa, P. Strasser, A. Kalousis

Mar2019

Outline

Machine Learning

Buzzwords

Supervised Learning

Neural Networks

Reinforcement Learning

Imitation Learning

Case Studies

Modelling Pathological Gaits

Learning to Walk

Learning to Generate Molecules

Buzzwords

The Holy Trinity of Hype

The Holy Trinity of Hype

AI Artificial Intelligence: design "intelligent" programs

ML Machine Learning: learn from data without being explicitly programmed

DL Deep Learning: use (deep) neural networks as function approximators in ML

ML (and especially DL) is responsible for the biggest recent successes in AI.

This talk

- (1) Coarse overview of ML concepts
- (2) Introduction to 3 case studies of Deep Learning

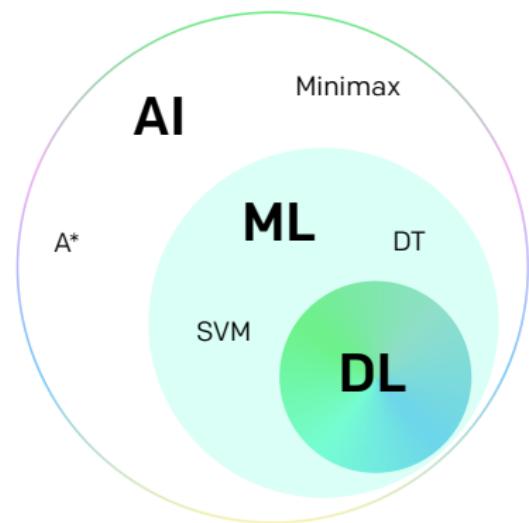


Figure: Russian dolls of AI

Machine Learning

The Machine Learning Land

Crowded Area



Figure: Tweet from the NIPS (now NeurIPS) conference organisation committee

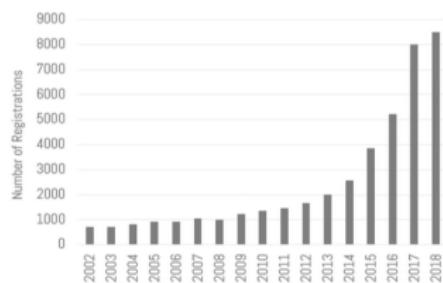


Figure: Number of registrations to the NeurIPS conference over the years

Branches of ML

- ▶ Supervised Learning (case 1)
- ▶ Unsupervised Learning (case 3)
- ▶ Reinforcement Learning (case 2)

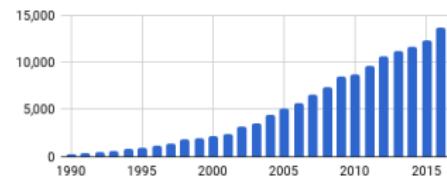


Figure: Number of RL papers published over the last 30 years

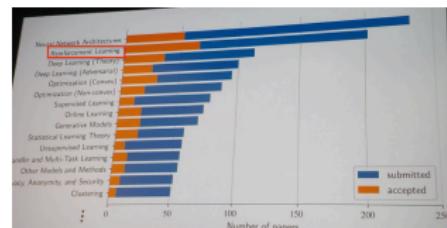


Figure: Distribution of papers by sub-domains published in ICML 2018

Machine Learning

What does "learning" mean?

Learning (v1.0)

Ability for an **agent** to improve performance after observing **data**.

The **agent** is the learning system ("the" AI)

Agents must...

- ▶ Be naturally **adaptive**:
No "hard-coded" behaviour
- ▶ **Encode** domain-specific knowledge underlying the data
- ▶ Remain **flexible** enough to enable adaption and improvement

Learning Theory is not Statistics

Statistics is model-centric: model the data

Learning Theory is algorithm-centric: in classification, we model the decision boundary, not the data distribution

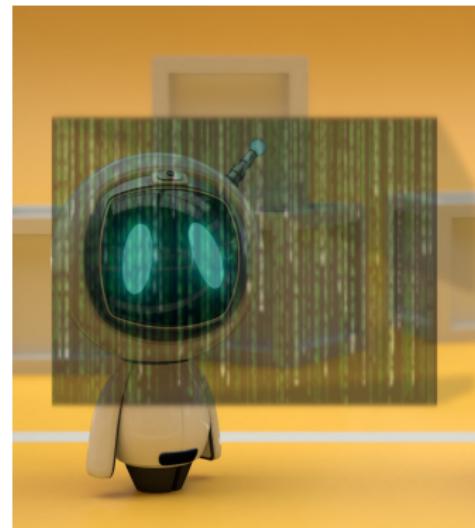


Figure: An agent observing data.

Supervised Learning (SL)

The Core Concepts

Data

Represented by **pairs** (x, y) , where

- $x \in \mathcal{X}$ is the **input**
- $y \in \mathcal{Y}$ is the **output**

A **dataset** is defined as a finite set of input-output pairs $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$.

Prediction

For every input x , the agent **predicts** an output \hat{y} , according to her internal decision model $f : \mathcal{X} \rightarrow \mathcal{Y}$.

Performance Evaluation

The **prediction error** is measured with some point-wise **loss** function ℓ .

ℓ measures the gravity of the mistake.

Agent's Objective

Find the **relationship** $f : x \mapsto \hat{y}$ between elements of \mathcal{X} and \mathcal{Y} that minimises the **prediction error**: $\ell(\hat{y}, y) = \ell(f(x), y)$:

$$\min_f \ell(f(x), y)$$

Supervised Learning (SL)

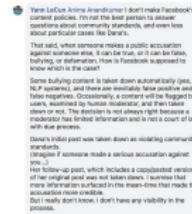
Classification and Regression

Examples

- ▶ Image classification problem
 $\mathcal{Y} = \{\text{elephant, dog, cat, gorilla}\}$

→ “Cat”

- ▶ Facebook "likes" count prediction
 $\mathcal{Y} = \mathbb{R}_+$



How many “likes” will this post get?

Deep Learning

Entering Deep Neural Land

“Big” Data

To fit more data, we need **more complex** models that are **easy to scale up**.

Best Candidate (Deep) Neural Networks

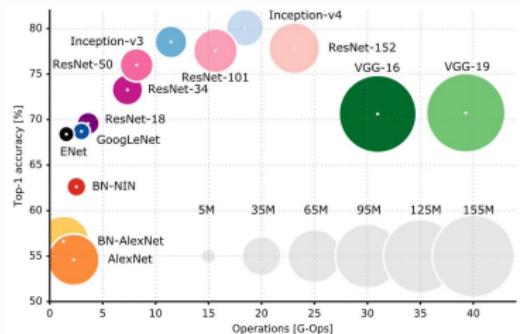


Figure: Various successful neural architectures.

Neural Networks

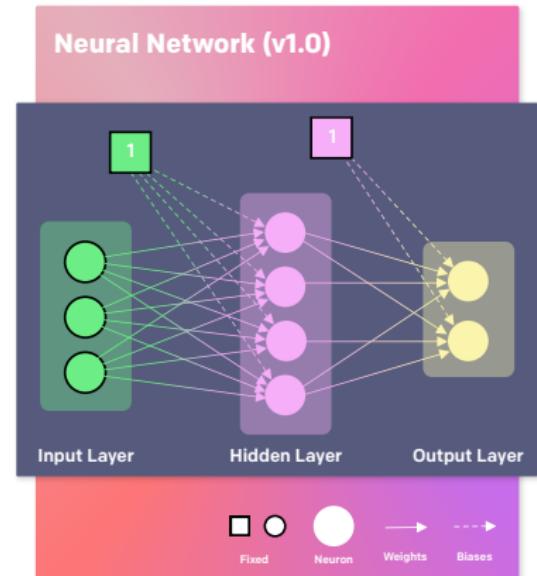
Definition

Neural Network

- ▶ Hierarchical structure organised in **layers**
- ▶ Propagates information from an **input layer** to an **output layer**
- ▶ Layers in-between are called **hidden**
- ▶ Each layer is composed of **neurons**
- ▶ Neurons of a hidden layer are **connected** both to the previous and next layer

Components

- ▶ **Key hyperparameter:** depth and width
- ▶ **Learned variables:** weights and biases



Case Study

Modelling Pathological Gaits

Surgeon's Dream

Anticipate the outcome of a **given** surgical operation on a patient's walking pattern ("gait") **without** carrying it out in the real world.

Problem

Model the **gait** of a given patient given the patient's **clinical data**.

Formulation

x Clinical data

y Walking gait

f Mapping from clinical data to walking gait: $y = f(x)$.

Goal Learn f .

Figure: Surgeon's dream: knowing f .

Modelling Pathological Gaits

Clinical Data

Measured Data

Measured by hand by a physiotherapist

- ▶ **Range of motion:** min/max joint angles (contraction)
- ▶ **Spasticity:** "stiffness" of the muscles tied to a joint
- ▶ **Selectivity:** controlability over individual muscles
- ▶ **Anthropomorphy:** dimensions of the body (weights, sizes, lengths)

Recorded Data¹

Recorded via a marker+camera system in the form of **time series**

- ▶ Joint positions
- ▶ Joint angles
- ▶ Joint velocities
- ▶ Joint angular velocities

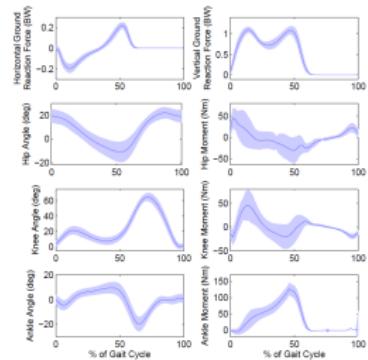


Figure: Joint angles (left), and joint moments (right) of a gait cycle, starting at heel strike.

Figure: Backside camera view of HUG's system.
<https://www.unige.ch/medecine/chiru/en/research-groups/943armand/>

¹Attias et al., "Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking", 2016.

Modelling Pathological Gaits

A Tough Problem I

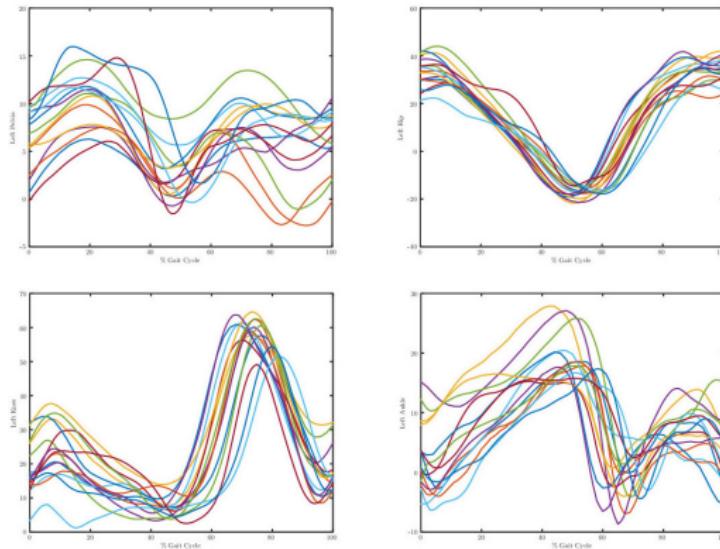


Figure: Evolution of the angle values of different joints, for a **single** patient.

Modelling Pathological Gaits

A Tough Problem II

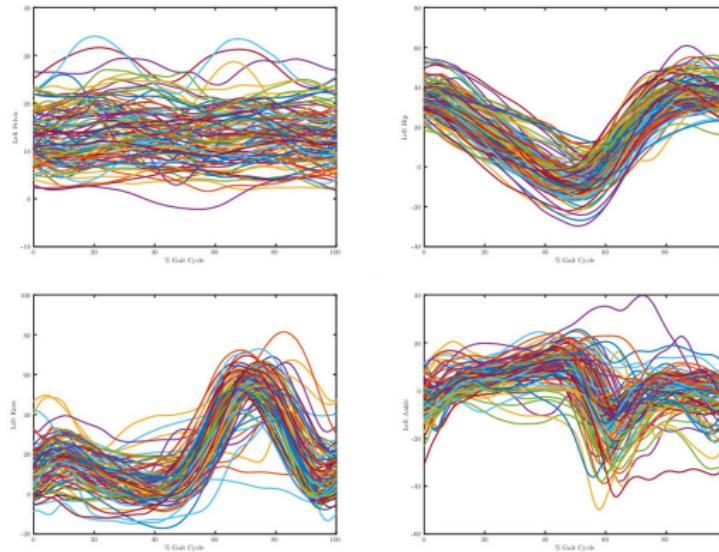


Figure: Evolution of the angle values of different joints, across **several** patient.

Modelling Pathological Gaits

Solutions to the Supervised Learning problem

Difficulties

Huge variance **across** patients, but also within gaits of a **single** patient.

Model v2.0: RNN

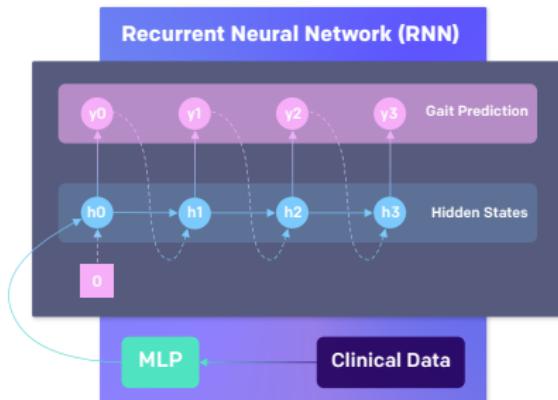
Recurrent Neural Network. Relies on the sequential nature of the data.

$$\begin{cases} h_0 &= f(x) \\ y_t &= g(h_t) \quad \forall t \in [0, T-1] \\ h_{t+1} &= \tau(h_t, y_t) \quad \forall t \in [0, T-1] \end{cases}$$

Model v1.0: MLP

Mulit-Layer Perceptron.

$$y_{0:T} = f(x)$$



Modelling Pathological Gaits

Results

Method	Error (MSE)
Median	100.21
Recurrent Neural Network	92.16
MLP	107.4

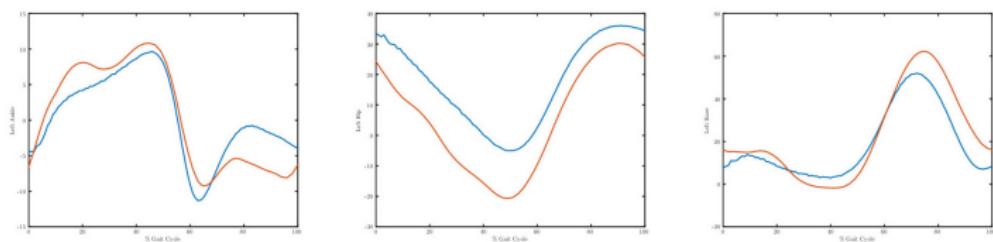


Figure: Gait predictions.

Modelling Pathological Gaits

Towards a Better Solution

So, is it good?

Not really.

- ▶ **Issue:** not enough data
- ▶ **Consequence:** generates gaits of low fidelity with the patients' gaits

Attempted Solution

Bring in a **simulator** to generate more data.

- ▶ **New issue:** the simulator needs to be **specifically tuned** for the patient/pathology
- ▶ **New approach:** use Reinforcement Learning and Imitation Learning.

Case Study

Learning to Walk

Data

Clinical data of the same nature as case study 1, but specifically for patients suffering from **Cerebral Palsy**.

Figure: Backside camera view of HUG's system.

New
Use a **simulator**.

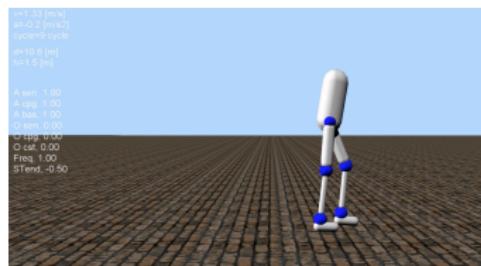


Figure: EPFL BIOROB Team's simulator.
<https://biorob.epfl.ch>

Problem

Find the **parametrisation** of the simulator that corresponds to the pathology displayed in the patient data.

Reinforcement Learning ² (RL)

Setting

RL is the field of **sequential decision-making under uncertainty**.

An **agent** (decision maker) **interacts** with a previously unknown **environment** and receives **rewards** upon interaction.

Agent's Objective (v1.0)
Maximise the **long-term cumulative reward**.

Figure: An agent interacting with its environment.

² Sutton and Barto, "Reinforcement Learning: An Introduction", 1998.

Reinforcement Learning

Interaction

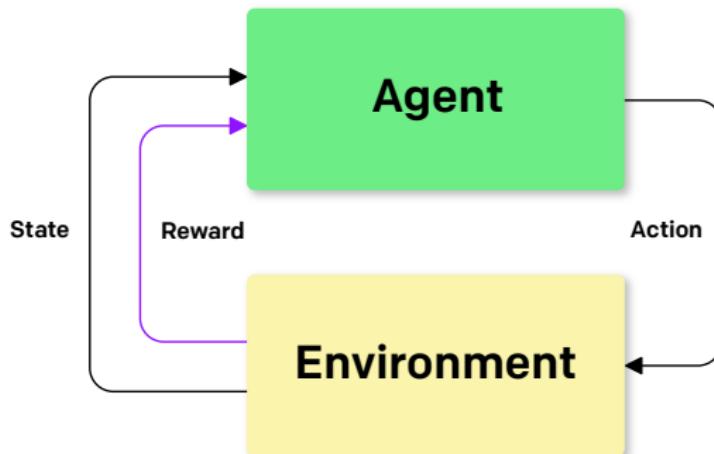


Figure: Interaction diagram (v1.0)

RL Caveats

Interactive Nature

Heavy interaction with the environment while learning: **safety**³⁴ issues in real world scenarios.

Reward Design

Preliminary burden: handcraft reward signal(s) to induce the desired behavior. This is called **reward shaping**⁵.

$$r(b_z^{(1)}, s^P, s^{B1}, s^{B2}) = \begin{cases} 1 & \text{if } \text{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0.25 & \text{if } \neg \text{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \wedge \text{grasp}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0.125 & \text{if } \neg (\text{stack}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \vee \text{grasp}(b_z^{(1)}, s^P, s^{B1}, s^{B2})) \wedge \text{reach}(b_z^{(1)}, s^P, s^{B1}, s^{B2}) \\ 0 & \text{otherwise} \end{cases}$$

Figure: Reward from the *block-stacking paper*⁶

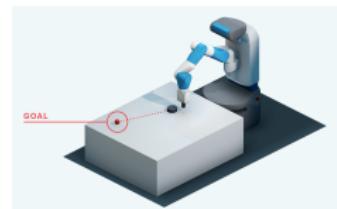


Figure: Hindsight Experience Replay⁷

³ Amodei et al., "Concrete Problems in AI Safety", 2016.

⁴ Held et al., "Probabilistically Safe Policy Transfer", 2017.

⁵ Ng, Harada, and Russell, "Policy invariance under reward transformations: Theory and application to reward shaping", 1999.

⁶ Popov et al., "Data-efficient Deep Reinforcement Learning for Dexterous Manipulation", 2017.

⁷ Andrychowicz et al., "Hindsight Experience Replay", 2017.

Imitation Learning¹²

An apparent solution

Instead of receiving rewards upon interaction, the agent is initially provided with **demonstrations** from an **expert** and does not receive any external feedback while learning.

Objective

Mimic the demonstrated behaviour.

- ▶ π_e : expert policy
- ▶ Demonstration τ_e : trajectory from π_e
- ▶ Trajectory: trace of interaction with the MDP, i.e. state-action pairs (or just states⁸⁹) collected during one episode: $\{(s_0, a_0), \dots, (s_T, a_T)\}$.

Figure: Kinaesthetic Teaching in Virtual Reality¹¹

⁸ Liu et al., "Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation", 2017.

⁹ Merel et al., "Learning human behaviors from motion capture by adversarial imitation", 2017.

¹¹ Zhang et al., "Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation", 2017.

¹² Bagnell, *An invitation to imitation*, 2015.

Sample-Efficient Adversarial Mimic

Our work: "Sample-Efficient Imitation Learning via Generative Adversarial Nets", AISTATS 2019

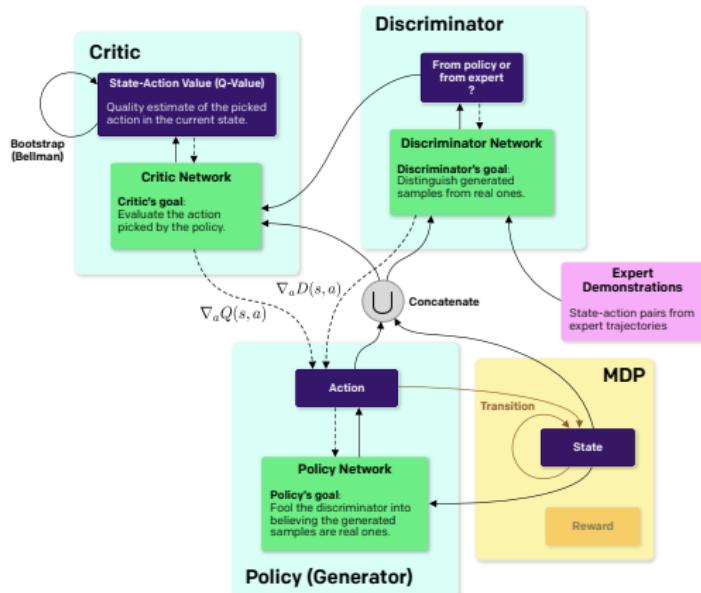


Figure: Sample-efficient Adversarial Mimic.

Sample-Efficient Adversarial Mimic

Video Demo

Figure: <https://arxiv.org/abs/1809.02064>

Figure: <https://youtu.be/-nCsqUJnRKU>

Case Study

Learning to Generate Molecules

Molecule Design¹³

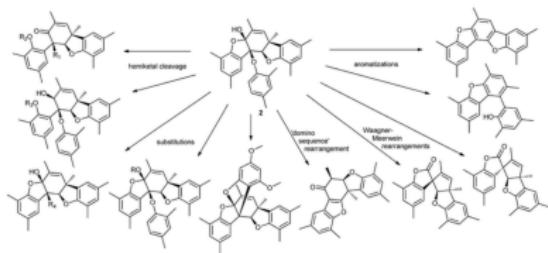


Figure: Diversity-oriented synthesis: producing chemical tools for dissecting biology

Conditional Image Generation¹⁴

Figure: Class-conditional samples generated with generative Adversarial Nets (GAN)

Style Transfer

credit to [@DmitryUlyanovML](#)

¹³ O'Connor, Beckmann, and Spring, "Diversity-oriented synthesis: producing chemical tools for dissecting biology", 2012.

¹⁴ Brock, Donahue, and Simonyan, "Large scale gan training for high fidelity natural image synthesis", 2018.

Case Study

Learning to Generate Molecules

Problem

Can we do the same with molecules?

Goal

- ▶ Generate molecules with specific properties
- ▶ Enable style (property) transfer from molecule to molecule.

Learning to Generate Molecules

Molecule Representation

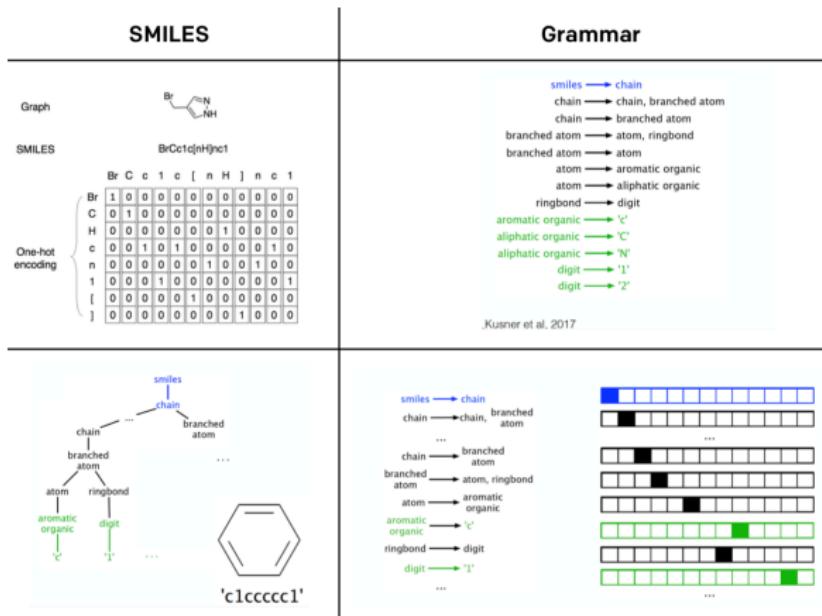


Figure: Introduction of a **grammar** in a SMILES molecule representation.

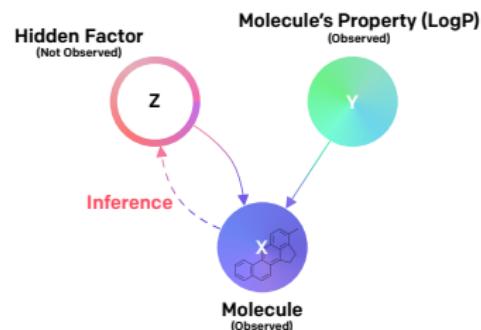
Learning to Generate Molecules

Conditional Generation I

Data

Pairs (x, y) where

- x is the **molecule**
- y is the **property**



Benefits

With the learned $p_\theta(x|z, y)$, we can:

- Generate molecules that have a desired property y^*
- Achieve a **diverse** generation of molecules with property y^* by sampling from $p_\theta(x|z, y^*)$ with various z values from $z \sim \mathcal{N}(0, 1)$
- Modify the property of molecule x to have the property y^* while staying close to the original molecule in terms of structure by sampling from $p_\theta(x|z, y^*)$ with various z values from $z \sim q_\phi(z|x)$

Figure: Graphical model.

Learning to Generate Molecules

Results II

Conditional Generation

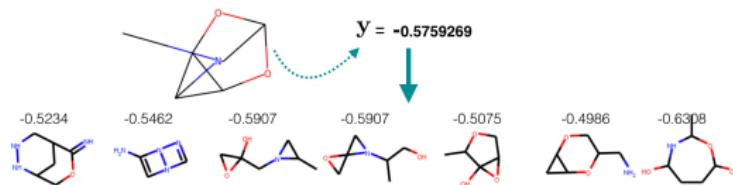


Figure: Generated molecules with property value within a 15% range from the desired value.

Style Transfer

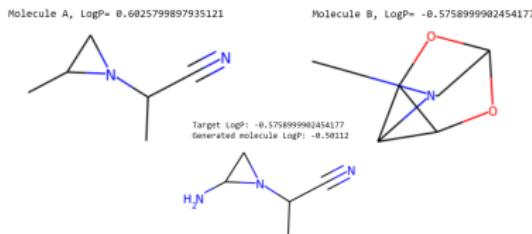


Figure: Property transfer over molecules.

References I

- ▶ M. Attias et al. "Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking". In: *Gait & Posture* 50 (2016), pp. 239–245. ISSN: 0966-6362. DOI: <https://doi.org/10.1016/j.gaitpost.2016.09.016>. URL: <http://www.sciencedirect.com/science/article/pii/S0966636216305781>.
- ▶ Richard S Sutton and Andrew G Barto. "Reinforcement Learning: An Introduction". 1998.
- ▶ Dario Amodei et al. "Concrete Problems in AI Safety". In: (June 2016). arXiv: 1606.06565 [cs.AI]. URL: <http://arxiv.org/abs/1606.06565>.
- ▶ David Held et al. "Probabilistically Safe Policy Transfer". In: (May 2017). arXiv: 1705.05394 [cs.R0]. URL: <http://arxiv.org/abs/1705.05394>.
- ▶ Andrew Y Ng, Daishi Harada, and Stuart Russell. "Policy invariance under reward transformations: Theory and application to reward shaping". In: *International Conference on Machine Learning (ICML)*. 1999, pp. 278–287. URL: http://www robotics.stanford.edu/~ang/papers/shaping_icml99.pdf.
- ▶ Ivaylo Popov et al. "Data-efficient Deep Reinforcement Learning for Dexterous Manipulation". In: (Apr. 2017). arXiv: 1704.03073 [cs.LG]. URL: <http://arxiv.org/abs/1704.03073>.
- ▶ Marcin Andrychowicz et al. "Hindsight Experience Replay". In: (July 2017). arXiv: 1707.01495 [cs.LG]. URL: <http://arxiv.org/abs/1707.01495>.
- ▶ Yuxuan Liu et al. "Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation". In: (July 2017). arXiv: 1707.03374 [cs.LG]. URL: <http://arxiv.org/abs/1707.03374>.
- ▶ Josh Merel et al. "Learning human behaviors from motion capture by adversarial imitation". In: (July 2017). arXiv: 1707.02201 [cs.R0]. URL: <http://arxiv.org/abs/1707.02201>.
- ▶ Tianhao Zhang et al. "Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation". In: (Oct. 2017). arXiv: 1710.04615 [cs.LG]. URL: <http://arxiv.org/abs/1710.04615>.
- ▶ J Andrew Bagnell. *An invitation to imitation*. Tech. rep. Carnegie Mellon, Robotics Institute, Pittsburgh, 2015. URL: https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf.
- ▶ Cornelius J O'Connor, Henning SG Beckmann, and David R Spring. "Diversity-oriented synthesis: producing chemical tools for dissecting biology". In: *Chemical Society Reviews* 41:12 (2012), pp. 4444–4456.
- ▶ Andrew Brock, Jeff Donahue, and Karen Simonyan. "Large scale gan training for high fidelity natural image synthesis". In: *arXiv preprint arXiv:1809.11096* (2018).

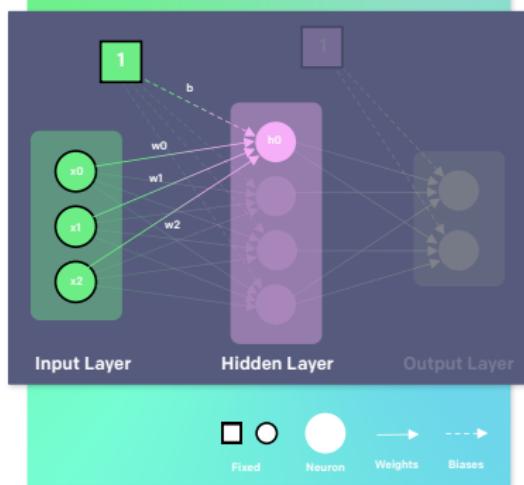
Neural Networks

Propagation Rule

Propagation Rule

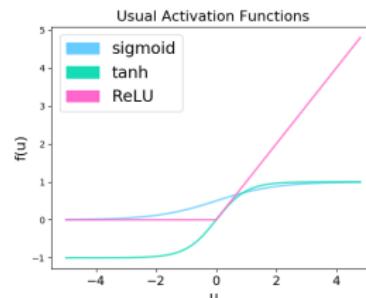
The **activation** of a neuron is a direct expression of the activations of the neurons from previous layers.

Neural Network (v2.0)



$$\begin{aligned}h_0 &= f(w^T x + b) \\&= f(w_0 x_0 + w_1 x_1 + w_2 x_2 + b)\end{aligned}$$

f is an **activation function** ("non-linearity")



Usually no non-linearity at the **output layer**

Neural Networks

Types

Network Types

- ▶ **Feed-Forward** NN (Deep NN or DNN)
- ▶ **Recurrent** NN (RNN)

Layer Types

- ▶ Locally-connected
 - ▶ Convolutional
 - ▶ Sub-sampling (Pooling)
 - ▶ Upsampling (Deconvolutional)
- ▶ Fully-connected (FC or Dense)

From Task to Architecture

Design your NN for the task at hand

- ▶ Need to reason only at **local** scale:
locally-connected
- ▶ Need to reason only at **global** scale:
fully-connected
- ▶ Need to reason at **both** scales:
locally-connected + fully-connected

Common Architectures

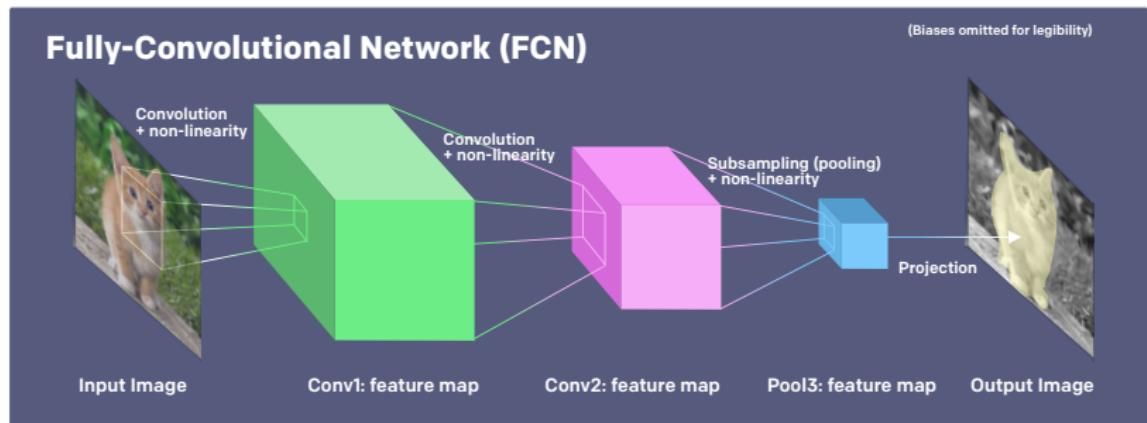
"Architecture" is most popular sub-area of ML research (#1 in published papers)

- ▶ **Fully Convolutional Network** (FCN)
- ▶ **Multi-Layer Perceptron** (MLP)
- ▶ **Convolutional Neural Network** (CNN or ConvNet)

Neural Networks

Fully-Convolutional Network (FCN)

An FCN is composed **exclusively** of locally-connected layers.

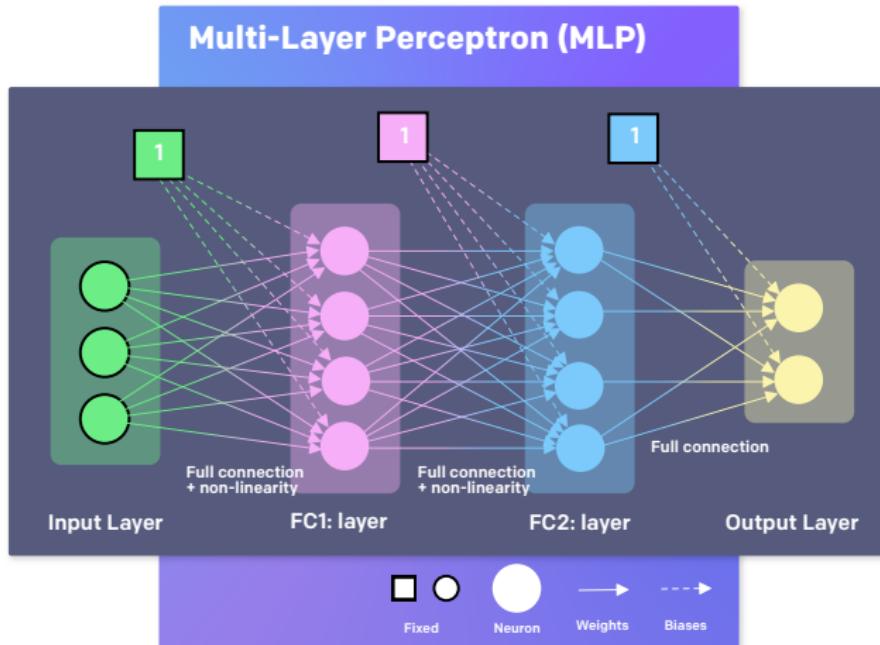


FCNs were first introduced for **Semantic Image Segmentation**.

Neural Networks

Multi-Layer Perceptron (MLP)

An MLP is composed **exclusively** of fully-connected layers.

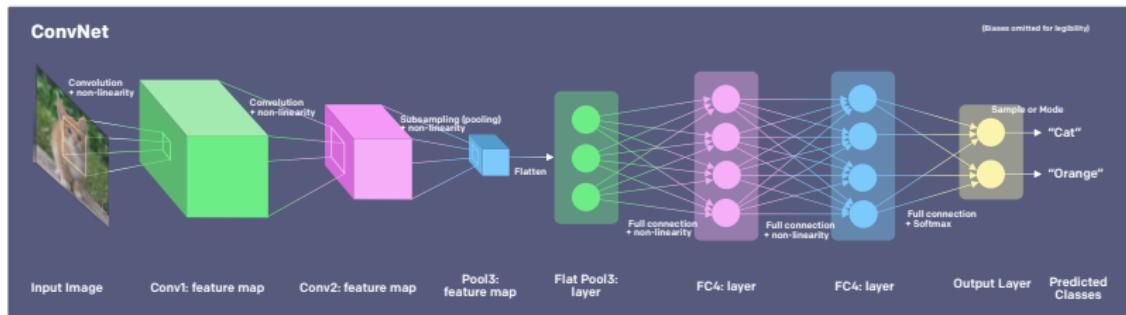


MLPs are the most common architectures as a whole but are also extremely commonly used as **building blocks** for more complex architectures.

Neural Networks

Convolutional Neural Network

A ConvNet has a **hybrid** layer composition: locally-connected layers followed by fully-connected layers.



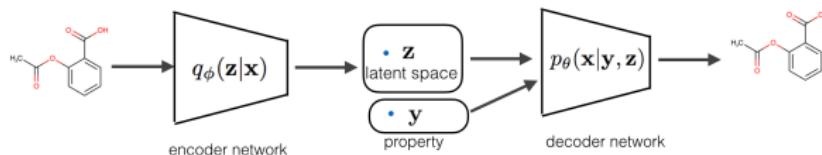
ConvNets are the **gold standard** architecture for **vision tasks** (images as inputs).

Learning to Generate Molecules

Conditional Generation II

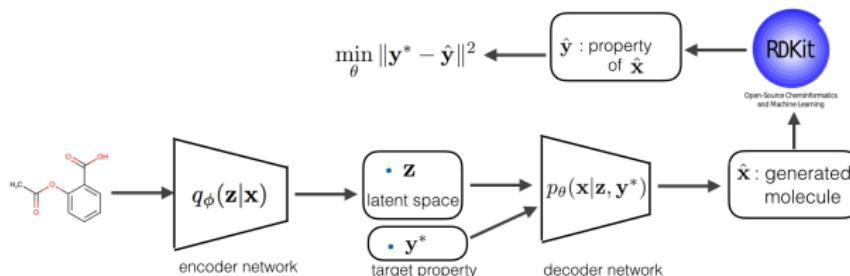
Supervised VAE

Encode a **property** as part of the latent representation via a Variational Auto-Encoder (VAE).



Property-enforcing Regularizer

Force the model to take into account the property information.



Learning to Generate Molecules

Results I

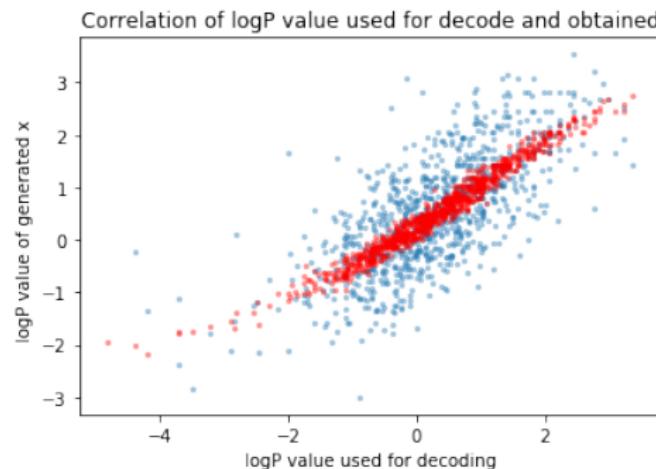


Figure: Correlation plot of the property of the original molecule and the property of the generated molecule.