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Buzzwords
The Holy Trinity of Hype

The Holy Trinity of Hype
AI Artificial Intelligence: design ”intelligent” programs
ML Machine Learning: learn from data without being explicitly programmed
DL Deep Learning: use (deep) neural networks as function approximators in ML

ML (and especially DL) is responsible for
the biggest recent successes in AI.

This talk
(1) Coarse overview of ML concepts
(2) Introduction to 3 case studies of

Deep Learning

AI

A*

Minimax

SVM

DTML

DL

Figure: Russian dolls of AI
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Machine Learning
The Machine Learning Land

Crowded Area

Figure: Tweet from the NIPS (now NeurIPS)
conference organisation committee

Figure: Number of registrations to the NeurIPS
conference over the years

Branches of ML
▶ Supervised Learning (case 1)
▶ Unsupervised Learning (case 3)
▶ Reinforcement Learning (case 2)

Figure: Number of RL papers published over the
last 30 years

Figure: Distribution of papers by sub-domains
published in ICML 2018
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Machine Learning
What does ”learning” mean?

Learning (v1.0)
Ability for an agent to improve performance
after observing data.

The agent is the learning system (”the” AI)

Agents must...
▶ Be naturally adaptive:

No ”hard-coded” behaviour
▶ Encode domain-specific knowledge

underlying the data
▶ Remain flexible enough to enable

adaption and improvement

Learning Theory is not Statistics
Statistics is model-centric: model the data
Learning Theory is algorithm-centric: in
classification, we model the decision
boundary, not the data distribution

Figure: An agent observing data.
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Supervised Learning (SL)
The Core Concepts

Data
Represented by pairs (𝑥, 𝑦), where

▶ 𝑥 ∈ X is the input
▶ 𝑦 ∈ Y is the output

A dataset is defined as a finite set of
input-output pairsD = {(𝑥𝑖, 𝑦𝑖)}𝑛

𝑖=1.

Prediction
For every input 𝑥, the agent predicts an
output ̂𝑦, according to her internal
decision model 𝑓 ∶ X → Y .

Performance Evaluation
The prediction error is measured with
some point-wise loss function ℓ.
ℓ measures the gravity of the mistake.

Agent’s Objective
Find the relationship 𝑓 ∶ 𝑥 ↦ ̂𝑦 between
elements of X and Y that minimises the
prediction error: ℓ( ̂𝑦, 𝑦) = ℓ(𝑓(𝑥), 𝑦):

min
𝑓

ℓ(𝑓(𝑥), 𝑦)
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Supervised Learning (SL)
Classification and Regression

Types of SL
The types differ by their outputs:

▶ Classification: Binary (labels)
Y = {0, 1} corresponding to classes.
Extension: multi-class (3+ classes)

▶ Regression: Real-valued outputs
Y ⊆ R

Examples
▶ Image classification problem

Y = {elephant,dog,cat,gorilla}

“Cat”
What is the object 

in the image?

▶ Facebook ”likes” count prediction
Y = R+

8.73
How many “likes” 
will this post get?
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Deep Learning
Entering Deep Neural Land

“Big” Data
To fit more data, we needmore complex
models that are easy to scale up.

Best Candidate
(Deep) Neural Networks

Figure: Various successful neural architectures.
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Neural Networks
Definition

Neural Network
▶ Hierarchical structure organised in layers
▶ Propagates information from an input
layer to an output layer

▶ Layers in-between are called hidden
▶ Each layer is composed of neurons
▶ Neurons of a hidden layer are connected

both to the previous and next layer

Components
▶ Key hyperparameter: depth and width
▶ Learned variables: weights and biases

Neural Network (v1.0)

Output LayerHidden LayerInput Layer

Neuron Weights BiasesFixed

1
1
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Case Study
Modelling Pathological Gaits

Surgeon’s Dream
Anticipate the outcome of a given
surgical operation on a patient’s walking
pattern (“gait”) without carrying it out in
the real world.

Problem
Model the gait of a given patient given the
patient’s clinical data.

Formulation
𝑥 Clinical data
𝑦 Walking gait
𝑓 Mapping from clinical data to walking

gait: 𝑦 = 𝑓(𝑥).
Goal Learn 𝑓 .

?

Figure: Surgeon’s dream: knowing 𝑓 .
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Modelling Pathological Gaits
Clinical Data

Measured Data
Measured by hand by a physiotherapist

▶ Range of motion: min/max joint
angles (contraction)

▶ Spasticity: “stiffness” of the
muscles tied to a joint

▶ Selectivity: controlability over
individual muscles

▶ Anthropomorphy: dimensions of the
body (weights, sizes, lengths)

Recorded Data1

Recorded via a marker+camera system in
the form of time series

▶ Joint positions
▶ Joint angles
▶ Joint velocities
▶ Joint angular velocities

Figure: Joint angles (left), and joint moments
(right) of a gait cycle, starting at heel strike.

Figure: Backside camera view of HUG’s system.
https://www.unige.ch/medecine/chiru/en/
research-groups/943armand/

1Attias et al., “Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking”, 2016.
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Modelling Pathological Gaits
A Tough Problem I

Figure: Evolution of the angle values or different joints, for a single patient.
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Modelling Pathological Gaits
A Tough Problem II

Figure: Evolution of the angle values or different joints, across several patient.
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Modelling Pathological Gaits
Solutions to the Supervised Learning problem

Difficulties
Huge variance across patients, but also
within gaits of a single patient.

Model v1.0: MLP
Mulit-Layer Perceptron.

𝑦0∶𝑇 = 𝑓(𝑥)

Model v2.0: RNN
Recurrent Neural Network. Relies on the
sequential nature of the data.

⎧{
⎨{⎩

ℎ0 = 𝑓(𝑥)
𝑦𝑡 = 𝑔(ℎ𝑡) ∀𝑡 ∈ [0, 𝑇 − 1]
ℎ𝑡+1 = 𝜏(ℎ𝑡, 𝑦𝑡) ∀𝑡 ∈ [0, 𝑇 − 1]

MLP

Recurrent Neural Network (RNN)

0

y3y2y1y0

h3h0 h2h1

Gait Prediction

Hidden States

Clinical Data
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Modelling Pathological Gaits
Results

Method Error (MSE)
Median 100.21
Recurent Neural Network 92.16
MLP 107.4

Figure: Gait predictions.
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Modelling Pathological Gaits
Towards a Better Solution

So, is it good?
Not really.

▶ Issue: not enough data
▶ Consequence: generates gaits of

low fidelity with the patients’ gaits

Attempted Solution
Bring in a simulator to generate more
data.

▶ New issue: the simulator needs to be
specifically tuned for the
patient/pathology

▶ New approach: use Reinforcement
Learning and Imitation Learning.
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Case Study
Learning to Walk

Data
Clinical data of the same nature as case
study 1, but specifically for patients
suffering from Cerebral Palsy.

Figure: Backside camera view of HUG’s system.

New
Use a simulator.

Figure: EPFL BIOROB Team’s simulator.
https://biorob.epfl.ch

Problem
Find the parametrisation of the simulator
that corresponds to the pathology
displayed in the patient data.
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Reinforcement Learning 2 (RL)
Setting

RL is the field of sequential decision-making under uncertainty.

An agent (decision maker)
interacts with a previously
unknown environment and
receives rewards upon
interaction.

Agent’s Objective (v1.0)
Maximise the long-term
cumulative reward.

Figure: An agent interacting with its environment.

2Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998.
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Reinforcement Learning
Interaction

Agent

Environment

ActionRewardState

Figure: Interaction diagram (v1.0)
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RL Caveats

Interactive Nature
Heavy interaction with the environment
while learning: safety34issues in real
world scenarios.

Reward Design
Preliminary burden: handcraft reward
signal(s) to induce the desired behavior.
This is called reward shaping5.

Figure: Reward from the block-stacking paper6

Figure: Boston DynamicsWildCat robot

Figure: Hindsight Experience Replay7

3Amodei et al., “Concrete Problems in AI Safety”, 2016.
4Held et al., “Probabilistically Safe Policy Transfer”, 2017.
5Ng, Harada, and Russell, “Policy invariance under reward transformations: Theory and application to reward shaping”, 1999.
6Popov et al., “Data-efficient Deep Reinforcement Learning for Dexterous Manipulation”, 2017.
7Andrychowicz et al., “Hindsight Experience Replay”, 2017.
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Imitation Learning 12

An apparent solution

Instead of receiving rewards upon
interaction, the agent is initially provided
with demonstrations from an expert and
does not receive any external feedback
while learning.

Objective
Mimic the demonstrated behaviour.

▶ 𝜋𝑒: expert policy
▶ Demonstration 𝜏𝑒: trajectory from 𝜋𝑒
▶ Trajectory: trace of interaction with

the MDP, i.e. state-action pairs (or
just states89) collected during one
episode: {(𝑠0, 𝑎0), … , (𝑠𝑇 , 𝑎𝑇 )}.

Figure: Kinaesthetic Teaching in Virtual Reality11

8Liu et al., “Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation”, 2017.
9Merel et al., “Learning human behaviors frommotion capture by adversarial imitation”, 2017.
11Zhang et al., “Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation”, 2017.
12Bagnell, An invitation to imitation, 2015.
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Sample-Efficient Adversarial Mimic
Our work: “Sample-Efficient Imitation Learning via Generative Adversarial Nets”, AISTATS 2019

Policy (Generator)

Discriminator

Policy Network

Policy’s goal:
Fool the discriminator into 
believing the generated 
samples are real ones.

State

Concatenate

Action

From policy or 
from expert

?

Discriminator Network

Discriminator’s goal:
Distinguish generated 
samples from real ones.

Expert 
Demonstrations

State-action pairs from 
expert trajectories

MDP
Transition

Reward

Critic
State-Action Value (Q-Value)

Quality estimate of the picked 
action in the current state.

Critic Network

Critic’s goal:
Evaluate the action 
picked by the policy.

Bootstrap
(Bellman)

Figure: Sample-efficient Adversarial Mimic.
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Sample-Efficient Adversarial Mimic
Video Demo

Figure: https://arxiv.org/abs/1809.02064

Figure: https://youtu.be/-nCsqUJnRKU
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Case Study
Learning to Generate Molecules

Molecule Design13

Figure: Diversity-oriented synthesis: producing
chemical tools for dissecting biology

Conditional Image Generation14

Figure: Class-conditional samples generated
with generative Adversarial Nets (GAN)

Style Transfer

13O’Connor, Beckmann, and Spring, “Diversity-oriented synthesis: producing chemical tools for dissecting biology”, 2012.
14Brock, Donahue, and Simonyan, “Large scale gan training for high fidelity natural image synthesis”, 2018.
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Case Study
Learning to Generate Molecules

Problem
Can we do the same with molecules?

Goal
▶ Generate molecules with specific properties
▶ Enable style (property) transfer frommolecule to molecule.
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Learning to Generate Molecules
Molecule Representation

Figure: Introduction of a grammar in a SMILES molecule representation.
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Learning to Generate Molecules
Conditional Generation I

Data
Pairs (𝑥, 𝑦) where

▶ 𝑥 is themolecule
▶ 𝑦 is the property

Z Y

Molecule
(Observed)

Molecule’s Property (LogP)
(Observed)Hidden Factor

(Not Observed)

Inference

X

Figure: Graphical model.

Benefits
With the learned 𝑝𝜃(𝑥|𝑧, 𝑦), we can:

▶ Generate molecules that have a desired
property 𝑦⋆

▶ Achieve a diverse generation of molecules
with property 𝑦⋆ by sampling from 𝑝𝜃(𝑥|𝑧, 𝑦⋆)
with various 𝑧 values from 𝑧 ∼ N (0, 1)

▶ Modify the property of molecule 𝑥 to have the
property 𝑦⋆ while staying close to the original
molecule in terms of structure by sampling
from 𝑝𝜃(𝑥|𝑧, 𝑦⋆) with various 𝑧 values from
𝑧 ∼ 𝑞𝜙(𝑧|𝑥)
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Learning to Generate Molecules
Results II

Conditional Generation

Figure: Generated molecules with property value within a 15% range from the desired value.

Style Transfer

Figure: Property transfer over molecules.
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Neural Networks
Propagation Rule

Propagation Rule
The activation of a neuron is a direct
expression of the activations of the
neurons from previous layers.

Neural Network (v2.0)

Output LayerHidden LayerInput Layer

Neuron Weights BiasesFixed

1
1

x2

x1

x0

b

w2

w1

w0 h0

activateaddmultiply

outputbiasweightsinput

hwx b

ℎ0 = 𝑓 (𝑤𝑇 𝑥 + 𝑏)
= 𝑓 (𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏)

𝑓 is an activation function (”non-linearity”)

Usually no non-linearity at the output layer
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Neural Networks
Types

Network Types
▶ Feed-Forward NN (Deep NN or DNN)
▶ Recurrent NN (RNN)

Layer Types
▶ Locally-connected

▶ Convolutional
▶ Sub-sampling (Pooling)
▶ Upsampling (Deconvolutional)

▶ Fully-connected (FC or Dense)

From Task to Architecture
Design your NN for the task at hand

▶ Need to reason only at local scale:
locally-connected

▶ Need to reason only at global scale:
fully-connected

▶ Need to reason at both scales:
locally-connected + fully-connected

Common Architectures
”Architecture” is most popular sub-area
of ML research (#1 in published papers)

▶ Fully Convolutional Network (FCN)
▶ Multi-Layer Perceptron (MLP)
▶ Convolutional Neural Network (CNN

or ConvNet)
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Neural Networks
Fully-Convolutional Network (FCN)

An FCN is composed exclusively of locally-connected layers.

(Biases omitted for legibility) 

Projection

Pool3: feature mapConv2: feature map

Subsampling (pooling)
+ non-linearity

Convolution
+ non-linearity

Convolution
+ non-linearity

Conv1: feature map

 Fully-Convolutional Network (FCN)

Output ImageInput Image

FCNs were first introduced for Semantic Image Segmentation.
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Neural Networks
Multi-Layer Perceptron (MLP)

An MLP is composed exclusively of fully-connected layers.

Full connection

Multi-Layer Perceptron (MLP)

Output LayerFC2: layerFC1: layerInput Layer

Neuron Weights BiasesFixed

1
1 1

Full connection
+ non-linearity

Full connection
+ non-linearity

MLPs are the most common architectures as a whole but are also extremely
commonly used as building blocks for more complex architectures.
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Neural Networks
Convolutional Neural Network

A ConvNet has a hybrid layer composition: locally-connected layers followed by
fully-connected layers.

(Biases omitted for legibility) 

Flatten

Predicted
Classes

 Output LayerFC4: layerFlat Pool3:
layer FC4: layerPool3:

feature mapConv2: feature mapConv1: feature mapInput Image

ConvNet

“Orange”

“Cat”
Subsampling (pooling)
+ non-linearity

Convolution
+ non-linearity

Convolution
+ non-linearity

 Full connection
+ Softmax Full connection

+ non-linearity
 Full connection
+ non-linearity

Sample or Mode

ConvNets are the gold standard architecture for vision tasks (images as inputs).
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Learning to Generate Molecules
Conditional Generation II

Supervised VAE
Encode a property as part of the latent representation via a Variational
Auto-Encoder (VAE).

Property-enforcing Regularizer
Force the model to take into account the property information.
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Learning to Generate Molecules
Results I

Figure: Correlation plot of the property of the original molecule and the property of the
generated molecule.
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