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Buzzwords
The Holy Trinity of Hype

The Holy Trinity of Hype

Al Artificial Intelligence: design "intelligent” programs

ML Machine Learning: learn from data without being explicitly programmed
DL Deep Learning: use (deep) neural networks as function approximators in ML

AI Minimax
ML (and especially DL) is responsible for
the biggest recent successes in Al.
x ML
This talk
(1) Coarse overview of ML concepts SVM
(2) Introduction to 3 case studies of DL

Deep Learning

Figure: Russian dolls of Al



Machine Learning

The Machine Learning Land

Crowded Area

~380, NIPS @NipsConference - 4m

@ #NIPS2018 The main conference sold
out in 11 minutes 38 seconds
Qa3 T2 Q 25 S

Figure: Tweet from the NIPS (now NeurlPS)
conference organisation committee
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Figure: Number of registrations to the NeurlPS
conference over the years

Branches of ML
» Supervised Learning (case 1)
» Unsupervised Learning (case 3)
» Reinforcement Learning (case 2)
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Figure: Number of RL papers published over the
last 30 years

Figure: Distribution of papers by sub-domains
published in ICML 2018

4/29



Machine Learning

What does “learning” mean?

Learning (v1.0)

Ability for an agent to improve performance
after observing data.

The agent is the learning system ("the” Al)

Agents must...
» Be naturally adaptive:
No "hard-coded” behaviour
» Encode domain-specific knowledge
underlying the data
» Remain flexible enough to enable
adaption and improvement

Learning Theory is not Statistics
Statistics is model-centric: model the data
Learning Theory is algorithm-centric: in ) )
classification, we model the decision Figure: An agent observing data.
boundary, not the data distribution
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Supervised Learning (SL)

The Core Concepts

Data

Represented by pairs (z,y), where
» z € X is the input
> y € Yis the output

A dataset is defined as a finite set of
input-output pairs D = {(z;,y;) ;.

Prediction

For every input z, the agent predicts an
output g, according to her internal
decision model f: X — V.

Performance Evaluation
The prediction error is measured with
some point-wise loss function /.

£ measures the gravity of the mistake.

Agent’'s Objective

Find the relationship f : z — § between
elements of X and ) that minimises the
prediction error: ((y,y) = ((f(x),y):

min ((f(2),y)
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Supervised Learning (SL)

Classification and Regression

Types of SL
The types differ by their outputs:
» Classification: Binary (labels)

Y = {0,1} corresponding to classes.

Extension: multi-class (3+ classes)
» Regression: Real-valued outputs
YCR

Examples
» Image classification problem
Y = {elephant, dog, cat, gorilla}

» “Cat”

S8 What is the object
in the image?

» Facebook "likes" count prediction
J;:: HR+

» 8730

How many “likes”
will this post get?
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Deep Learning

Entering Deep Neural Land

"Big"” Data
To fit more data, we need more complex
models that are easy to scale up.

Best Candidate

(Deep) Neural Networks

Inception-v4
Inception-v3 ResNet-152
g ) VGG-16 JeC LS

; Reset-101
‘ ResNet-34

a ResNet-18

007 ogtenet
ENet

Top-1 accuracy (%]

© s

2

35M  65M  95M  125M  155M

BN-AlexNet
AlexNet

0 s To 15 20 2 0 3 a0
Operations (G-0ps]

Figure: Various successful neural architectures.
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Neural Networks

Definition

Neural Network
» Hierarchical structure organised in layers
» Propagates information from an input
layer to an output layer
» Layers in-between are called hidden
Each layer is composed of neurons
» Neurons of a hidden layer are connected
both to the previous and next layer

v

Components

» Key hyperparameter: depth and width
» Learned variables: weights and biases

Input Layer Hidden Layer Output Layer

e @ - -

Neuron  Weights  Biases

9/29



Case Study

Modelling Pathological Gaits

Formulation

z Clinical data

y Walking gait

f Mapping from clinical data to walking

gait: y = f(x).

Surgeon’s Dream Goal Learn f.
Anticipate the outcome of a given
surgical operation on a patient's walking
pattern (“gait”) without carrying it out in
the real world.

Problem
Model the gait of a given patient given the
patient’s clinical data.

it
e
[ P

LY

Figure: Surgeon'’s dream: knowing f.
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Modelling Pathological Gaits

Clinical Data

Measured Data
Measured by hand by a physiotherapist
» Range of motion: min/max joint
angles (contraction)
» Spasticity: “stiffness” of the
muscles tied to a joint
» Selectivity: controlability over
individual muscles
» Anthropomorphy: dimensions of the
body (weights, sizes, lengths)

Recorded Data'
Recorded via a marker+camera system in
the form of time series

» Joint positions

» Joint angles

» Joint velocities

» Joint angular velocities

z

H
o
B
B

Ho Angee (deg)

Moment (N} Hip Moment (NT) amcrir
/7

B o 27 B3 100

l <150
o0/ \ = B
/ L

]
£

2 0/
% o

£ £
h0f Gai e % of Gat Cycle

Figure: Joint angles (left), and joint moments
(right) of a gait cycle, starting at heel strike.

Figure: Backside camera view of HUG's system.
https://www.unige.ch/medecine/chiru/en/
research-groups/943armand/

Tattias et al., “Feasibility and reliability of using an exoskeleton to emulate muscle contractures during walking”, 2016.
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Modelling Pathological Gaits

A Tough Problem |

Figure: Evolution of the angle values or different joints, for a single patient.
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Modelling Pathological Gaits

A Tough Problem II

Figure: Evolution of the angle values or different joints, across several patient.
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Modelling Pathological Gaits

Solutions to the Supervised Learning problem

Model v2.0: RNN
Recurrent Neural Network. Relies on the
sequential nature of the data.

Difficulties
Huge variance across patients, but also ho = f(x)
within gaits of a single patient. v, =glhy) VEE,T—1]

hepr =7(he,ye) vVt e [0,T —1]

Recurrent Neural Network (RNN)

‘ ‘ ‘ ‘ Gait Prediction
A (S SN

Model v1.0: MLP

Mulit-Layer Perceptron.

" ; »‘ ! »‘ ; »‘ Hidden States
ry by yy yy

—.4 Clinical Data

Yo.r = f(2)
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Modelling Pathological Gaits

Results

Method | Error (MSE)
Median 100.21
Recurent Neural Network 9216
MLP 107.4

Figure: Gait predictions.
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Modelling Pathological Gaits

Towards a Better Solution

So, is it good?
Not really.
» Issue: not enough data
» Consequence: generates gaits of
low fidelity with the patients’ gaits

Attempted Solution
Bring in a simulator to generate more
data.

» New issue: the simulator needs to be
specifically tuned for the
patient/pathology

» New approach: use Reinforcement
Learning and Imitation Learning.
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Case Study

Learning to Walk

New
Use a simulator.

Data

Clinical data of the same nature as case
study 1, but specifically for patients
suffering from Cerebral Palsy.

Figure: EPFL BIOROB Team's simulator.
https://biorob.epfl.ch

Figure: Backside camera view of HUG's system.

Problem

Find the parametrisation of the simulator
that corresponds to the pathology
displayed in the patient data.
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Reinforcement Learning 2 (RL)
Setting

RL is the field of sequential decision-making under uncertainty.

An agent (decision maker)
interacts with a previously
unknown environment and
receives rewards upon
interaction.

Agent’s Objective (v1.0)
Maximise the long-term
cumulative reward.

Figure: An agent interacting with its environment.

2sutton and Barto, “Reinforcement Learning: An Introduction”, 1998.
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Reinforcement Learning

Interaction

( ' Agent

State Reward Action

Environment

Figure: Interaction diagram (v1.0)



RL Caveats

Interactive Nature

Heavy interaction with the environment
while learning: safety3“issues in real
world scenarios.

Reward Design
Preliminary burden: handcraft reward Figure: Boston Dynamics WildCat robot
signal(s) to induce the desired behavior.
This is called reward shaping®.

1 if stack(b
025 if
0.125 z
0 otherwise

o801, g2)
B 552 p grasp(b, 7, 51, 55%)
81 s82) v grasp(b”, 5", s51, 552)) A reach (b, 7', 551, 552)

(B0, 57,57, 57) —

Figure: Reward from the block-stacking paper®
Figure: Hindsight Experience Replay’

3 Amodei et al., “Concrete Problems in Al Safety”, 2016.
Z‘Held et al., “Probabilistically Safe Policy Transfer”, 2017.
5Ng, Harada, and Russell, “Policy invariance under reward transformations: Theory and application to reward shaping”, 1999.
6Popov et al.,, “Data-efficient Deep Reinforcement Learning for Dexterous Manipulation”, 2017.
7Andrychowicz et al., “Hindsight Experience Replay”, 2017.
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Imitation Learning '?

An apparent solution

Instead of receiving rewards upon
interaction, the agent is initially provided
with demonstrations from an expert and
does not receive any external feedback
while learning.

Objective
Mimic the demonstrated behaviour.

» m,.: expert policy

» Demonstration 7,: trajectory from =,

» Trajectory: trace of interaction with
the MDP, i.e. state-action pairs (or
just states®?) collected during one

epiSOde: {(507 a0)> AN (5T7 aT)}'

Figure: Kinaesthetic Teaching in Virtual Reality"

8Liu et al., “Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation”, 2017.
9 Merel et al., "Learning human behaviors from motion capture by adversarial imitation”, 2017.
11Zhang et al,, "Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation”, 2017.

1ZBagneII, An invitation to imitation, 2015.
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Sample-Efficient Adversarial Mimic

Our work: “Sample-Efficient Imitation Learning via Generative Adversarial Nets"”, AISTATS 2019

Discriminator

Critic

From policy or

from expert

i
Bootstrap | Discriminator Network
(Bellman) v o —
iscriminator's goal
Critic Network Distinguish generated
samples from real ones.
Critic's goal:

Evaluate the action /
Demonsﬂatlons

picked by the policy.
o VaD(s,0)
e U Concatenate
VoQ(s.a)

State-action pairs from
4 expert trajectories

% MDP

v X

Policy Network

Policy's goal ‘_/
Foolthe discriminator into

believing the generatec
samples are real ones.

Reward

Policy (Generator)

Figure: Sample-efficient Adversarial Mimic.
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Sample-Efficient Adversarial Mimic

Video Demo

VIDEO DEMOS
SAMPLE-EFFICIENT IMITATION LEARNING VIA
GENERATIVE ADVERSARIAL NETS

AISTATS 2019

https://youtu.be/-nCsqUInRKU

https://arxiv.org/abs/1809.02064


https://arxiv.org/abs/1809.02064
https://youtu.be/-nCsqUJnRKU

Case Study

Learning to Generate Molecules

Conditional Image Generation'

Molecule Design'®

Figure: Class-conditional samples generated
with generative Adversarial Nets (GAN)

Style Transfer

Figure: Diversity-oriented synthesis: producing
chemical tools for dissecting biology

credit to @DmitryUlyanovML

13O'Connor, Beckmann, and Spring, “Diversity-oriented synthesis: producing chemical tools for dissecting biology”, 2012.
1[‘Brock, Donahue, and Simonyan, “Large scale gan training for high fidelity natural image synthesis”, 2018.
2429



Case Study

Learning to Generate Molecules

Problem
Can we do the same with molecules?

Goal

» Generate molecules with specific properties
» Enable style (property) transfer from molecule to molecule.
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Learning to Generate Molecules

Molecule Representation

SMILES

Grammar

.
.

BrCcicl[nH

oJo]o

One-hot
encoding

——mes0zo0
Slolols|=olels o
Slol=lolelalelo] -

s[s[s]s]e[e]s

o
o
o

o]
o
1
o

smiles — chain
chain — chain, branched atom
chain — branched atom
branched atom —— atom, ringbond
branched atom — atom
atom —— aromatic organic
atom —— aliphatic organic
fingbond — digit
aromatic organic —— 'c
aliphatic organic — 'C

aliphatic organic —— N

Kusner et a, 2017

chain™
branched
atom

atom  ringbond

‘cleccecl

Figure: Introduction of a grammar in a SMILES molecule representation.

smiles — chain
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branched . atom, ringbond
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Learning to Generate Molecules

Conditional Generation |

Data

Pairs (z,y) where
» z is the molecule
» yis the property

Molecule’s Property (LogP)
Hidden Factor lobsewr:d) v (LogP)
(Not Observed)

. \
Inference \ *li

Molecule
(Observed)

Figure: Graphical model.

Benefits
With the learned py (z|z,y), we can:

>

>

Generate molecules that have a desired
property y*

Achieve a diverse generation of molecules
with property y* by sampling from py(z|z, y*)
with various z values from z ~ N(0,1)

Modify the property of molecule z to have the
property y* while staying close to the original
molecule in terms of structure by sampling
from pg(z|z, y*) with various z values from

z~q¢(z\x)
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Learning to Generate Molecules

Results Il
Conditional Generation

g Y = -0.5759269

-0.5234 -0.5462 -0.5907 -0.5907 -0.5075 -0.4986 -0. Eﬁf

Y B AAAY D O O

Figure: Generated molecules with property value within a 15% range from the desired value.

Style Transfer

Molecule A, Logp= 0.6025799897835121 Wolecule 8, Logps -0.5758999902454177
o
N
N%
P —
— el
o
A
HN

Figure: Property transfer over molecules.
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Neural Networks

Propagation Rule

Propagation Rule

The activation of a neuron is a direct
expression of the activations of the
neurons from previous layers.

input weights

ho = f (wTz +b)

= f(wozy + Wiz, + wazy + b)

f is an activation function ("non-linearity")

Usual Activation Functions

sigmoid
41 W tanh
L ReLU
3 2

1 —

of — /
Input Layer Hidden Layer -1 —

-4 -2 0 2 4

Usually no non-linearity at the output layer
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Neural Networks

Types

Network Types

» Feed-Forward NN (Deep NN or DNN)
» Recurrent NN (RNN)

Layer Types
» Locally-connected
» Convolutional
» Sub-sampling (Pooling)
» Upsampling (Deconvolutional)
» Fully-connected (FC or Dense)

From Task to Architecture
Design your NN for the task at hand
» Need to reason only at local scale:
locally-connected
» Need to reason only at global scale:
fully-connected
» Need to reason at both scales:
locally-connected + fully-connected

Common Architectures
"Architecture” is most popular sub-area
of ML research (#1in published papers)
» Fully Convolutional Network (FCN)
» Multi-Layer Perceptron (MLP)
» Convolutional Neural Network (CNN
or ConvNet)



Neural Networks
Fully-Convolutional Network (FCN)

An FCN is composed exclusively of locally-connected layers.

(Biases omitted for legibility)

Fully-Convolutional Network (FCN)

Convolution ~
+ non-linearity “Convolution
+ non-Tinear A ~Subsampling (pooling)
+ non-linearity

Projection

Input Image Conv1: feature map Conv2: feature map Pool3: feature map Output Image

FCNs were first introduced for Semantic Image Segmentation.
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Neural Networks
Multi-Layer Perceptron (MLP)

An MLP is composed exclusively of fully-connected layers.

Multi-Layer Perceptron (MLP)

Full connection

Full connection Full connection
+ non-linearity + non-linearity

Input Layer FC1: layer FC2: layer Output Layer

@ -

Neuron Weights  Biases

MLPs are the most common architectures as a whole but are also extremely
commonly used as building blocks for more complex architectures.
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Neural Networks

Convolutional Neural Network

A ConvNet has a hybrid layer composition: locally-connected layers followed by
fully-connected layers.

ConvNet

SaBle or Mode

“cat”

B roanse
g

Input Image Convi:featuremap  Convz:featremap foarrosap | layor FCu: layer Output Layer  Predicted

ConvNets are the gold standard architecture for vision tasks (images as inputs).
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Learning to Generate Molecules

Conditional Generation Il

Supervised VAE

Encode a property as part of the latent representation via a Variational
Auto-Encoder (VAE).

B SN L T
v

encoder network property decoder network

Property-enforcing Regularizer
Force the model to take into account the property information.

mm I 7yH2 m‘_‘
. X: generated
\T \5 6(2[x) | —|iatent space —> |po(xlz.y7)

/'

encoder network Iarget property decoder network
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Learning to Generate Molecules

Results |

Correlation of logP value used for decode and obtained

logP value of generated x

—4 -2 o 2
logP value used for decoding

Figure: Correlation plot of the property of the original molecule and the property of the
generated molecule.
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