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A fruitful convergence

From a methodological point of view : “Variances are not always 

nuisance parameters” 

Understanding the structure of variability and estimating its different components is as 

central as understanding the mean structure.

From a psychological point of view : short-term intra-individual 

variability can be a conceptual tool

We, as psychologists, use quantifications and models of intra-individual variability to 

measure and describe human functional and dynamic characteristics.

This reinforces the need to a deeper investigation on intra-individual variability 

above and beyond the normative view of mean values and heterogeneity among 

subjects.



1. Quantifying intra-individual variability

2. Modeling between-subject and within-subject variances 

using mixed-effects location scale models

3. A Bayesian model for estimating intra-individual variability 

as a predictor

Plan



The analyzed data

Participants and procedure :

Thirty-five adults aged 61-97 years (mean age 71 years), MMSE > 25. Eight 

measurement occasions, every two weeks (data collected by J. Lebahar, Phd).

At each measurement occasion  : 

Trail Making Test

Realization time in sec.



The analyzed data 

Intra-individual variability of Realization Time for the Trail Making Test

The first 6 participants



The analyzed data 

IDs in IIV in Realization Time for the Trail Making Test



The analyzed data

At each measurement occasion  : 

The AX-Continuous Performance Test : 100 trials (40 AX, 20 AY, 20 BX, 20 

BY) : RT for correct responses. 

target 

response

non-target 

response

non-

target 

response
time

Reaction time (RT) in sec.



Data from an illustrative example 

Intra-individual variability of Reaction Time for AX-CPT (session 3)

The first 6 participants



Quantifying intra-individual variability



A two-stage approach

Stage 1

Estimation of one or another index of IIV on the basis of observations at the 

individual level. 

→ Each estimate has its own error of estimation.

Stage 2 

IIV as an outcome : 

• regression of IIV on one or several covariates of interest.

IIV as a predictor : 

• regression of one or several outcomes of interest on IIV.

→ More often, the SE of estimation will be downwardly biased and the  

probability of rejecting a null hypothesis although it is true (Type I error) 

will be inflated. 



Some conventional methods for quantifying intra-individual 

variability

The amplitude of intra-individual variability (ISD) 

Yt,i : the observed score of individual i at occasion t ; 

Ti : the number of measurement occasions for individual i ;

No consideration of temporal order or serial correlation.

Practical

→ An application with R
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Some conventional methods for quantifying intra-individual 

variability

TMTb : empirical distribution of ISD for subject 2 (5000 bootstrap 

samples); ISD = 43.04, 95% IC [17.63, 56.19]. 



Some conventional methods for quantifying intra-individual 

variability

AX-CPT Reaction Time : empirical distribution of ISD for subject 1 

(5000 bootstrap samples); ISD = 334, 95% IC [269, 396]. 



Some conventional methods for quantifying intra-individual 

variability

ISD and ISD2 are sensitive to systematic intra-individual change (trends).

→ detrending the data :

Raw-score ISD and ISD2 are likely to be correlated with individual mean scores.

Raw-score Individual Coefficient of Variation (ICV) and detrended ICV.
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Some conventional methods for quantifying intra-individual 

variability

The temporal dependency in the data

The autocorrelation or the degree to which current observations are correlated 

with previous observations.

The autocorrelations can be obtained for different lags.

ρi(τ) is the autocorrelation at lag τ  (τ = 1, 2, . . .)  with :

is the auto-covariance at lag τ defined by the covariance between pairs of 

observations that are formed by yt,i and yt+ τ,i .

Practical

→ An application with R
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Some conventional methods for quantifying intra-individual 

variability

The degree of temporal instability

Refers to occasion-to-occasion squared differences and combines both the 

amplitude of intra-individual variability and the temporal dependency.

The mean square successive difference (MSSD) : 

Given stationary data,

The MSSD is a lag-dependent measure.

Practical

→ An application with R
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Some conventional methods for quantifying intra-individual 

variability

TMTb : empirical distribution of mssd for subject 1 (5000 bootstrap 

samples); mssd = 1050, 95% IC [166, 1683]. 



Modeling between-subject and

within-subject variances using

mixed-effects location scale models
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Simple linear regression on time

Measurement y of subject i (i = 1, 2,…, N) on occasion j (j = 1, 2,…, ni)

N subjects  

one line 

Practical

→ An application with R



Simple linear regression on time

TMT Realization Time : Evolution of performance over time : linear trend



The mixed-effects regression model as a primary method for 

analysis of repeated and longitudinal data 

MRMs account for the influence of subjects on their repeated 

observations 

Random subject effects reflect each subject’s performance or development 

across time.

Random subject effects = between-subjects (BS) differences in intercept, linear 

slope, quadratic slope, etc. of the regression function. 

Differences between subjects are measured by the variance of the random 

effects :

- the BS (inter-individual) variance, 

- the within-subjects (WS) or intra-individual variance. 
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The mixed-effects regression model as a primary method for 

analysis of repeated and longitudinal data 

The two-level random intercept model

Measurement y of subject i (i = 1, 2,…, N) on occasion j (j = 1, 2,…, ni)

→ BS variance

→ WS variance



The mixed-effects regression model as a primary method for 

analysis of repeated and longitudinal data 

The two-level random intercept model

Measurement y of subject i (i = 1, 2,…, N) on occasion j (j = 1, 2,…, ni) :

xij is the p × 1 vector of regressors ;

β is the p × 1 vector of regression coefficients ;

υi : random effects for intercepts,                        

εij : residual “random” effects that are assumed to be independent of υi,

'                       (1)ij ij i ijy x β υ ε= + +

2 2(0, ),   represents the BS variance ;i υ υυ σ σ∼ N

2 2 and  are supposed to be homogeneous across subject groups or levels of covariates.υ εσ σ

2 2(0, ),   represents the WS variance.
ij ε εε σ σ∼ N



The mixed-effects regression model as a primary method for 

analysis of repeated and longitudinal data 

In the long format, each row is one time point per subject

The stacked data set : ID time age fab tmta tmtb tmt

1 1 68 18 60 199 139

1 2 68 18 41 141 100

1 3 68 18 56 152 96

1 4 68 18 46 178 132

1 5 68 18 42 140 98

1 6 68 18 43 162 119

1 7 68 18 49 185 136

1 8 68 18 53 158 105

2 1 88 16 37 206 169

2 2 88 16 34 173 139

2 3 88 16 39 139 100

2 4 88 16 35 200 165

2 5 88 16 37 144 107

2 6 88 16 29 85 56

2 7 88 16 39 180 141

2 8 88 16 51 213 162
…        …          …        …         …         …         …

Practical

→ An application with R



The mixed-effects regression model as a primary method for 

analysis of repeated and longitudinal data 

Evolution with time and effect of age on the trail making test 

performance.

Results of the Chi-square test used to compare mrm1 and mrm2 :

Smaller is better !
The RSS reduction is 

statistically significant



The mixed-effects regression rodels as a primary method for 

analysis of repeated and longitudinal data 

TMT performance : Evolution with time and effect of age

2BS variance : υσ→
2WS variance : εσ→

0 :  constant termβ

1 :  time  tmtβ →

2 :  age  tmtβ →



The mixed-effects location scale model

→ Using a log-linear representation for variances (to ensure positive 

variances)

2 2Assumptions that  and  are homogeneous across subject groups or 

levels of covariates can be relaxed.
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The mixed-effects location scale model

BS variance :

WS variance :

2 ' 2 '
(2) = exp( ) or log( )=                      

i ii iυ υσ σu α u α

fixed part  +   random part

2 ' 2 '
(3) = exp( ) or log( )=                  

ij ijij ijε εσ σw τ w τ

fixed part  +   random part

(Hedeker, Mermelstein & Demirtas, 2008, 2012)

'
(1)                                 ij ij i ijy x β υ ε= + +



The mixed-effects location scale model

→ Some covariates can influence the BS and WS variances.

BS variance : - subject-level covariates    →

WS variance : - subject-varying covariates    →

- time-varying covariates  →

- residual variation across subjects : 

2log( )
iυσ

2log( )
ijεσ

2log( )
ijεσ

2 'log( )=
ij ij iε ωσ +w τ

random subject

(scale) effects
2(0, )i N ωω σ∼

(Hedeker, Mermelstein & Demirtas, 2008, 2012)
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The mixed-effects location scale model

Measurement y of subject i (i = 1, 2,…, N) on occasion j (j = 1, 2,…, ni)

Average across all participants

Participant #2

Participant #35



1 2 3 4 5 6 7 8

4
0

6
0

8
0

1
2

0
1

6
0

Time

T
M

T
 (

s
e

c
.)

Average across all participants

ββββ : effect of covariates

The mixed-effects location scale model

Measurement y of subject i (i = 1, 2,…, N) on occasion j (j = 1, 2,…, ni)
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The mixed-effects location scale model

Measurement y of subject i (i = 1, 2,…, N) on occasion j (j = 1, 2,…, ni)
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The mixed-effects location scale model

Measurement y of subject i (i = 1, 2,…, N) on occasion j (j = 1, 2,…, ni)
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The mixed-effects location scale model

Measurement y of subject i (i = 1, 2,…, N) on occasion j (j = 1, 2,…, ni)
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Measurement y of subject i (i = 1, 2,…, N) on occasion j (j = 1, 2,…, ni)



The mixed-effects location scale model 

EXAMPLE - Analysis of the trail making test performance with random 

location and scale effects using MIXREGLS (Hedeker & Nordgren, 2013)

Model : tmt ~ 1+cov.  |  1+cov.  |  1+cov.,  id=“ID”

The mean submodel :

Reference mean : β0

+

ββββ∗ for covariate u*



The mixed-effects location scale model 

EXAMPLE - Analysis of the trail making test performance with random 

location and scale effects using MIXREGLS (Hedeker & Nordgren, 2013)

Model : tmt ~ 1+cov.  |  1+cov. |  1+cov. , id=“ID”

The BS variance submodel :

Reference variance : exp(αααα0) when uj = 0

+ exp(αααα∗) for covariate u*



The mixed-effects location scale model 

EXAMPLE - Analysis of the trail making test performance with random 

location and scale effects using MIXREGLS (Hedeker & Nordgren, 2013)

Model : tmt ~ 1+cov. |  1+cov. |  1+cov. , id=“ID”

The WS variance submodel :

Reference variance : exp(ττττ0) when wij = 0

+ exp(ττττ∗) for covariate w*



The mixed-effects location scale model 

EXAMPLE - Analysis of the trail making test (part B) performance with 

random location and scale effects using MIXREGLS

Results : MODEL :  tmtb ~1 | 1 | 1, id=“id”

-2 ln L:  451.560

Variable Estimate AsymStdError z-value p-value

BETA (regression coefficients)

Intercept (β 0) 2.232 0.2171 10.283 0.000

ALPHA (BS variance parameters: log-linear model)

Intercept (α 0) 0.336 0.2926 1.149 0.251

TAU (WS variance parameters: log-linear model)

Intercept (τ 0) -1.576 0.226 -6.965 0.000

Influence of the location random effect on the (log of the) WS variance

τ linear 1.056 0.190 5.553 0.000

Standard deviation of the random subject scale effect

 0.347 0.189 1.833 0.067

BS variance : exp(α 0) 1.399

WS variance : exp(τ 0+0.5*                     ) 0.369

ICC = BS/(BS + WS) 0.791

ωσ

2 2( )linear ωτ σ+



The mixed-effects location scale model 

EXAMPLE - Analysis of the trail making test (part B) performance with 

random location and scale effects using MIXREGLS

Results : MODEL : tmtb ~ time | time | 1, id="id"

-2 ln L: 413.792 ;  Likelihood ratio test : ∆χ
2
 = 451.60-413.79 =37.81, ∆df=2

Variable Estimate AsymStdError z-value p-value

BETA (regression coefficients)

Intercept (β 0) 2.489 0.237 10.504 0.000

time (β 1) -0.080 0.016 -5.147 0.000

ALPHA (BS variance parameters: log-linear model)

Intercept (α 0) 0.499 0.301 1.661 0.097

time (α 1) -0.056 0.031 -1.776 0.076

TAU (WS variance parameters: log-linear model)

Intercept (τ 0) -1.727 0.231 -7.466 0.000

Influence of the location random effect on the (log of the) WS variance

τ linear 1.138 0.184 6.202 0.000

Standard deviation of the random subject scale effect

 0.101 0.427 0.237 0.813ωσ



The mixed-effects location scale model 

EXAMPLE - Analysis of the trail making test (part B) performance with 

random location and scale effects using MIXREGLS

Results : MODEL : tmtb ~ time + tmta + age | 1 | age, id="id"

-2 ln L: 392.580 ;  Likelihood ratio test : ∆χ
2
 = 413.79-392.58 = 21.21, ∆df=2

Variable Estimate AsymStdError z-value p-value

BETA (regression coefficients)

Intercept (β 0) 1.893 0.209 9.053 0.000

time (β 1) -0.052 0.010 -5.111 0.000

tmta (β 2) 0.693 0.172 4.035 0.000

age (β 3) 0.508 0.157 3.238 0.000

ALPHA (BS variance parameters: log-linear model)

Intercept (α 0) -0.370 0.305 -1.212 0.226

TAU (WS variance parameters: log-linear model)

Intercept (τ 0) -1.710 0.197 -8.671 0.000

age (τ 3) 0.504 0.198 2.547 0.011

Influence of the location random effect on the (log of the) WS variance

τ linear 0.955 0.161 5.918 0.000

Standard deviation of the random subject scale effect

 0.000 0.215 0.000 1.000ωσ



The mixed-effects location scale model 

EXAMPLE - Analysis of AX-CPT reaction time with random location and scale 

effects using MIXREGLS

Results : MODEL WITHOUT ANY COVARIATES :  tr ~ 1 | 1 | 1, id="id"

-2 ln L:  -167.264

Variable Estimate AsymStdError z-value p-value

BETA (regression coefficients)

Intercept (β 0) 0.629 0.025 25.190 0.000

ALPHA (BS variance parameters: log-linear model)

Intercept (α 0) -3.889 0.252 -15.424 0.000

TAU (WS variance parameters: log-linear model)

Intercept (τ 0) -3.029 0.177 -17.093 0.000

Influence of the location random effect on the (log of the) WS variance

τ linear 0.708 0.158 4.494 0.000

Standard deviation of the random subject scale effect

 0.851 0.099 8.540 0.000

BS variance : exp(α 0) 0.020

WS variance : exp(τ 0+0.5*                        ) 0.089

ICC = BS/(BS + WS) 0.187

ωσ

2 2( )linear ωτ σ+



The mixed-effects location scale model 

EXAMPLE - Analysis of AX-CPT reaction time with random location and scale 

effects using MIXREGLS

Results : MODEL WITH RANDOM SCALE :  tr ~ age | 1 | age, id="id"

-2 ln L:  -178.394, Likelihood ratio test :  

Variable Estimate AsymStdEr r    z-value p-value

BETA (regression coefficients)

Intercept (β 0) 0.048 0.152 0.317 0.751

age  (β 1) 0.008 0.002 3.863 0.000

ALPHA (BS variance parameters: log-linear model)

Intercept (α 0) -4.276 0.259 -16.536 0.000

TAU (WS variance parameters: log-linear model)

Intercept (τ 0) -5.472 1.295 -4.225 0.000

age  (τ 1) 0.032 0.016 1.909 0.006

Influence of the location random effect on the (log of the) WS variance

τ linear 0.632 0.144 4.386 0.000

Standard deviation of the random subject scale effect

 0.826 0.089 9.232 0.000ωσ

2
2 167.264 178.394 11.131χ = − + =



A Bayesian model for estimating intra-

individual variability as a predictor



Statistics from a Bayesian perspective, in a (very) few words…

Bayesian statistics starts by using (prior) probabilities to describe the current 

state of knowledge

The prior distribution represents a specific assumption about a model parameter. 

It is a distribution of credibility across parameter values θ of the model that 

expresses previous knowledge about the parameter values without the newly 

collected data : 

The specification of a very uncertain prior implies that the prior has minimal 

influence on the estimates of the parameters. 

the prior density ( )p θ



Statistics from a Bayesian perspective, in a (very) few words…

Bayesian statistics uses the sampling distribution              of the data y as a 

function of a model with its parameters θ

The likelihood function             is the same as the sampling distribution of the 

observed data y but read in the opposite way.

The value      which yields the maximum of the likelihood function for the 

observed data y is called the maximum of the likelihood estimate of the 

parameter θ.

( )p y |θ

( )p y |θ

θ̂



Statistics from a Bayesian perspective, in a (very) few words…

Bayesian statistics uses Bayes rule and incorporates information through the 

collected data

Bayes rule describes the relationship between the two conditional probabilities 

p(A|B) and p(B|A) :

Bayes rule is used to derive the probability of the parameters θ given the data y, 

that is the posterior distribution             : 

The marginal density p(y) is a constant that contains high-dimensional integrals 

which are often impossible to compute analytically. 

(B A) (A)
(A B)

(B)

p | p
p | .

p
=

( )p | yθ

( ) ( )
( )

( )

p y | p
p | y .

p y

θ θ
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Statistics from a Bayesian perspective, in a (very) few words…

Bayesian statistics relies on computer simulations that draw samples from the 

posterior distribution given a model, a likelihood               and data y

Integration is typically performed by computer simulations :

If chains are converged, the sample that approximates the posterior is 

summarized for inference : mean, mode, median, variance, probability interval 

(e.g., 95% PI) for every parameter.

( ),p | yθ
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3. repeat step 2 very many times (e.g. 50000)
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resulting from

step 3 forms a Markov Chain Monte Carlo (MCMC) sample.



A Bayesian model for estimating intra-individual variability

The Bayesian variability model (Wiley, 2015) :

1. offers unbiased, correct estimates ;

2. gives more effective and more power results with smaller sample sizes ;

3. accounts for systematic changes ;

4. allows for some missing data. 



A Bayesian model for estimating intra-individual variability

A two-stage modeling

1. Estimating intra-individual variability of Xij (subject i, occasion j) in a 

mixed-effects regression framework :

Prior distribution on µi :                            ;

Reference prior on       that is independent of µi :

2( , ).ij i iX N µ σ∼

2( , )i N µ µµ µ σ∼

2
iσ 2 ( , ),  iσ Γ α β∼

with shape and (inverse) scale parameters  and .α β



A Bayesian model for estimating intra-individual variability

A two-stage modeling

1. Estimating intra-individual variability of Xij (subject i, occasion j) in a 

mixed-effects regression framework :

2 ( , ),  with shape and (inverse) scale parameters  and .iσ Γ α β α β∼

1  0.5

2  0.5

3  0.5

5  1

9  2

α β

α β

α β

α β

α β

= =

= =

= =

= =

= =

Gamma : probability density function



A Bayesian model for estimating intra-individual variability

A two-stage modeling

2. Using the estimate of intra-individual variability, accounting for 

measurement error, as a predictor in a multiple regression framework :

2 2

2 0 1 2

                      ( ),

where:

i i

i k k i i

Y N ,

Covariates .

µ σ

µ β β α σ α µ= + + +

∼

latent (estimated) variables 

from step 1



A Bayesian model for estimating intra-individual variability 

EXAMPLE  - Analysis of the effect of  intra-individual variability (TMT part B) 

on performance on the Frontal Assessment Battery (FAB) using ‘varian’

Results : MODEL

tmb ~time + tmta + age | ID  (linear time detrending)

var_intra(tmtb) + mean(tmtb) → FAB

VARIABILITY ANALYSIS

Estimate 95% CI p-value
TMT.B

intercept 2.01 [1.84, 2.52] 0.000

time -0.05 [-0.07, -0.03] 0.000

tmta 0.54 [0.39, 0.99] 0.013

age 0.55 [0.42, 0.92] 0.001

σ µ 1.01 [0.72, 1.38] 0.000

gamma shape 3.91 [2.11, 6.60] 0.000

gamma rate 8.01 [4.02,13.92] 0.000

average ISD (α /β ) 0.49

FAB

intercept 18.96 [16.92, 21.01] 0.000

α 1 : var_intra(tmtb) -5.12 [-9.20, -1.19] 0.013

α 2 : mean(tmtb) 0.65 [-0.29, 1.53] 0.142

residual 1.35 [0.67, 1.99] 0.000



A Bayesian model for estimating intra-individual variability 

EXAMPLE  - Analysis of the effect of  intra-individual variability (TMT part B) 

on performance on the Frontal Assessment Battery (FAB) using ‘varian’

Results :



ID est. 2.5% 97.5% ID est. 2.5% 97.5%

1 0.88 [ 0.38 , 1.40 ] 1 0.38 [ 0.24 , 0.59 ]

2 0.01 [ -0.66 , 0.68 ] 2 0.63 [ 0.44 , 0.91 ]

3 -0.46 [ -0.97 , 0.06 ] 3 0.41 [ 0.22 , 0.69 ]

4 2.10 [ 1.31 , 2.89 ] 4 0.85 [ 0.62 , 1.19 ]

5 0.04 [ -0.51 , 0.59 ] 5 0.39 [ 0.24 , 0.63 ]

6 -0.09 [ -0.62 ,-0.04 ] 6 0.50 [ 0.27 , 0.83 ]

A Bayesian model for estimating intra-individual variability 

EXAMPLE - Analysis of the effect of  intra-individual variability (TMT part B) 

on performance on the Frontal Assessment Battery (FAB) using ‘varian’

Results :
            random effects

                                       i iµ σ

… … … … … …

Raw ISD

0.35

0.72

0.31

1.19

0.45

0.30
…



A Bayesian model for estimating intra-individual variability 

EXAMPLE - Analysis of the effect of  intra-individual reaction time variability 

(AX-CPT paradigm) on performance on the Frontal Assessment Battery (FAB)

using ‘varian’

Results : MODEL

axcpt ~1| ID 

axcpt_var+axcpt_mean → FAB

VARIABILITY ANALYSIS

Estimate 95% CI p-value

AX-CPT

intercept 0.62 [0.57, 0.67] 0.000

σ µ 0.14 [0.11, 0.19] 0.000

gamma shape 3.18 [1.93, 4.77] 0.000

gamma rate 12.24 [7.07, 18.98] 0.000

average ISD (α /β ) 0.26

FAB

intercept 16.84 [15.46, 18.21] 0.000

α 1 : var_intra(tmtb) -1.98 [-6.60, 2.62] 0.387

α 2 : mean(tmtb) -1.55 [-7.30, 4.23] 0.594

residual 1.87 [1.46, 2.44] 0.000
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