More than just the mean : Modeling intra-individual variability with the mixed-effects location scale model

Jacques Juhel Center for Research in Psychology, Cognition and Communication University of Rennes 2, France

R code available upon request : jacques.juhel@univ-rennes2.fr

ISSBD workshop - Geneva University

September 3-5th, 2015

A fruitful convergence

From a methodological point of view : "Variances are not always nuisance parameters"

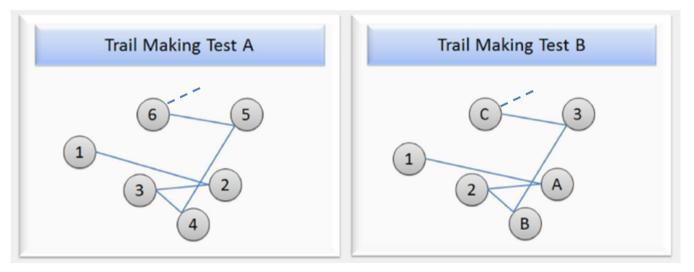
Understanding the structure of variability and estimating its different components is as central as understanding the mean structure.

From a psychological point of view : short-term intra-individual variability can be a conceptual tool

We, as psychologists, use quantifications and models of intra-individual variability to measure and describe human functional and dynamic characteristics.

This reinforces the need to a deeper investigation on intra-individual variability above and beyond the normative view of mean values and heterogeneity among subjects.

Plan

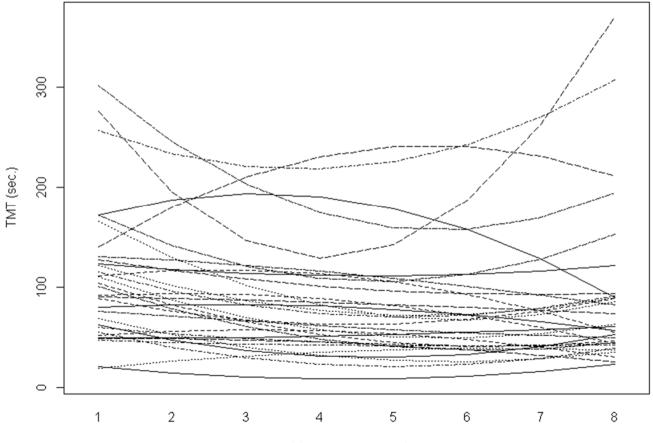

- 1. Quantifying intra-individual variability
- 2. Modeling between-subject and within-subject variances using mixed-effects location scale models
- 3. A Bayesian model for estimating intra-individual variability as a predictor

Participants and procedure :

Thirty-five adults aged 61-97 years (mean age 71 years), MMSE > 25. Eight measurement occasions, every two weeks (data collected by J. Lebahar, Phd).

At each measurement occasion :

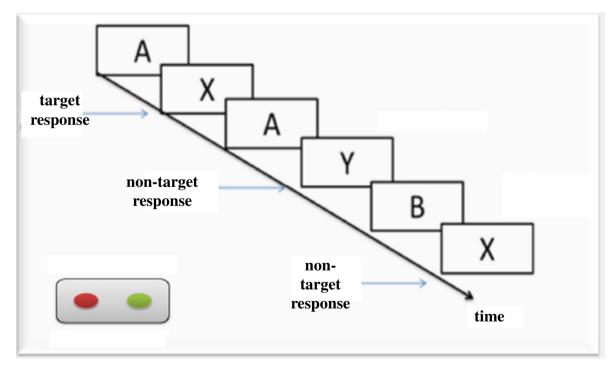
Trail Making Test


Realization time in sec.

Intra-individual variability of Realization Time for the Trail Making Test

ID - 250 - 200 TMT (sec.) ID ID Measurement occasion

The first 6 participants


IDs in IIV in Realization Time for the Trail Making Test

Measurement occasion

At each measurement occasion :

The AX-Continuous Performance Test : 100 trials (40 AX, 20 AY, 20 BX, 20 BY) : RT for correct responses.

Reaction time (RT) in sec.

Data from an illustrative example

Intra-individual variability of Reaction Time for AX-CPT (session 3)

RT (msec.) 000 in

Trial

The first 6 participants

Quantifying intra-individual variability

A two-stage approach

Stage 1

Estimation of one or another index of IIV on the basis of observations at the individual level.

 \rightarrow Each estimate has its own error of estimation.

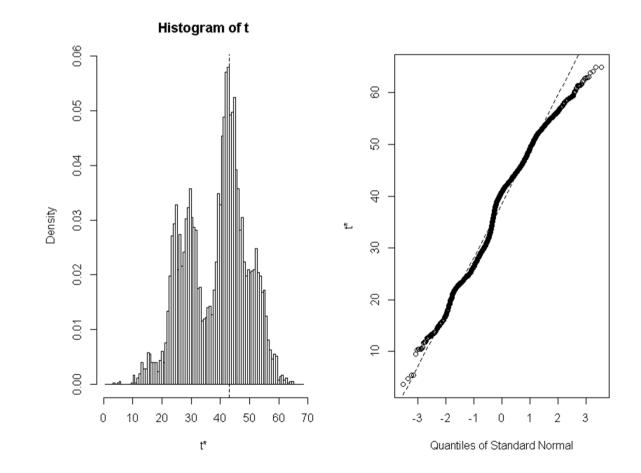
Stage 2

IIV as an outcome :

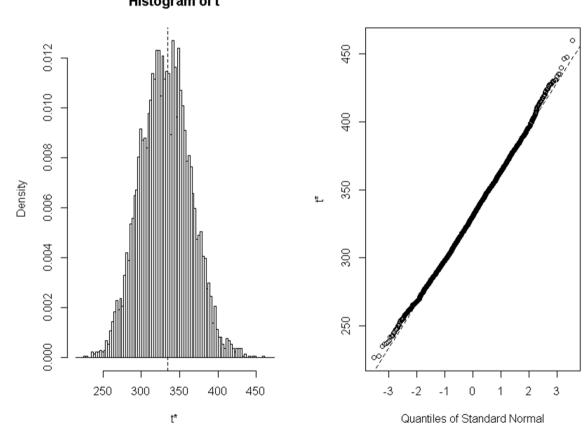
- regression of IIV on one or several covariates of interest. IIV as a predictor :
 - regression of one or several outcomes of interest on IIV.
- → More often, the SE of estimation will be downwardly biased and the probability of rejecting a null hypothesis although it is true (Type I error) will be inflated.

The amplitude of intra-individual variability (ISD)

 $Y_{t,i}$: the observed score of individual *i* at occasion *t*; T_i : the number of measurement occasions for individual *i*;

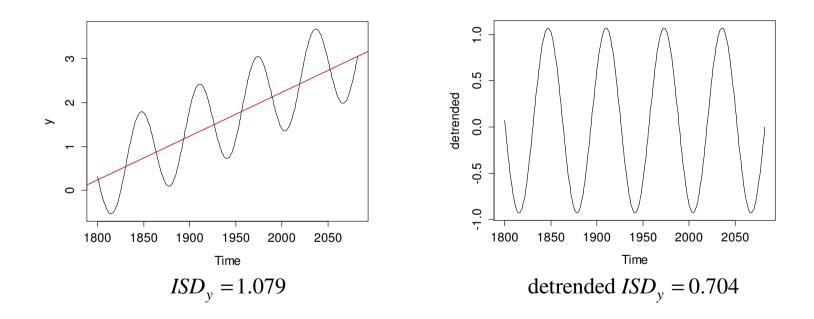

raw-score
$$ISD_i = \sqrt{\frac{\Sigma(y_{t,i} - y_{i.})^2}{T_i - 1}}$$
 and raw-score ISD_i^2 .

No consideration of temporal order or serial correlation.


Practical

 \rightarrow An application with R

TMTb : empirical distribution of *ISD* for subject 2 (5000 bootstrap samples); ISD = 43.04, 95% IC [17.63, 56.19].



AX-CPT Reaction Time : empirical distribution of *ISD* for subject 1 (5000 bootstrap samples); ISD = 334, 95% IC [269, 396].

Histogram of t

ISD and *ISD*² are sensitive to systematic intra-individual change (trends). \rightarrow detrending the data :

Raw-score *ISD* and *ISD*² are likely to be correlated with individual mean scores. Raw-score Individual Coefficient of Variation (*ICV*) and detrended *ICV*.

The temporal dependency in the data

The autocorrelation or the degree to which current observations are correlated with previous observations.

The autocorrelations can be obtained for different lags.

 $\rho_i(\tau)$ is the autocorrelation at lag τ ($\tau = 1, 2, ...$) with :

$$\hat{\rho}_i(\tau) = \frac{\hat{\gamma}_i(\tau)}{ISD_i^2}$$

 $\hat{\gamma}_i(\tau)$ is the auto-covariance at lag τ defined by the covariance between pairs of observations that are formed by $y_{t,i}$ and $y_{t+\tau,i}$.

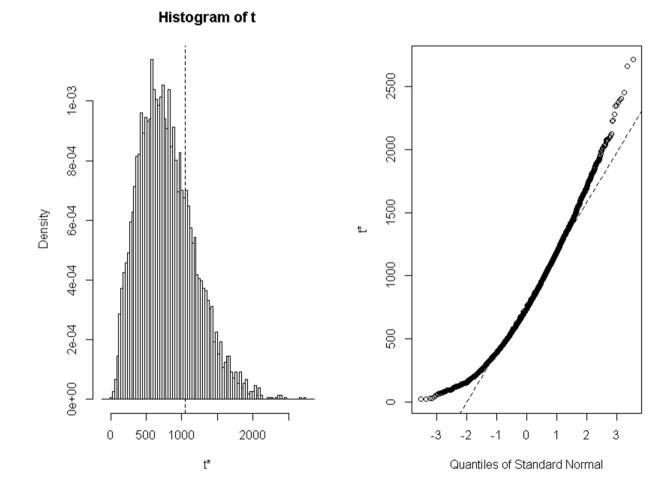
Practical

 \rightarrow An application with R

The degree of temporal instability

Refers to occasion-to-occasion squared differences and combines both the amplitude of intra-individual variability and the temporal dependency.

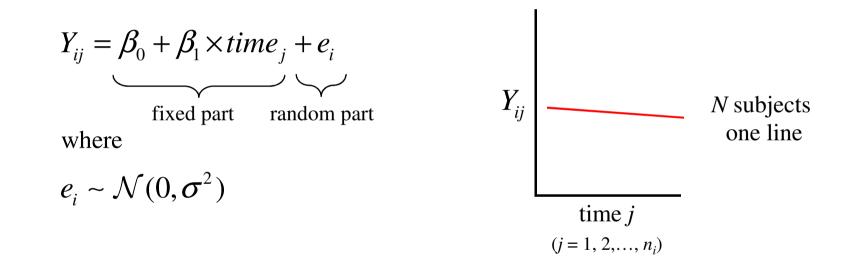
The mean square successive difference (MSSD) :


$$MSSD_{i} = \frac{1}{T_{i} - 1} \sum_{t=1}^{T-1_{i}} (y_{t+1,i} - y_{t,i})^{2}$$

Given stationary data, $MSSD_i = 2ISD_i^2(1 - \hat{\rho}_i(1))$. The MSSD is a lag-dependent measure.

Practical

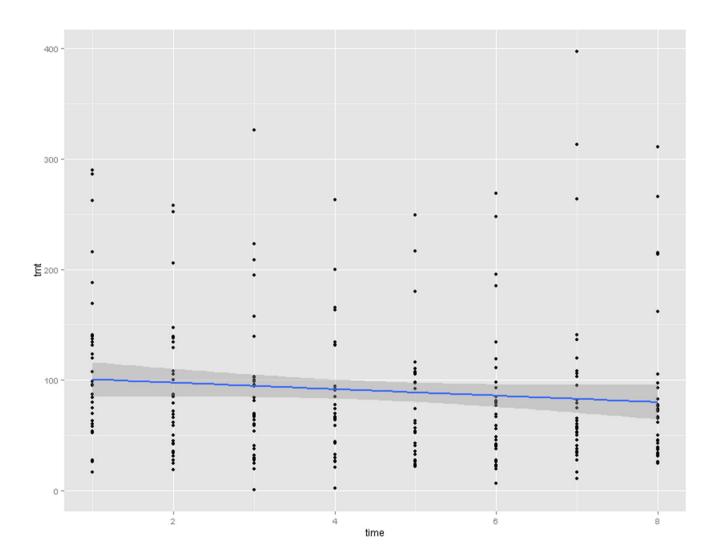
 \rightarrow An application with R


TMTb : empirical distribution of mssd for subject 1 (5000 bootstrap samples); mssd = 1050, 95% IC [166, 1683].

Modeling between-subject and within-subject variances using mixed-effects location scale models

Simple linear regression on time

Measurement y of subject i (i = 1, 2, ..., N) on occasion j ($j = 1, 2, ..., n_i$)



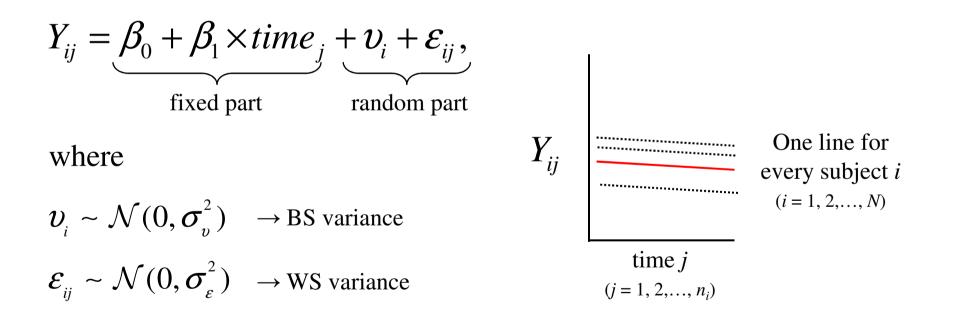
Practical

 \rightarrow An application with R

Simple linear regression on time

TMT Realization Time : Evolution of performance over time : linear trend

MRMs account for the influence of subjects on their repeated observations


Random subject effects reflect each subject's performance or development across time.

Random subject effects = between-subjects (BS) differences in intercept, linear slope, quadratic slope, etc. of the regression function.

Differences between subjects are measured by the variance of the random effects :

- the BS (inter-individual) variance,
- the within-subjects (WS) or intra-individual variance.

The two-level random intercept model

The two-level random intercept model

Measurement y of subject i (i = 1, 2, ..., N) on occasion j ($j = 1, 2, ..., n_i$) :

$$y_{ij} = x_{ij}^{'}\beta + v_i + \varepsilon_{ij} \qquad (1)$$

 x_{ij} is the $p \times 1$ vector of regressors ;

 β is the $p \times 1$ vector of regression coefficients ;

 v_i : random effects for intercepts,

 $v_i \sim \mathcal{N}(0, \sigma_v^2), \ \sigma_v^2$ represents the BS variance ;

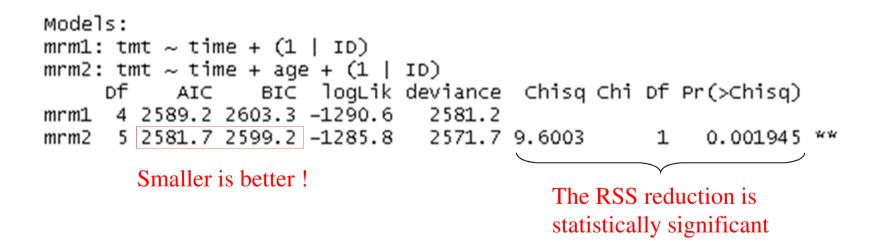
 ε_{ii} : residual "random" effects that are assumed to be independent of v_{i}

 $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2), \ \sigma_{\varepsilon}^2$ represents the WS variance.

 σ_v^2 and σ_ε^2 are supposed to be homogeneous across subject groups or levels of covariates.

In the long format, each row is one time point per subject

The stacked data set :

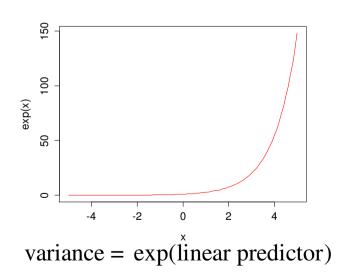

ID	time	age	fab	tmta	tmtb	tmt
1	1	68	18	60	199	139
1	2	68	18	41	141	100
1	3	68	18	56	152	96
1	4	68	18	46	178	132
1	5	68	18	42	140	98
1	6	68	18	43	162	119
1	7	68	18	49	185	136
1	8	68	18	53	158	105
2	1	88	16	37	206	169
2	2	88	16	34	173	139
2	3	88	16	39	139	100
2	4	88	16	35	200	165
2	5	88	16	37	144	107
2	6	88	16	29	85	56
2	7	88	16	39	180	141
2	8	88	16	51	213	162
•••	•••	•••	•••	•••	•••	•••

Practical

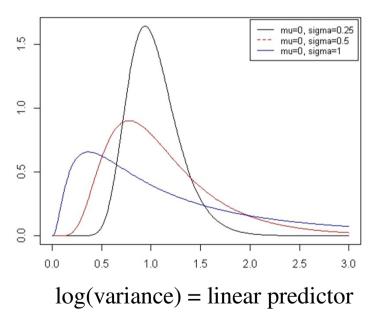
 \rightarrow An application with R

Evolution with time and effect of age on the trail making test performance.

Results of the Chi-square test used to compare mrm1 and mrm2 :



TMT performance : Evolution with time and effect of age


```
Linear mixed model fit by REML ['lmerMod']
Formula: tmt ~ time + age + (1 | ID)
   Data: tmt31
Random effects:
         Name Variance Std.Dev. \rightarrow BS variance : \sigma_v^2
 Groups
 ID
                     1336 36.55 \rightarrow WS variance : \sigma_e^2
 Residual
Number of obs: 248, groups: ID, 31
Fixed effects:
             Estimate Std. Error t value
(Intercept) –115.6516 68.3211 –1.693 \beta_0: constant term
time -2.9228 1.0130 -2.885 \beta_1: time \rightarrow tmt
     2.8758 0.8863 3.245 \beta_2: age \rightarrow tmt
age
Correlation of Fixed Effects:
     (Intr) time
time -0.067
age -0.988 0.000
```

Assumptions that σ_v^2 and σ_ε^2 are homogeneous across subject groups or levels of covariates can be relaxed.

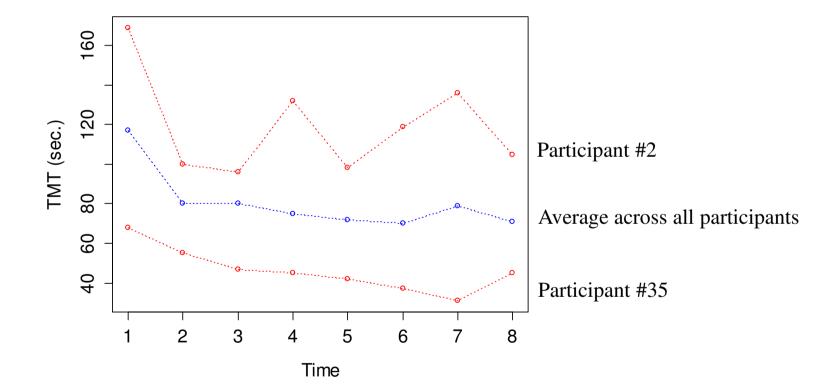
 \rightarrow Using a log-linear representation for variances (to ensure positive variances)

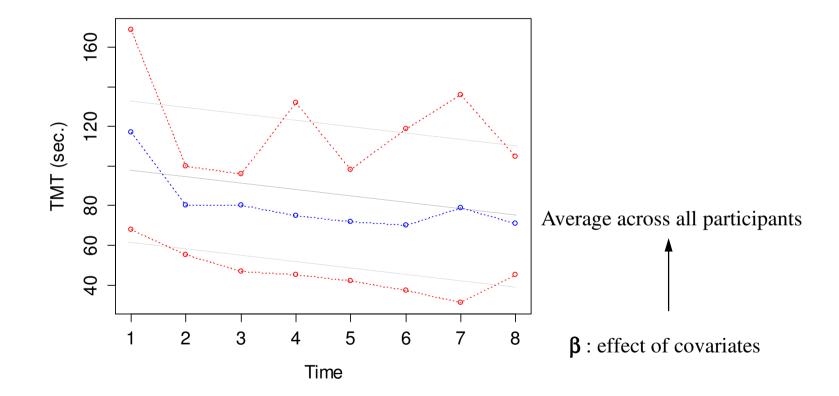
$$y_{ij} = x_{ij}^{'}\beta + v_i + \varepsilon_{ij}$$
(1)

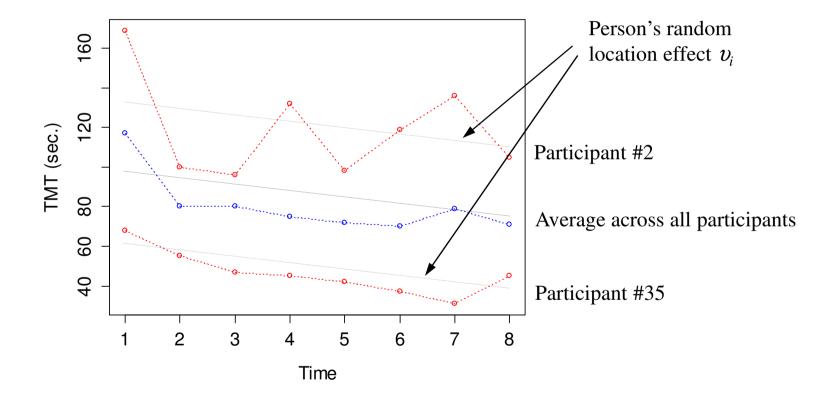
BS variance :
$$\sigma_{v_i}^2 = \exp(u_i \alpha) \text{ or } \log(\sigma_{v_i}^2) = u_i \alpha$$
 (2)
fixed part + random part

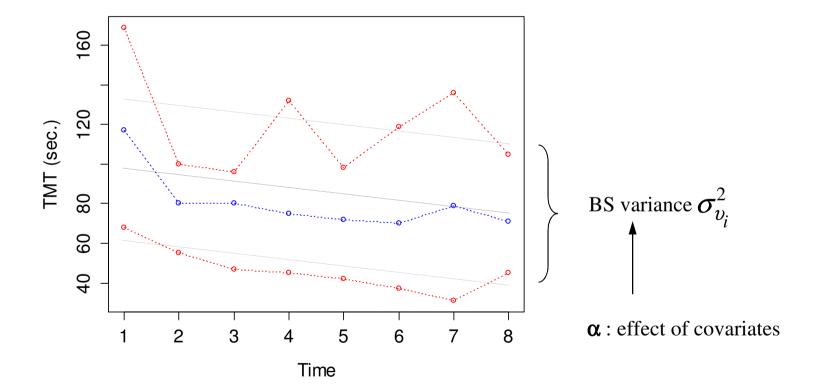
WS variance:
$$\sigma_{\varepsilon_{ij}}^2 = \exp(w_{ij}^{\prime}\tau) \text{ or } \log(\sigma_{\varepsilon_{ij}}^2) = w_{ij}^{\prime}\tau$$
 (3)

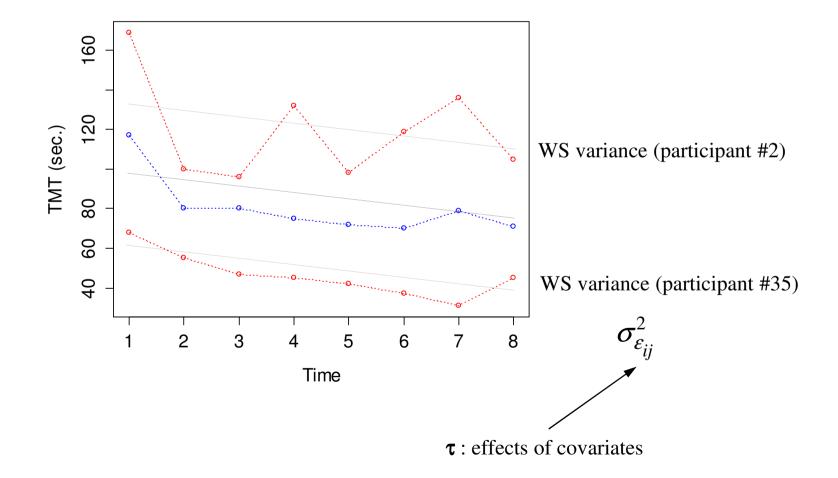
fixed part + random part


(Hedeker, Mermelstein & Demirtas, 2008, 2012)

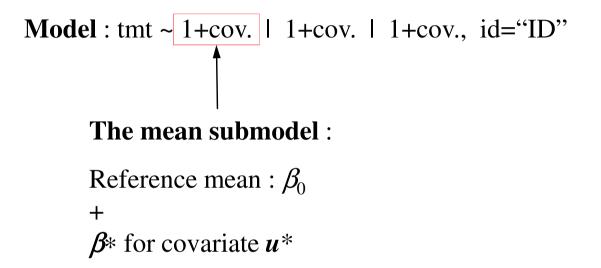

 \rightarrow Some covariates can influence the BS and WS variances.


BS variance : - subject-level covariates $\rightarrow \log(\sigma_{v_i}^2)$


WS variance : - subject-varying covariates $\rightarrow \log(\sigma_{\varepsilon_{ij}}^2)$ - time-varying covariates $\rightarrow \log(\sigma_{\varepsilon_{ij}}^2)$ - residual variation across subjects : $\log(\sigma_{\varepsilon_{ij}}^2) = w_{ij}^{'} \tau + \omega_i$ $\omega_i \sim N(0, \sigma_{\omega}^2)$ random subject (scale) effects


(Hedeker, Mermelstein & Demirtas, 2008, 2012)





EXAMPLE - Analysis of the trail making test performance with random location and scale effects using MIXREGLS (Hedeker & Nordgren, 2013)

EXAMPLE - Analysis of the trail making test performance with random location and scale effects using MIXREGLS (Hedeker & Nordgren, 2013)

Model : tmt ~ 1+cov. | 1+cov. | 1+cov. , id="ID"

```
The BS variance submodel :
```

Reference variance : $\exp(\alpha_0)$ when $u_j = 0$

+ $\exp(\alpha *)$ for covariate u^*

EXAMPLE - Analysis of the trail making test performance with random location and scale effects using MIXREGLS (Hedeker & Nordgren, 2013)

Model : tmt ~ 1+cov. | 1+cov. | 1+cov. , id="ID"

The WS variance submodel :

Reference variance : $\exp(\tau_0)$ when $w_{ij} = 0$

+ $\exp(\tau^*)$ for covariate w^*

EXAMPLE - Analysis of the trail making test (part B) performance with random location and scale effects using MIXREGLS

Results :	MODEL : tmtb ~1 1 1, id="id"				
	-2 ln L: 451.560				
	Variable	Estimate	AsymStdError	z-value	p-value
	BETA (regression coefficients)				
	Intercept (β_0)	2.232	0.2171	10.283	0.000
	ALPHA (BS variance parameters: log-linear n	nodel)			
	Intercept (α_0)	0.336	0.2926	1.149	0.251
TAU (WS variance parameters: log-linear model)					
	Intercept (τ_0)	-1.576	0.226	-6.965	0.000
	Influence of the location random effect on the	(log of the) V	VS variance		
	${ au}_{ ext{linear}}$	1.056	0.190	5.553	0.000
	Standard deviation of the random subject scale	effect			
	σ_{ω}	0.347	0.189	1.833	0.067
	BS variance : $exp(\alpha_0)$	1.399			
	WS variance : exp $(\tau_0 + 0.5^* (\tau_{linear}^2 + \sigma_{\omega}^2))$	0.369			
	ICC = BS/(BS + WS)	0.791			

EXAMPLE - Analysis of the trail making test (part B) performance with random location and scale effects using MIXREGLS

Results :	MODEL : tmtb ~ time 1, id="id"									
	-2 ln L: 413.792 ; Likelihood ratio test : $\Delta \chi^2 = 451.60-413.79 = 37.81$, $\Delta df = 2$									
	Variable Estimate AsymStdError z-value p-									
	BETA (regression coefficients)									
	Intercept (β_0)	2.489	0.237	10.504	0.000					
	time (β_1)	-0.080	0.016	-5.147	0.000					
	ALPHA (BS variance parameters: log-linear model)									
	Intercept (α_0)	0.499	0.301	1.661	0.097					
	time (α_1)	-0.056	0.031	-1.776	0.076					
	TAU (WS variance parameters: log-linear model)									
	Intercept (τ_0)	-1.727	0.231	-7.466	0.000					
	Influence of the location random effect on the (log of the) WS variance									
	$ au_{ ext{linear}}$	1.138	0.184	6.202	0.000					
	Standard deviation of the random subject s	scale effect								
	σ_{ω}	0.101	0.427	0.237	0.813					

EXAMPLE - Analysis of the trail making test (part B) performance with random location and scale effects using MIXREGLS

Results	MODEL : tmtb ~ time + tmta + age 1 age, id="id"								
	-2 ln L: 392.580 ; Likelihood ratio test : $\Delta \chi^2 = 413.79-392.58 = 21.21$, $\Delta df = 2$								
	Variable	Estimate	AsymStdError	z-value	p-value				
	BETA (regression coefficients)								
	Intercept (β_0)	1.893	0.209	9.053	0.000				
	time (β_1)	-0.052	0.010	-5.111	0.000				
	tmta (β_2)	0.693	0.172	4.035	0.000				
	age (β_3)	0.508	0.157	3.238	0.000				
	ALPHA (BS variance parameters: log-linear model)								
	Intercept (α_0)	-0.370	0.305	-1.212	0.226				
	TAU (WS variance parameters: log-linear model)								
	Intercept (τ_0)	-1.710	0.197	-8.671	0.000				
	age (τ_3)	0.504	0.198	2.547	0.011				
Influence of the location random effect on the (log of the) WS variance									
	${ au}_{ ext{linear}}$	0.955	0.161	5.918	0.000				
	Standard deviation of the random subject scale effect								
	σ_{ω}	0.000	0.215	0.000	1.000				

EXAMPLE - Analysis of AX-CPT reaction time with random location and scale effects using MIXREGLS

Results :	MODEL WITHOUT ANY COVARIATES		: tr ~ 1 1 1, id=	="id"	
	-2 ln L: -167.264				
	Variable	Estimate	AsymStdError	z-value	p-value
	BETA (regression coefficients)				
	Intercept (β_0)	0.629	0.025	25.190	0.000
	ALPHA (BS variance parameters: log-linear model)				
	Intercept (α_0)	-3.889	0.252	-15.424	0.000
	TAU (WS variance parameters: log-linear model)				
	Intercept (τ_0)	-3.029	0.177	-17.093	0.000
	Influence of the location random effect on the (log of	the) WS va	ariance		
	$ au_{ ext{linear}}$	0.708	0.158	4.494	0.000
	Standard deviation of the random subject scale effect	t			
	σ_{ω}	0.851	0.099	8.540	0.000
	BS variance : $exp(\alpha_0)$	0.020			
	WS variance : exp $(\tau_0 + 0.5^*(\tau_{linear}^2 + \sigma_{\omega}^2))$	0.089			
	ICC = BS/(BS + WS)	0.187			

EXAMPLE - Analysis of AX-CPT reaction time with random location and scale effects using MIXREGLS

Results :	MODEL WITH RANDOM SCALE : tr ~ age 1 age, id="id"							
	-2 ln L: -178.394, Likelihood ratio test : $\chi_2^2 = -167.264 + 178.394 = 11.131$							
	Variable	Estimate	AsymStdEr r	z-value	p-value			
	BETA (regression coefficients)							
	Intercept (β_0)	0.048	0.152	0.317	0.751			
	age (β_1)	0.008	0.002	3.863	0.000			
	ALPHA (BS variance parameters: log-linear model)							
	Intercept (α_0)	-4.276	0.259	-16.536	0.000			
	TAU (WS variance parameters: log-linear model)							
	Intercept (τ_0)	-5.472	1.295	-4.225	0.000			
	age (τ_1)	0.032	0.016	1.909	0.006			
	Influence of the location random effect on the (log of the) WS variance							
	${ au}_{ ext{linear}}$	0.632	0.144	4.386	0.000			
	Standard deviation of the random subject scale effec	t						
	σ_{ω}	0.826	0.089	9.232	0.000			

A Bayesian model for estimating intraindividual variability as a predictor

Bayesian statistics starts by using (prior) probabilities to describe the current state of knowledge

The prior distribution represents a specific assumption about a model parameter. It is a distribution of credibility across parameter values θ of the model that expresses previous knowledge about the parameter values without the newly collected data :

the prior density $p(\theta)$

The specification of a very uncertain prior implies that the prior has minimal influence on the estimates of the parameters.

Bayesian statistics uses the sampling distribution $p(y|\theta)$ of the data y as a function of a model with its parameters θ

The likelihood function $p(y | \theta)$ is the same as the sampling distribution of the observed data y but read in the opposite way.

The value $\hat{\theta}$ which yields the maximum of the likelihood function for the observed data y is called the maximum of the likelihood estimate of the parameter θ .

Bayesian statistics uses Bayes rule and incorporates information through the collected data

Bayes rule describes the relationship between the two conditional probabilities p(A|B) and p(B|A):

$$p(\mathbf{A} | \mathbf{B}) = \frac{p(\mathbf{B} | \mathbf{A})p(\mathbf{A})}{p(\mathbf{B})}.$$

Bayes rule is used to derive the probability of the parameters θ given the data y, that is the posterior distribution $p(\theta | y)$:

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}.$$

The marginal density p(y) is a constant that contains high-dimensional integrals which are often impossible to compute analytically.

Bayesian statistics relies on computer simulations that draw samples from the posterior distribution given a model, a likelihood $p(\theta | y)$, and data y

Integration is typically performed by computer simulations :

Let the data be y and a vector $\theta = (\theta_1, \theta_2, ..., \theta_k)$ of k unknown parameters.

- 1. Choose initial values $\theta_1^0, \theta_2^0, ..., \theta_k^0$
- 2. Sample θ_1^1 from $p(\theta_1 \mid \theta_2^0, \theta_3^0, ..., \theta_k^0, y)$ Sample θ_2^1 from $p(\theta_2 \mid \theta_1^0, \theta_3^0, ..., \theta_k^0, y)$

Sample θ_k^1 from $p(\theta_k | \theta_1^0, \theta_2^0, ..., \theta_{k-1}^0, y)$ 3. repeat step 2 very many times (e.g. 50000) The sequence of random draws for each of *k* parameters resulting from step 3 forms a Markov Chain Monte Carlo (MCMC) sample.

If chains are converged, the sample that approximates the posterior is summarized for inference : mean, mode, median, variance, probability interval (e.g., 95% PI) for every parameter.

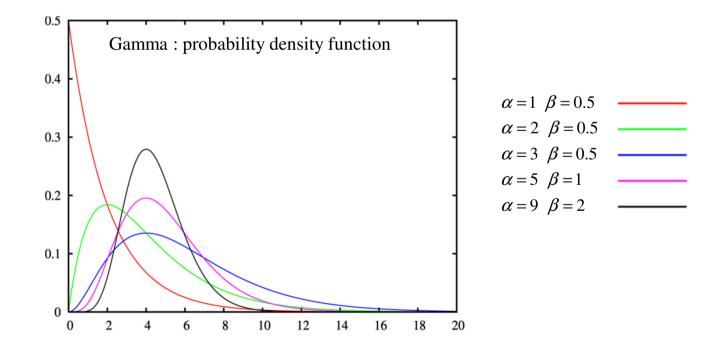
The Bayesian variability model (Wiley, 2015):

- 1. offers unbiased, correct estimates ;
- 2. gives more effective and more power results with smaller sample sizes ;
- 3. accounts for systematic changes ;
- 4. allows for some missing data.

A two-stage modeling

1. Estimating intra-individual variability of X_{ij} (subject *i*, occasion *j*) in a mixed-effects regression framework :

$$X_{ij} \sim N(\mu_i, \sigma_i^2)$$


Prior distribution on μ_i : $\mu_i \sim N(\mu_\mu, \sigma_\mu^2)$;

Reference prior on σ_i^2 that is independent of $\mu_i : \sigma_i^2 \sim \Gamma(\alpha, \beta)$, with shape and (inverse) scale parameters α and β .

A two-stage modeling

1. Estimating intra-individual variability of X_{ij} (subject *i*, occasion *j*) in a mixed-effects regression framework :

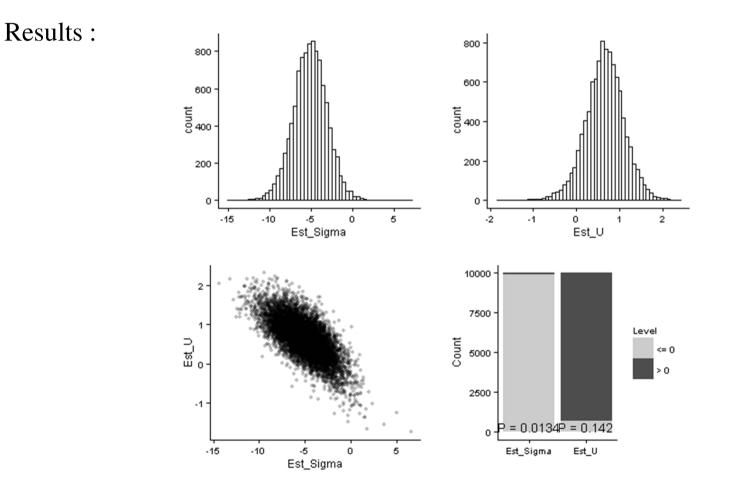
 $\sigma_i^2 \sim \Gamma(\alpha, \beta)$, with shape and (inverse) scale parameters α and β .

A two-stage modeling

2. Using the estimate of intra-individual variability, accounting for measurement error, as a predictor in a multiple regression framework :

$$Y_i \sim N(\mu_{2i}, \sigma_2),$$

where:


$$\mu_{2i} = \beta_0 + \beta_k Covariates_k + \alpha_1 \sigma_i + \alpha_2 \mu_i.$$

latent (estimated) variables from step 1

EXAMPLE - Analysis of the effect of intra-individual variability (TMT part B) on performance on the Frontal Assessment Battery (FAB) using 'varian'

Results :	MODEL							
	tmb ~time + tmta + age ID (linear time detrending) var_intra(tmtb) + mean(tmtb) \rightarrow FAB							
	VARIABILITY ANA	ALYSIS						
	TMT.B	Estimate	95% CI	p-value				
	intercept	2.01	[1.84, 2.52]	0.000				
	time	-0.05	[-0.07, -0.03]	0.000				
	tmta	0.54	[0.39, 0.99]	0.013				
	age	0.55	[0.42, 0.92]	0.001				
	σ_{μ}	1.01	[0.72, 1.38]	0.000				
	gamma shape	3.91	[2.11, 6.60]	0.000				
	gamma rate	8.01	[4.02,13.92]	0.000				
	average ISD (α/β)	0.49						
	FAB							
	intercept	18.96	[16.92, 21.01]	0.000				
	α_1 : var_intra(tmtb)	-5.12	[-9.20, -1.19]	0.013				
	α_2 : mean(tmtb)	0.65	[-0.29, 1.53]	0.142				
	residual	1.35	[0.67, 1.99]	0.000				

EXAMPLE - Analysis of the effect of intra-individual variability (TMT part B) on performance on the Frontal Assessment Battery (FAB) using 'varian'

EXAMPLE - Analysis of the effect of intra-individual variability (TMT part B) on performance on the Frontal Assessment Battery (FAB) using 'varian'

Results :

random effects

						_	
ID	est.	2.5% 97.5%	ID	est.	2.5% 97.5%	_	Raw ISD
1	0.88	[0.38 , 1.40]	1	0.38	[0.24, 0.59]	_	0.35
2	0.01	[-0.66, 0.68]	2	0.63	[0.44, 0.91]		0.72
3	-0.46	[-0.97, 0.06]	3	0.41	[0.22, 0.69]		0.31
4	2.10	[1.31 , 2.89]	4	0.85	[0.62 , 1.19]		1.19
5	0.04	[-0.51, 0.59]	5	0.39	[0.24, 0.63]		0.45
6	-0.09	[-0.62,-0.04]	6	0.50	[0.27, 0.83]		0.30
•••	•••	•••	•••	•••	•••		•••

 σ_i

	ļ	l	i
I	<i>(</i>	-	l

EXAMPLE - Analysis of the effect of intra-individual reaction time variability (AX-CPT paradigm) on performance on the Frontal Assessment Battery (FAB) using 'varian'

Results :

MODEL							
axcpt ~1 ID							
axcpt_var+axcpt_mea	$an \rightarrow FAB$						
VARIABILITY ANA	ALYSIS						
	Estimate	95% CI	p-value				
AX-CPT							
intercept	0.62	[0.57, 0.67]	0.000				
σ_{μ}	0.14	[0.11, 0.19]	0.000				
gamma shape	3.18	[1.93, 4.77]	0.000				
gamma rate	12.24	[7.07, 18.98]	0.000				
average ISD (α/β)	0.26						
FAB							
intercept	16.84	[15.46, 18.21]	0.000				
α_1 : var_intra(tmtb)	-1.98	[-6.60, 2.62]	0.387				
α_2 : mean(tmtb)	-1.55	[-7.30, 4.23]	0.594				
residual	1.87	[1.46, 2.44]	0.000				

References

- Carroll, R.J. (2003). Variances Are Not Always Nuisance Parameters. *Biometrics*, 59, 211–220.
- Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An application of a mixed-effects location scale model for analysis of ecological momentary assessment (EMA) data. *Biometrics*, 64, 627–634.
- Hedeker, D., Mermelstein, R. J., & Demitras, H. (2012). Modeling between-subject and withinsubject variances in ecological momentary assessment data using mixed effects location scale models. *Statistics in Medicine*, 31, 3328-3336.
- Hedeker, D., & Nordgren, R. (2013). MIXREGLS: A program for mixed-effects location scale analysis. *Journal of Statistical Software*, 52, 1-38.
- Wiley, J. F., Bei, B., Trinder, J., & Manber, R. (revise and new submit). Variability as a predictor: A Bayesian variability model for small samples and few repeated measures. arXiv preprint arXiv:1411.2961.
- Wiley, J. F. (2015). varian: variability analysis in R package. R package version 0.2.1