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Abstract 

It currently remains unclear how facet-specific trainings of three core modules of 

executive function (EF; updating, switching, inhibition) directly compare regarding efficacy, 

whether improvements on trained tasks transfer to non-trained EF tasks, and which factors 

predict children’s improvements. The present study systematically investigated three separate 

EF trainings in 6- to 11-year-old children (N = 229), using EF-specific trainings that were 

similar in structure, design, and intensity. Children participated in pre- and posttest assessments 

of the three EFs and were randomly allocated to one of three EF trainings, or to an active or 

passive control group.  

Multivariate latent change score models revealed that only the updating group showed 

training-specific improvements in task performance that were larger compared with active as 

well as passive controls. In contrast, there were no training-specific benefits of training 

switching or inhibition. Latent changes in the three EF tasks were largely independent, and 

there was no evidence for transfer effects to non-trained EF tasks. Lower baseline performance 

and older age predicted larger changes in EF performance. These seemingly opposing effects 

support compensation accounts as well as developmental theories of EF, and highlight the 

importance of simultaneously accounting for multiple predictors within one model.  

In line with recent theoretical proposals of EF development, we provide new 

systematic evidence that questions whether modular task trainings represent an efficient 

approach to improve performance in narrow or broader indicators of EF. Thereby, this evidence 

ultimately highlights the need for more comprehensive assessments of EF and, subsequently, 

the development of new training approaches.  

 

Keywords: executive functions; school age; children; cognitive training; plasticity; 

latent change score modelling; 
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Highlights 

 

• First systematic comparison training the three core EF across the entire school 

age 

• Latent change score models reveal that updating is the most beneficial EF 

training 

• Seemingly opposing effects support compensation accounts and 

developmental theories 

• Lower baseline performance but older age predict larger training benefits 

• Improvements across EFs are largely independent and transfer to other EF is 

lacking 
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Are facet-specific task trainings efficient in improving children’s executive functions, 

and why (they may not be)? A multi-facet latent change score approach 

 

Executive function (EF) represents a group of higher order cognitive processes that 

enable individuals to be attentive, to solve problems, to pursue goals, and to regulate 

behaviors, thoughts, and emotions (Diamond, 2013; Zelazo et al., 2008). From a 

developmental perspective, EF is crucial, for example, because it contributes to children’s 

attainment of autonomy, socioemotional functioning, and academic performance (Best et al., 

2011; Dawson & Guare, 2018; Denham et al., 2015; Diamond, 2016; Liew, 2012; Riggs et al., 

2006). Motivated by the high everyday relevance of broader, more ecological indicators of 

EF, extensive research has aimed to improve children’s performance on more narrow 

laboratory measures of EFs via cognitive training (Strobach & Karbach, 2021). Such efforts 

are based on the concept of transfer, which postulates that repeatedly performing a cognitive 

task will improve performance on tasks that deploy similar cognitive processes (often labelled 

near transfer), and that this might even improve performance on structurally more distant 

tasks deploying similar cognitive processes (often labelled far transfer; e.g., Kliegel et al., 

2017; Strobach & Karbach, 2021).  

In this context, the three most widely studied and trained EF components are: 

updating of information in working memory, switching attention between different task sets, 

and inhibition of automatic or predominant responses or of irrelevant distractors (Miyake et 

al., 2000). It is crucial to highlight here that this three-partite view of EF has received 

increasing criticism (e.g., Doebel, 2020; Perone et al., 2021). Importantly, EF is still 

developing during childhood and certain components may only fully mature later in life (e.g., 

switching; Garon et al., 2008; Karr et al., 2018; Müller & Kerns, 2015). Thus, it is unlikely 

that EF is best understood with a three- (compared to uni- or two-) dimensional model across 
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all ages (see Karr et al., 2018; Miyake & Friedman, 2012). Related to this, more and more 

research questions such modular views of different EF components and whether training 

performance on these rather narrow indicators of EF can actually transfer to broader outcomes 

(Diamond & Ling, 2016; Kassai et al., 2019; Perone et al., 2021). Recent theoretical 

contributions therefore urge that EF should be conceived more comprehensively as using 

control “in the service of particular goals that activate and are influenced by diverse mental 

content such as knowledge, beliefs, and values” (Doebel, 2020, p. 11). Building on this view, 

rather than static modules that are activated one at a time, EF may be better understood as a 

dynamic system that allows momentary behavior by assembling multiple components 

(physiological, cognitive, emotional, and motor processes, together with the social and 

physical forces) of prior experiences and abilities to pursue a goal (Perone et al., 2021).  

Despite such proposals and calls for more comprehensive views of EF, the three 

component model is currently still a persisting conceptualization of EF, with updating, 

shifting, and inhibition representing the most widely studied and trained EF components in 

childhood (for an in-depth review, see Müller & Kerns, 2015). Thus, the goal of the present 

study was to systematically compare cognitive trainings of these three EFs. Although our 

study focused on these narrow measures of EF, we will discuss findings within the broader 

context of the current EF literature, which will ultimately lead to new insights that align with 

these more comprehensive views.  

1.1. Cognitive training and EF 

A significant body of literature suggests that computerized cognitive process 

trainings can enhance EF performance on laboratory tasks (for reviews, see e.g., Diamond & 

Ling, 2016; Diamond & Ling, 2020; Kliegel et al., 2017; for meta-analyses, see e.g., Cao et 

al., 2020; Sala & Gobet, 2017; Scionti et al., 2020; Takacs & Kassai, 2019). However, most 

previous studies have either focused on training a single EF per study or all three core EFs 
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simultaneously. So far, only one study has applied specific, separate trainings for each EF 

component within a sample of typically developing children (Johann & Karbach, 2020). 

Johann and Karbach (2020) compared standard with game‐based trainings of the three EFs 

and examined potential transfer effects to mathematical and reading abilities in 153 8- to 11-

year-old children. They found that both trainings improved EF performance. They also found 

transfer effects to reading abilities. EF improvements were greater in children that participated 

in a game‐based switching or inhibition training compared to the passive control group, and 

these improvements persisted at a three-month follow-up.  

Johann and Karbach’s study thus provided the first integrative insights into the 

broader, long-lasting benefits of training EF to improve non-EF domains. However, although 

the authors reported no transfer between the three EFs, they did not examine in detail how 

improvements in each EF directly compared to the others nor whether improvements may be 

interrelated. The authors suggested that transfer between EFs may not have occurred because 

each training program consisted of a set of multiple tasks and that training only on a single EF 

task might facilitate transfer to untrained EF tasks. Despite these relevant suggestions, 

systematic comparisons of the three EF trainings are currently still lacking, leaving a series of 

conceptually important questions unanswered – such as how different EFs directly compare in 

terms of how easily task performance can be improved, whether improved performance in one 

EF relates to improved performance in the other EFs, or which factors predict training 

benefits in children. Building on and extending recent work such as that of Johann and 

Karbach (2020), the present study set out to tackle these pressing questions.   

1.2 Performance improvements in the trained EF 

Currently, it is unclear how updating, switching, and inhibition directly compare in 

terms of specific performance improvements in the trained EF. Performance improvements 

are most frequently observed in studies that train updating, whereas results are less consistent 
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when training switching or inhibition (e.g., Kassai et al., 2019; Rapport et al., 2013; Takacs & 

Kassai, 2019). Previous findings have to be interpreted with caution, however, because 

updating also represents the most studied EF component and thus is most likely to produce a 

larger number of positive findings (Takacs & Kassai, 2019). Further, studies typically train 

only one specific EF and contrast benefits either to an active or to a passive control group. 

Yet, studies largely vary in terms of target population, design, and training intensity, which 

further contributes to the inconsistent pattern of EF training benefits (Klingberg, 2010), 

making it difficult to investigate whether performance is more likely to improve on certain EF 

tasks.  

1.3. Transfer to performance improvements in untrained EF tasks 

Even more debated is the extent to which modular task trainings translate into 

performance improvements on untrained EF tasks (Diamond & Ling, 2020; Smid et al., 

2020). For each EF, transfer effects have been inconsistent (for reviews and meta-analyses, 

see Kliegel et al., 2017; Klingberg, 2010; Melby-Lervåg et al., 2016; Morrison & Chein, 

2011; Sala & Gobet, 2017, 2020), potentially again because of studies examining one EF 

training at a time and trainings being heterogeneous across studies. Importantly, there is 

currently no systematic examination of whether improvement in one EF task directly 

translates into improvements in other EF tasks.  

1.4. Theoretical accounts and predictors of training benefits 

Although research consistently shows that there is important variance in how much 

individuals benefit from EF trainings (e.g., Cao et al., 2020; Smid et al., 2020; Traut et al., 

2021), there is currently no consensus on which factors predict training benefits in children 

nor on which theoretical and developmental accounts best describe training mechanisms in 

children. From a theoretical perspective, compensation accounts suggest that training benefits 

are largest for individuals that have an initial disadvantage in performance (e.g., individuals 
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with low baseline performance, atypically developing children, children at higher 

developmental risk or from lower socioeconomic conditions; Karbach et al., 2017; Smid et al., 

2020; Strobach & Karbach, 2021; Traut et al., 2021). Accordingly, children with lower initial 

performance have more room to improve and engaging in new cognitive activities might be 

more beneficial for them. In contrast, magnification accounts suggest that children with initial 

advantages in performance benefit more, because they are more able to fully engage in the 

intervention program and build on already existing skills (e.g., Foster et al., 2017; Lövdén et 

al., 2012; Swanson, 2014, 2015). Although both accounts have been supported by empirical 

studies (see Katz et al., 2021; Traut et al., 2021), they assign a central, but opposing role to 

baseline performance.  

Similarly, from a developmental perspective, there currently is no agreement on the 

role of age. On one hand, younger children may benefit more, because of greater 

neuroplasticity and because their EFs are being differentiated into distinct abilities (Best & 

Miller, 2010; Huizinga et al., 2006). On the other hand, older children may benefit more 

because the neural underpinnings of EF – prefrontal networks – continue to undergo 

important structural and synaptic changes in late childhood and throughout adolescence (Best 

& Miller, 2010; Diamond, 2013). So far, the literature has mostly compared rather distant age 

groups, typically with a focus on older versus younger adults (Katz et al., 2021). It therefore 

remains unclear whether early school age children versus pre-adolescents may benefit more 

from EF trainings. Certain meta-analyses suggest larger training benefits for younger children 

(e.g., Cao et al., 2020; Cepeda et al., 2001; Wass et al., 2012), whereas others do not find age 

effects (Kassai et al., 2019; Scionti et al., 2020). Furthermore, other demographic variables 

that could interact with age, namely gender, remain largely unstudied, even though boys and 

girls may respond differently to computerized tasks (e.g., Delalande et al., 2020; Martinovic 

et al., 2016).  
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1.5. The present study 

The present study aimed to provide the first systematic and comprehensive 

examination of how facet-specific single-task trainings directly compare to each other across 

the entire middle childhood and whether they translate into benefits in untrained EFs. We 

aimed to extend Johann and Karbach’s (2020) study by: (a) systematically disentangling 

whether benefits translate to performance improvements in untrained EF tasks; (b) extending 

the age range to cover the entire primary school age (i.e., 6 to 11 years); (c) more directly 

examining the role of multiple predictors (i.e., baseline performance and age, controlling for 

gender) within a single, latent change score model (LCSM); and (d) including an active 

control group, for which the activity was closely matched to the training interventions 

regarding task design, difficulty, adaptability of difficulty, intensity, and duration.  

The present study thereby aimed to answer the following research questions: (1) How 

do the different EFs directly compare in terms of how easily task performance can be 

improved?, (2) Does improved performance on one EF task relate to improved performance on 

tasks deploying other EFs?, (3) Which factors predict training benefits?, (4) Is there support for 

compensation versus magnification accounts of cognitive training when all predictors are 

considered simultaneously within one model?, and (5) Would the efficacy of the training be 

different when comparing training groups to active versus passive controls? 

2. Method 

2.1. Participants 

Two hundred and thirty-nine school-aged children initially participated in the study. 

They were recruited through advertisements at publication locations, schools and the 

experimenters’ network. In view of the important differences in the training literature between 

typically versus atypically developing children as well as the large age range of our sample, 

we excluded children whose indices of general cognitive functioning were outliers, in order to 
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the render the sample more homogenous in terms of overall development of cognitive 

functioning. Therefore, nine children were excluded from subsequent analyses because they 

scored below two and a half standard deviations of their age-group norms on fluid and/or 

crystallized intelligence measures (assessed via the subtests “Matrices” and “Vocabulary” of 

the WISC-IV; Wechsler, 2004). Of these nine children, one child came from the updating 

group, four from the inhibition group, three from the active control group, and one from the 

passive control group. It is important to highlight that the exclusion occurred after data 

collection and that the cut-off was adapted during revisions of this manuscript (i.e., we 

initially planned to exclude scores below two standard deviations, which would exclude one 

additional participant). Note that pattern of results of our findings would remain the same if 

analyses were performed on data including all participants as well as if the cut-off was 2 

standard deviations. The remaining children did not report any history of (neuro-

)psychopathology (as indicated by children’s caregivers in questionnaires) and were either 

native French speakers or had fluent proficiency in French. All children as well as their 

caregivers gave informed consent.  

The final sample consisted of 230 children (Mage = 8 years; 4 months, SD = 1 year; 5 

months), 121 of which were female (53%; there were no significant differences in age 

between genders, p = .502). Children’s ethnicity was not collected, as this is not common 

practice in the country of data collection. Before pretest assessment, children were randomly 

allocated to one of the five groups (updating training, switching training, inhibition training, 

active control, or passive control group). Table 1 displays number of children, percentage of 

girls, and age per experimental group. ANOVAs and subsequent Tukey HSD tests showed 

that there were no significant differences between any of the experimental groups regarding 

percentage of girls or age (all ps > .05). A chi square test of homogeneity indicated that the 

number of children did not significantly vary between groups, χ2(4) = 1.15, p = .89.  
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Table 1 

Number of children, percentage of girls, and age, per experimental group.  

Training group  Gender Age 

 N % girls M SD min max 

Updating 48 50% 8;8 1;5 5;10 11;5 

Switching 47 53% 8;0 1;6 5;11 10;8 

Inhibition 42 59% 8;4 1;4 6;5 11;2 

Active control 43 49% 8;6 1;6 5;10 10;11 

Passive control 50 54% 8;1 1;5 6;4 10;7 

ANOVAs  p = .91 p = .15    

Note. Age in years;months. 

 

2.2. Procedure 

Figure 1 illustrates the procedure of the study for the five experimental groups, 

separated by study phase. Pre- and posttest assessments consisted of two sessions each (~45 

min per session) during which children performed different EF tasks as well as other 

cognitive tasks (e.g., measuring fluid and crystalized intelligence) in a pseudo-randomized 

order. Socio-demographic questionnaires were filled out by children’s parents between the 

two pretest assessments. Pre- and posttest assessments were separated by four weeks on 

average. During this period, the three EF training groups and the active control group 

participated in eight sessions on a computer (~20-25min each; two sessions per week), 

whereas the passive control group did not participate in any activities. All sessions (pre, post, 

and trainings) were conducted by two experimenters (one leading the experiment, one being 

present due to ethical requirements for testing children) in a quiet environment where children 

were not distracted. 
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Figure 1 

Study procedure, separated per experimental group and study phase.  

 

Note. Gf = fluid intelligence; Gc = crystallized intelligence. 

 

2.3. Measures 

2.3.1 Pre-training assessment of fluid and crystallized intelligence 

Fluid intelligence: Matrices of WISC-IV (Wechsler, 2004). For each trial, children 

were shown a 2 by 2 grid of four boxes with the bottom-right box displaying a question mark 

and the others displaying images. Below this grid, six images were displayed and children 

were instructed to select the image that would complete the series above (e.g., selecting a 

green lightbulb among bulbs of other colors). The task consisted of 32 grids in total but was 

ended earlier if children selected four incorrect answers in five consecutive trials. The 

outcome measure was the number of correct responses (note that raw scores were age-

standardized).  

Crystallized intelligence: Vocabulary of WISC-IV (Wechsler, 2004). Children were 

asked to explain the meaning of words (e.g., “what is an umbrella?”) and received two points 

for correct answers (e.g., “to protect you from rain”), one point for partial, vague answers 

(e.g., “you hold it above your head”) and no points for incorrect answers. The task consisted 
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of 31 words in total but was ended earlier if children gave five consecutive incorrect answers. 

The outcome measure was the sum of points (note that raw scores were age-standardized). 

2.3.2. Pre- and post-training assessment of EF performance 

Updating: Spatial 2-back task (adapted from Jaeggi et al., 2011). For each trial, 

children were shown a 3 by 2 grid of six boxes, and they had to indicate whether a cartoon 

character was displayed in the same box as two trials before (by pushing the green button 

stuck on the right arrow key) or not (by pushing the red button stuck on the left arrow key; see 

Figure 2). Children first performed a practice block of 17 trials (which was repeated if 

accuracy was below 60%). This was followed by five test blocks of 17 trials, each containing 

five hit trials (for which the character was in the same location as two trials before) and 12 

non-hit trials. For the parallel version of the posttest assessment, a different cartoon character 

was used, and hit/non-hit trials appeared in a different order. In both assessments the order of 

hit/non-hit trials was the same for all participants. The outcome measure was the proportion of 

correctly detected hits minus the proportion of false alarms on non-hit trials.  

Switching: Dots & triangles task (adapted from Huizinga et al., 2006). This task 

consisted of two single task blocks (task A and task B) and a mixed-task block (task A/B). For 

each trial, children saw a grid of 4x4 boxes, and, using the four arrow keys, they had to 

answer whether there were more dots (i.e., frog faces) on the left or the right half of the grid 

(task A), or whether there were more triangles (i.e., cherries) in the top or bottom half of the 

grid (task B; see Figure 2). Children first worked on both single task blocks (in counter-

balanced order), which consisted of 10 practice trials (and an additional 10 practice trials if 

accuracy was below 60%) and 40 experimental trials. Children then worked on the mixed-task 

block, which consisted of 21 practice trials (and 21 possible re-practice trials) and 81 

experimental trials. The mixed-task block shifted between task A and task B every four trials. 

For the parallel version of the posttest assessment, stimuli were inversed (i.e., dots were used 
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for task B and triangles for task A). The outcome measure was switching costs (i.e., mean 

reaction time on switch trials minus mean reaction time on non-switch trials, both on trials 

with correct responses only). Note that reaction times were initially recorded in milliseconds, 

but were rescaled to seconds to avoid that variances were much larger than on the other 

outcome measures.  

Inhibition: Go/NoGo task (adapted from Schulz et al., 2007). Children were shown a 

series of animal pictures and had to push the space bar as fast as possible as soon as a new 

picture appeared (Go stimuli, 75% of all trials) except for birds (for which no response had to 

be made; NoGo stimuli, 25% of all trials; see Figure 2). Go and NoGo trials were presented in 

pseudo-randomized order. Children practiced this first for 16 trials (and for another 16 

practice trials if performance was below 60%) and then worked on a block of 96 trials. For the 

parallel version of the posttest assessment, monkeys were used as NoGo stimuli (note that 

monkeys were used as Go stimuli at pretest, but birds were not used as Go stimuli at posttest). 

The outcome measure was inhibition accuracy (i.e., the proportion of correctly inhibited 

NoGo trials).  

 

Figure 2 

Example stimulus for updating, switching, and inhibition tasks 
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2.3.3. Training programs 

The three EF and the active control programs were similar in terms of training design 

and intensity. Each program consisted of eight sessions lasting for 20-25min each. For the 

three EFs, training tasks resembled the pre-post assessment of the same EF (see section 2.3.2). 

Specifically, the updating trainings consisted of a spatial 2-back paradigm, for which children 

had to indicate for each trial whether a cartoon character was displayed in the same location 

as two trials before. Each session consisted of 170 trials (50 hit trials). The switching training 

tasks consisted of a task A/task B switching paradigm, for which children either had to 

indicate whether stimuli belonged to one vs. to another category (task A), or whether one vs. 

two objects were displayed (task B). The paradigm switched between tasks on every third trial 

and each training consisted of 410 trials (200 switching trials). The inhibition training 

consisted of a Go/NoGo response inhibition paradigm, for which children had to push the 

spacebar as fast as possible after stimuli appeared on the screen (Go-trials) except for when 

the stimulus corresponded to a specific category (NoGo-trials). Each session consisted of 320 

trials (80 NoGo trials). The active control training children had to categorize images (similar 

to the categorization tasks of the switching paradigm, but without having to switch between 

different task sets, thus not particularly tapping into EF). Each training session consisted of 

410 trials.  

For all four training programs, task difficulty was individually adapted to children’s 

performance throughout the program. During each training session, there were a total of 10 

difficulty levels, to which children could advance or revert depending on their performance. 

Between levels, difficulty was increased by decreasing how long stimulus and fixation cross 

were presented and, for certain levels, by presenting more complex stimuli (i.e., more spatial 

locations and more challenging maps for the updating training; categories that are more 

difficult to distinguish for the inhibition training). To be able to compare training progress 
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between groups, one outcome measure was the highest level achieved in each training session. 

In addition, group specific outcome measures were: the proportion of correctly detected hits 

minus the proportion of false alarms on non-hit trials for updating; switching costs on trials 

with correct responses only for switching; inhibition accuracy for inhibition; mean reaction 

time on correctly categorized trials for the active control training. More detailed descriptions 

of the different trainings can be found in supplementary material S1. The passive control only 

participated in pre- and posttest assessments without receiving any activities between the two 

assessment times (i.e., ‘business as usual’ control group).   

2.4. Statistical analyses  

First, to assess how performance on the training tasks changed throughout the 

training, we compared the highest task level achieved as well as task specific outcome 

measures on the first versus on the last training session by conducting a paired-sample t-test 

for each training group separately (including the active control group). These t-tests as well as 

descriptive statistics, correlations, ANOVAs, and Tukey HSD test were conducted with the 

jamovi software.  

Second, to assess predictors of pre-post change and potential transfer effects to 

untrained EFs, we conducted factorial latent change score modelling (LCSM). To examine 

means and variances in change of each EF task as well as how these changes correlated, in a 

first LCSM (Model 1, see Panel A of Figure 3), we computed latent variables of change as the 

difference between pre- and posttest performance for each of the three EF tasks. To examine 

whether change in one EF task was related to change in the other EF tasks, latent change 

variables were allowed to covary. Performances at pretest for the three EF tasks were also 

allowed to covary. 

Third, to investigate predictors of changes in EF performance, in a second LCSM 

(Model 2, see Panel B of Figure 3) the following variables were added as predictors of the 
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three latent change scores: (1) baseline performance, (2) children’s age, (3) gender, and (4) 

the specific training group. Four dummy variables were created to investigate the effect of 

each training group compared to the active control group (i.e., the updating group has the 

value ‘1’ on the variable ‘updating training’ and values ‘0’ on the three remaining dummy 

variables; the active control group has ‘0’ on all four variables). A significant effect of a 

dummy variable means that this group displayed larger EF changes than the active control 

group. Residual variances of latent change variables were allowed to covary.  

Fourth, to examine whether the efficacy of the training would be judged differently 

when comparing training groups to active versus passive controls, we computed a third model 

(Model 3), in which we used the passive control group as a reference group. Note that 

although changing the reference group can result in different parameter estimates, this model 

is mathematically equivalent to Model 2 in terms of model fit, which therefore will only be 

reported for Model 2. LCSMs models were estimated in IBM SPSS AMOS (version 26) using 

Maximum Likelihood estimation. As indicated by the Little MCAR test (computed in IBM 

SPSS version 26), missing data (which were less than 1% of all data points) were missing 

completely at random (χ2(41) = 48.54,  p = .20) and therefore subsequently were imputed 

using Full Information Maximum Likelihood (Little, 1988). We assessed the goodness-of-fit 

for the two LCSMs using the χ2/df ratio, the root mean square error of approximation 

(RMSEA), and the comparative fit index (CFI). Model fits were considered as good when the 

χ2/df ratio was smaller than 3, when the RMSEA was comprised between 0 and 0.06, and 

when the CFI was greater than 0.95 (Hu & Bentler, 1999). 
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Figure 3 

Factorial latent change score models 

 
Note. Panel A represents latent score change Model 1. The latent change variables have estimated means and variances. Single-headed arrows 

represent regression coefficients while two-headed arrows represent covariances. For the purpose of readability, correlations between pre-tests for 

the three EF tasks are not depicted. Panel B represents Model 2 where predictors of change are included in the model and allowed to covary. The 

error terms (e1, e2, and e3) indicate residual variances from the latent change scores. For the purpose of readability, covariances between the 

different predictors and covariances between residual variances of change are not depicted.   
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Table 2  

Descriptive statistics and correlations between age, pre- and posttest performances on the three EF tasks (across all groups). 

 M (SD) 1 2 3 4 5 6 

1. Age 8.29 (1.43) —           

2. Updating pretest .35 (.25) .33*** —     

3. Updating posttest .46 (.29) .28*** .46*** —    

4. Switching pretest 0.38 (0.32) -.21** -.16* -.11 —   

5. Switching posttest 0.27 (0.27) -.26*** -.20** -.19** .37*** —  

6. Inhibition pretest .81 (.14) .20** .19** .26*** -.06 -.05 — 

7. Inhibition posttest .82 (.15) -.01 .07 .15* -.07 -.08 .33*** 

Note. M = mean. SD = standard deviation. * p < .05, ** p < .01, *** p < .001. Updating scores = proportion of correctly detected hits minus the proportion 

of false alarms on non-hit trials; switching scores = switching cost in seconds (= mean reaction time on shift trials minus mean reaction time on 

non-shift trials on trials with correct responses only); inhibition scores = inhibition accuracy (proportion of correctly inhibited NoGo trials); age = 

children’s age in years. 
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3. Results 

3.1. Descriptive statistics 

Table 2 presents means, standard deviations, and correlations between age, pre- and 

posttest performance on the three EFs tasks across all groups. Figure 4 displays pre- and 

posttest performances on the three EF tasks separated by group. 

3.2. Changes in performance across training sessions 

Figure 5 depicts trajectories of the highest level achieved on each training session 

(i.e., group mean) for the four training groups separately. It also displays performance 

trajectories on each training session on the four training tasks. Regarding the highest levels 

achieved, paired-sample t-tests between the first and the eighth training session showed that 

there were significant differences with large improvements for the updating, t(45) = 12.95, p 

< .001; d = 1.91, and for the switching group, t(40) = 6.83, p < .001; d = 1.07. In contrast, 

performance of the inhibition and of the active control group did not significantly improve on 

the highest level achieved, t(37) = 0.45, p = .65; d = 0.07, and t(42) = - 0.84, p = .41; d = - 

0.13, respectively. Regarding performance on the trained tasks, paired-sample t-tests between 

the first and the eighth training session showed that there were significant improvements for 

the updating, t(45) = 5.13, p < .001; d = 0.76, and for the switching group, t(40) = -5.10, p < 

.001; d = -0.80. In contrast, performance of the inhibition group did not significantly improve, 

t(37) = 0.88, p = .39; d = 0.14, whereas the active control group became significantly slower 

across sessions, t(42) = 3.91, p < .001; d = 0.60.  
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Figure 4 

Pre- and posttest performances on the three EF tasks separated by training group. 

 

 

Note. Updating accuracy = proportion of correctly detected hits minus the proportion of false alarms on non-hit trials; Switching cost = switching 

cost in seconds (= mean reaction time on switch trials minus mean reaction time on non-switch trials on trials with correct responses only); 

Inhibition accuracy = proportion of correctly inhibited NoGo trials. Error bars represent standard deviations. 
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Figure 5 

Progression of highest level achieved (large figure left) and performance (small figures right) across the eight training sessions, separated per 

training group 

 

Note. Updating accuracy = proportion of correctly detected hits minus the proportion of false alarms on non-hit trials; Switching cost = switching 

cost in milliseconds (= mean reaction time on switch trials minus mean reaction time on non-switch trials on trials with correct responses only); 

Inhibition accuracy = proportion of correctly inhibited NoGo trials. Categorization RT = mean reaction time (in milliseconds) on correctly 

categorized trials of active control training task. Error bars represent standard deviations. 
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Table 3 

Estimated means, variances and covariances for the latent score change variables in Model 1. 

Parameter Estimate S.E. p 

Mean change in updating .11 .02 < .001 

Mean change in switching -.11 .02 < .001 

Mean change in inhibition .01 .01 .60 

Variance of change in updating .08 .01 < .001 

Variance of change in switching .11 .01 < .001 

Variance of change in inhibition .03 .01 < .001 

Change in updating  Change in switching -.01 .01 .50 

Change in updating  Change in inhibition .01 .01 .82 

Change in switching  Change in inhibition -.01 .01 .56 

Note. Double-headed arrows denote covariances. S.E. = standard error of estimation. Significant estimates in bold.  
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Table 4 

Changes in performance per EF and per group  

 Updating     Switching    Inhibition   

Improvement 

Increase in per-

formance accuracy 

% of 

pretest 

SD of 

pretest 

 Reduction of 

cost (in ms) 

% of 

pretest 

SD of 

pretest 

 Increase in per- 

formance accuracy 

% of 

pretest 

SD of 

pretest 

Across all groups .11 32.85 0.47  115  30.30 0.36   .01 0.81 0.05 

Updating group .29 84.76 1.14  69 19.05 0.21  -.03 -2.31 -0.20 

Switching group .09  25.86  0.37   181 47.19 0.70  -.01 -0.12 -0.01 

Inhibition group .06  21.17 0.27  144 30.80 0.37   .03 3.96 0.18 

Active controls .05 14.27 0.20  165  39.15 0.53   .03 3.31 0.20 

Passive controls .06 15.28 0.25  30 10.48  0.10   .01 0.83 0.05 
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Table 5 

Regression weights, standard error of estimation, and p-values for predictors of latent changes in EFs in Model 2. 

 Predicting change in updating Predicting change in switching  Predicting change in inhibition 

Predictors b  S.E.         p 
 

b  S.E.        p 
 

b  S.E.    p 
 

Updating pretest -.52 -.46 .07 < .001  - - - -  - - - -  

Switching pretest - - - -  -.73 -.70 .05 < .001  - - - -  

Inhibition pretest - - - -  - - - -  -.66 -.55 .07 <.001  

Age  .03 .13 .01 .03 
 
-.04 -.17 .01 < .001 

 
-.01 -.06 .01 .33 

 

Gender .01 .02 .03 .73 
 
-.02 -.03 .03 .54 

 
.01 .03 .02 .65 

 

Updating group .24 .34 .05 < .001  .06 .08 .05 .23  -.04 -.10 .03 .14  

Switching group .04 .05 .05 .45  -.07 -.08 .05 .20  -.03 -.07 .03 .36  

Inhibition group -.02 -.03 .05 .66  .05 .06 .05 .34  -.03 -.07 .03 .30  

Passive control group .04 .06 .05 .40  .01 .02 .05 .78  -.03 -.07 .03 .31  

R2 .30  .47  .33  

Note. b = raw regression weights.  = standardized regression weights. S.E. = standard error of estimation. Updating pretest = proportion of correctly 

detected hits minus the proportion of false alarms on non-hit trials; switching pre-test = switching cost in seconds (= mean reaction time on shift 

trials minus mean reaction time on non-shift trials on trials with correct responses only); inhibition scores = inhibition accuracy (proportion of 

correctly inhibited NoGo trials); age = children’s age in years; gender = coded 0 for girls and 1 for boys. To code for group, four dummy variables 

were computed, with the active control group as a reference. R2 = Squared multiple correlation. Significant estimates in bold. 
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3.3. Baseline differences 

To assure that training improvements were not confounded with potential differences 

in performance at baseline, we compared pretest performance of the five groups for each EF. 

Tukey HSD analyses indicated that were no significant differences between any of the five 

groups in baseline performance on updating, switching, or inhibition, except for one: the 

inhibition group performed significantly worse than the passive control group on the 

switching task at baseline (t(220) = -2.80, p = .043; all other ps > .05).  

3.4. Variability in change and transfer effects to other EF tasks 

Model 1 showed excellent fit (2(6) = 7.06, 2/df = 1.18, p = .32; CFI = .99, RMSEA 

= .03). Parameter estimates are reported in Table 3. Mean changes between pre- and posttest 

were significant in updating and in switching, but not in inhibition. Skewness of the factor 

scores for the mean changes in updating, in switching, and in inhibition was .04, .36, and -.11 

respectively, whereas kurtosis was .19, 1.64, and .88 respectively. Table 4 shows changes in 

performance per EF and per group. In addition, variances in change (i.e., variances of the 

latent change scores) were significant in the three EFs, indicating that for each EF there was 

interindividual variability in change. However, changes in the three EFs did not correlate (all 

ps > .05), indicating that changes in EFs were independent from each other. 

3.5 Predictors of change and transfer to untrained EF tasks 

As there was significant variance in change on all three EFs, Model 2 examined 

predictors of change for each EF. Model 2 showed excellent fit (2(6) = 10.58, 2/df = 1.76, p 

= .10; CFI = .99, RMSEA = .06). When all predictors were considered simultaneously, they 

predicted a substantial portion of variance in changes in updating, switching, and inhibition 

(30%, 47%, and 33%, respectively). Raw and standardized estimates for each EF are reported 

in Table 5. In sum, results show that change in updating was predicted negatively by updating 

performance at pretest but positively by age. In addition, only the updating group showed 
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larger changes than the active control group. Change in switching1 was predicted negatively 

by switching costs at pretest and by age. None of the groups showed larger changes in 

switching than the active control group. Change in inhibition was predicted negatively by 

baseline inhibition performance, indicating that children with lower initial performance 

showed greater improvements. There were no effects of age nor of group on change in 

inhibition. Gender did not predict change in any of the three EFs. As for correlations between 

the latent change variables in Model 1, residual errors for the latent change score variables in 

the three EFs did not correlate in Model 2, again indicating that changes in EFs were 

independent from each other. Further, results show that none of the training group variables 

significantly predicted changes in untrained EFs, again indicating no evidence for transfer 

effects to untrained EFs. 

3.6 Active versus passive controls as reference group 

Finally, using the passive controls as reference group in Model 3 revealed a similar 

pattern of results as in Model 2. Regression weights, standard error of estimation, and p-

values for predictors of latent changes in EFs in Model 3 are therefore displayed in 

supplementary material S2. 

4. Discussion 

The present study set out to perform the first systematic comparison of facet-specific 

single-task EF trainings across the entire middle childhood. It aimed to: (1) directly compare 

whether updating, switching, and inhibition performance improve when these three EF tasks 

are trained under similar conditions, (2) examine whether training certain EF tasks improves 

performance on the others, (3) investigate which factors predict training benefits when 

accounting for all predictors simultaneously within a single model, including whether 

                                                 
1 For the interpretation of switching results, it is important to keep in mind a) that pre- and posttest 

scores represent switching costs (hence, larger scores indicate worse performance), and b) that mean change in 

switching was negative (representing a reduction of switching costs; hence, larger negative regression weights of 

predictors indicate a larger reduction of switching costs). 
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predictors support compensation versus magnification accounts of cognitive training, and 

finally (4) to study whether the efficacy of the training would be judged differently when 

comparing training groups to active versus passive controls. 

4.1. Does performance improve when training on EF tasks? 

Overall, our findings show that updating training is the most likely to produce 

performance improvements when the three EFs are trained under similar conditions using a 

single-task training paradigm. In contrast, we find no evidence that the other trainings benefit 

children’s EF performance beyond retest effects, general learning, and short-term 

developmental changes. In more detail, the updating group improved performance across 

training sessions, and only children in this group displayed larger pre-to-post improvements in 

updating performance than the active as well as the passive control group. On average, 

children of the updating group increased their accuracy by 85% whereas the switching, 

inhibition, active and passive control groups only improved by 19% on average. Although the 

switching group improved switching performance throughout the training, children did not 

show significantly larger improvements than the active nor the passive control groups from 

pre- to post-test. Further, there were no improvements across inhibition training sessions, and 

there were no group differences in changes in inhibition performance from pre- to post-test.  

At first glance our findings might seem to diverge from Johann and Karbach’s 

(2020), who also reported benefits of training switching and inhibition. However, different 

conclusions seem to have mainly resulted from how the specific outcome measures were 

interpreted. Johann and Karbach reported benefits of training inhibition because children 

responded faster and more often on Go trials. However, as in our study, they also did not find 

improvements in how often children successfully inhibited responses on NoGo trials (children 

actually responded more often on NoGo trials at posttest), which we consider to be the core 

indicator of inhibitory control. Overall, both studies suggest no benefits of training inhibition. 



29 

 

 

Similarly, Johann and Karbach report benefits of training switching because they observed 

that switching costs decreased in the switching training groups. However, as in our study, 

there were no significant differences compared to the passive control group. This aligns with 

our findings and raises the question whether multiple groups slightly improve on switching 

tasks (i.e., they become faster at posttest), but that there may be no EF-specific training 

benefits beyond mere learning, re-test effects, and generally faster processing.  

Taken together, findings of our and Johann and Karbach’s study dovetail with 

previous findings, where significant performance benefits of training updating have more 

consistently been shown than of training switching or inhibition (e.g., Kassai et al., 2019; 

Rapport et al., 2013; Takacs & Kassai, 2019). Importantly, the current results confirm this 

pattern in one systematic overall randomized controlled trial that applied comparable single-

task training regimes to these three EF components.  

4.2. Does training on one EF task improve performance on the others? 

Regarding transfer effects to untrained EF tasks, our findings show that training 

either on updating, switching, or inhibition tasks does not improve performance on the others. 

Specifically, LCSM show that the different training groups do not predict the magnitude of 

change in other EFs and that latent changes in the three EFs are largely independent (i.e., do 

not correlate). These findings are in line with Johann and Karbach (2020) and several other 

studies (for reviews, see e.g., Diamond & Ling, 2016; Diamond & Ling, 2020). Johann and 

Karbach (2020) argued that the lack of transfer effects may be due to the fact that they applied 

a multi-task training (i.e., trainings consisted of multiple tasks of the same EF component). 

They suggest that variability in tasks may hinder transfer effects in children and that transfer 

would be more likely to occur if only one type of tasks was used during the training. Our 

study provides additional insights in this regard, as we applied a single-task training for each 

EF component, but – in contrast to these suggestions – also did not observe any transfer 
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effects. Indeed, the few studies that found transfer effects have applied both single- and multi-

task trainings (e.g., Klingberg et al., 2005; Klingberg et al., 2002; Kray et al., 2012). We 

argue that the uniformity versus variability in tasks does not seem to be the main driving 

mechanism for between-EF transfer effects.  

Interestingly, studies that have reported transfer to untrained EFs were largely 

conducted on atypically developing populations (e.g., children with ADHD; Klingberg et al., 

2005; Klingberg et al., 2002; Kray et al., 2012). Thus, transfer effects between EFs may 

depend on specific cognitive characteristics of the target population rather than on the 

training-task design. Taking together the systematic evidence of our study and of Johann and 

Karbach (2020) as well as meta-analytical evidence of Kassai et al. (2019), there is currently 

no evidence of transfer effects between the three EFs in typically developing children. 

4.3. Predictors of training benefits and theoretical implications 

When baseline performance, age, gender, and training group were considered 

simultaneously, they predicted substantial 30%, 47%, and 33% of variance in updating, 

switching, and inhibition changes. Disentangling the specific role of each predictor while 

accounting for the others, results show that children with lower baseline performance 

displayed larger performance improvements on all three EF tasks, whereas older children 

showed larger improvements in updating and in switching tasks, but there was no effect of 

age on inhibition performance. There was no effect of gender on change for any of the three 

EF tasks.   

As older children typically display better baseline performance, opposing effects of 

age and baseline performance may have cancelled out or blurred findings in previous studies 

that applied more classical analyses examining one predictor at a time. Our findings thereby 

illustrate an important conceptual implication of directly contrasting multiple predictors 

within one latent change model (Karbach et al., 2017) and suggest two seemingly opposite, 
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yet complementary mechanisms that drive training effects in children. On the one hand, our 

findings align with previous studies reporting larger benefits for those that have the most 

room for improvement (see Karbach et al., 2017; Smid et al., 2020; Strobach & Karbach, 

2021; Traut et al., 2021). From a theoretical perspective, we thereby provide more systematic 

evidence for compensation (rather than magnification accounts) of process-based cognitive 

trainings. 

On the other hand, our findings are in contrast with previous studies reporting larger 

benefits for younger children or no effects of age (e.g., Cao et al., 2020; Cepeda et al., 2001; 

Kassai et al., 2019; Scionti et al., 2020; Wass et al., 2012), and suggest that, after accounting 

for baseline performance, training benefits are larger in older children. This aligns with 

previous research showing that the neural underpinnings of EFs – most importantly, the 

prefrontal cortex – continue to undergo structural and synaptic changes in late childhood and 

subsequent developmental stages (Best & Miller, 2010; Davidson et al., 2006; Diamond, 

2013). Similarly, EF continues to develop and become more distinct across childhood (Karr et 

al., 2018) and certain components (e.g., switching) may only fully mature later in life (Garon 

et al., 2008; Müller & Kerns, 2015). Relatedly, previous research also shows that other key 

cognitive abilities – such as metacognitive skills – develop incrementally with schooling and 

are more developed by the end of middle childhood (Schneider & Lockl, 2008; Schneider & 

Löffler, 2016). Increases in metacognition facilitate learning across different school subjects 

(e.g., Dimmitt & McCormick, 2012; McCormick; Schneider, 2008; Smortchkova & Shea, 

2020) and it is possible that they also bolster training benefits in older children. From a 

developmental perspective, our findings thereby suggest that training benefits are maximized 

when children’s cognitive abilities are malleable, the underlying cognitive and neural systems 

are sufficiently developed, and the training occurs during an appropriate developmental stage 

that favors improvements. 
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4.4. Are training effects interpreted differently when compared to active versus passive 

controls? 

To control for potential benefits of engaging in cognitively stimulating activities, 

participant’s expectations, and other placebo effects, including an active control group has 

become the gold standard in cognitive training research. Yet, including active controls is also 

more resource- and time-consuming compared to passive controls, and it currently remains 

debated whether the type of control group actually affects results or the interpretation of 

training efficacy (e.g., Au et al., 2020). So far, this issue has mostly been examined with 

meta-analytical approaches between studies, with those focusing on updating reporting that 

benefits seem larger when comparing training effects to passive controls (Melby-Lervåg & 

Hulme, 2013; Sala & Gobet, 2017; Schwaighofer et al., 2015), whereas meta-analyses 

targeting multiple EFs did not find differences between the two control types (Au et al., 2020; 

Scionti et al., 2020).  

With the present study, we provide the first directly comparable within-study 

evidence that aligns with latter meta-analyses, demonstrating similar patterns of results 

between active and passive control groups (Au et al., 2020; Scionti et al., 2020). Although 

active controls present many methodological advantages, such findings can be highly relevant 

for the efficient allocation of resources and time in future training studies. They suggest that 

interpretation of training benefits may not differ when training groups are compared to a 

passive control group versus to an active control group that participated in a cognitively rather 

low-demanding activity. Depending on the specific study focus, for many studies it may 

therefore be more ethical either to compare cognitive trainings to passive controls that are on 

waiting lists and can participate in the training at a later time; or to compare trainings to active 

control interventions that are more engaging and may better promote children’s development 

while allowing to disentangle specific effects of the different interventions. 



33 

 

 

4.5. Implications of the present findings 

Looking at the important number of cognitive training studies that have been published 

over the last decades suggests that, in general, researchers have been rather optimistic that these 

interventions benefit task performance and children’s development in a broader context. Yet, 

more recent literature has questioned the efficacy of how EFs currently are assessed and trained 

(e.g., Doebel, 2020; Perone et al., 2021). Overall, the present data aligns with such skepticism, 

showing that when performance on three EF components was trained under very similar and 

comparable conditions, only one training (i.e., updating) led to specific improvements. 

Importantly, even this training did not improve performance on supposedly related EF tasks 

(i.e., switching and inhibition), which aligns with current research showing little evidence for 

far transfer of EF task training (e.g., Diamond & Ling, 2016; Kassai et al., 2019; Perone et al., 

2021). Thus, it is questionable how and why such training approaches should lead to broader 

improvements and generalize to everyday relevant outcomes, such as school achievement, 

behavioral regulation, attentional control, and more. Although our study does not allow to 

conclude whether task-specific improvements would persist over time or affect any everyday 

outcomes, current findings strongly dampen the enthusiasm towards repeated single-task 

cognitive training interventions and urge for new, more efficient, and more naturalistic 

approaches.  

This is important, because for children, training interventions are typically carried out 

in school or childcare. Therefore, they take away from crucial time spend on the educational 

curriculum and other valuable activities that may benefit their development, such as engaging 

in physical exercise, artistic activities, mindfulness (for meta-analyses, see Takacs & Kassai, 

2019), or in programs providing new strategies to bolster self-regulation, social and other skills 

(e.g., McClelland & Tominey, 2015; Petersen, 1995). This seems even more relevant for 

atypically developing or at-risk populations, which may need support the most and, 
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unfortunately, can least afford to spend time and resources on interventions that currently lack 

systematic evidence to promote children’s development. Taken together, we argue that it is 

crucial for future research to thoroughly examine if and how different intervention approaches 

can lead to broader, long-lasting improvements in children’s everyday outcomes.  

In this context, Doebel (2020) and Perone et al. (2021) present inspiring new 

conceptual models of EF and how its development might be fostered. They question the validity 

of the current modular conceptualization of EF and whether it is useful to train performance on 

these modules. Instead, they suggest, future interventions should target children’s specific goals 

by considering children’s prior knowledge, beliefs, values, and more, as a dynamic ensemble 

that allows for momentary behavior to unfold. For example, if a child should learn not to hit 

another child that took their toy, modular task training (e.g., of inhibition) may be rather 

inefficient. Instead, it may be more useful to build on the child’s previous experiences, such as 

expecting that hitting will lead to punishment, having experienced how it feels to be hit by 

someone, preferring to maintain the friendship with the other child, and more (see Doebel et 

al., 2020). Similarly, providing children with contextual, multi-level information may help them 

to link specific goals to environmental cues (e.g., asking how the child feels at the moment, 

explaining why the other child may have taken the toy, providing a context that allows for the 

conflict to be solved; see Perone et al., 2021). Together, by strengthening the association 

between goals, cues, and contextual information rather than training modular task performance, 

more comprehensive goal-oriented interventions may be better suited for helping children to 

learn and reproduce the target behavior and thereby ultimately bolster development in real-life 

contexts.  

4.6. Limitations and outlook 

Although the present study provides important systematic insights on the (in)efficacy 

of EF trainings and thereby may guide future research towards more integrative and more 
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ecological assessment and training of EF, it also is important to highlight its limitations. A 

first, methodological shortcoming is that the present study did not include any follow-up nor 

ecological measures of EF. Besides examining whether training benefits lasted across time, a 

follow-up would further allow evaluating training-specific versus general effects of the 

interventions. Yet, as we only found training-specific performance improvements at posttest 

for one EF task (i.e., updating), we are skeptical that this or similar training approaches would 

benefit children across longer periods of time nor that they would improve performance on 

more ecological EF measures or in real-life contexts (see Diamond & Ling, 2016; Kassai et 

al., 2019; Perone et al., 2021).  

Another limitation is that baseline performance levels varied between EFs. For 

example, updating and switching performance were rather low. Although this may partially be 

due to our choice of outcome measures, children’s performance may also have been affected 

by the rather low number of trials to assess each EF. In contrast, baseline performance was 

rather high for inhibition. Although it was sufficiently low at the first training session to leave 

room for potential improvements, high baseline performance may be particularly challenging 

for training studies, as supported by our finding that training benefits were largest when 

baseline performance was lowest.  

An important conceptual limitation of the present as well as other training studies is 

that they typically do not allow us to conclude why one EF may show larger performance 

benefits. It could be that certain EF simply are more trainable than others and allow to 

increase existing resources. However, it could also be that because of how EFs are typically 

assessed, it may be easier to add new resources when performing certain tasks, (e.g., 

discovering strategies such as rehearsing spatial locations of previous stimuli before onset of 

the next stimulus in updating tasks) whereas this may be more difficult for other tasks (e.g., 

inhibiting the impulse to respond after stimulus onset in inhibition tasks).  
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A final limitation is that correlations between pre- and posttest measures of the same 

EF were rather low. One possible explanation for this may be that, whereas all children were 

relatively comparable at pre-test, at post-test children had participated in different 

interventions, and thus may approach certain tasks differently. This also suggests that, besides 

training-specific effects, other mechanisms – such as task-novelty, familiarity, motivation, or 

fatigue – may have affected posttest performance, which further illustrates issues with current 

approaches to assess and train EFs.  

4.6. Conclusion 

Our study represents the first systematic and comprehensive examination that 

directly compared the trainability of the three core EF components across the entire primary 

school age range using latent change score modelling. It demonstrates that when performance 

on an updating, switching, or inhibition task are trained under similar conditions within a 

single group of children, only updating performance showed training-specific improvements. 

In terms of potential transfer effects, it underlines that there is currently no systematic 

evidence for transfer of improvements to non-trained EF tasks. Such findings question how 

likely it is that classical task-paradigm trainings can lead to improvements in even broader 

outcomes of EF in everyday contexts. Further, taken together with other studies, findings 

illustrate that the current conceptualization of EF and how it develops is still incomplete (for 

similar views, see Doebel, 2020; Perone et al., 2021). A better understanding of how EF 

should be assessed and conceptualized throughout childhood is necessary before future 

research will be able to explore new interventions supporting children’s real-life behaviors 

that rely on EF. 

In terms of predictors of improvements, our results show that performance 

improvements are largest for children that are older but have still have relatively low EF 

performance. This provides evidence for opposite, yet complementary mechanisms of 
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baseline performance and age, thereby supporting both compensation accounts as well as 

developmental theories of EF and underlining the importance of accounting for multiple 

predictors simultaneously. Finally, our findings show that the efficacy of a cognitive training 

is similar when comparing training groups to active or to passive controls. In certain 

situations, it may therefore be more ethical to use passive controls or other interventions that 

are more likely to benefit children’s development than the typical active control paradigms.  
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Supplementary Material 

Supplementary material S1: more detailed description of training programs 

To allow for a systematic comparison of the three EF training groups and the active 

control group, all four training programs were very similar in terms of design, structure, and 

intensity. Specifically, each of the four programs consisted of eight training sessions, which 

lasted for approximately 20-25 minutes each. Each training session was programmed so that it 

had ten possible difficulty levels, with each level increasing in task difficulty (see detailed 

description of the respective training tasks below). For each training session, children worked 

on ten training blocks (independently of the difficulty level of each block). Each training block 

consisted of a fixed number of trials of the training task. In order to maximize potential training 

benefits, the difficulty of each block was individually adapted to children’s performance: At 

the end of each block, children would either increase by one difficulty level for the next block 

(if their performance was above a certain cutoff value), decrease by one difficulty level for the 

next block (if their performance was below a certain cutoff value), or perform the next block 

on the same difficulty level (if their performance was between those two cutoffs; specific 

cutoffs of each task are detailed below). To further encourage children, keep them engaged, and 

maintain their motivation throughout the program, the difficulty level of the first training block 

of each training sessions increased across sessions: children started at the first difficulty level 

on the first training session, but automatically increased the starting level every two sessions 

(e.g., they started at the second difficulty level on the third and fourth training sessions, etc.). 

For the same reasons, game-like aspects were incorporated in all trainings (e.g., using cartoon 

characters as stimuli, using vivid colors, providing feedback with happy/sad smiley faces and 

information on how well children performed).   
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Updating training 

As for the pre- and posttest tasks, the updating training tasks consisted of a spatial 2-

back paradigm, for which children had to indicate for each trial whether a cartoon character was 

displayed in the same location as two trials before by pushing the green button (right arrow key) 

for hits and the red button (left arrow key) for non-hits. The first two difficulty levels were 

similar to the pre-posttest task, so that the cartoon character appeared in one of six boxes in a 

3x2 grid. In levels three and four, the grid was replaced by a video-game like background map, 

with six circles outlining the locations where the cartoon character could appear. Levels five 

and six had a different background map and one more circle (i.e., seven total locations); levels 

seven and eight again had a different background map and an additional circle (i.e., eight total 

locations); levels nine and then had yet another background map and one more circle (i.e., nine 

total locations). Thus, difficulty was increased by adding more complex stimuli (backgrounds) 

and more spatial locations. Further, the duration of the fixation cross presented before each trial 

was of 950ms on level one and decreased by 50ms on each difficulty level. Similarly, the 

stimulus presentation was 3000ms on the first level, (followed by a 1000ms blank response 

window, if children did not already answer during the stimulus presentation), which decreased 

by 250ms on each level (the duration of the blank response window was kept constant). 

Difficulty was individually adapted to children’s performance, so that they could advance to 

the next level if accuracy on all trials of one block was above .85, decrease by one difficulty 

level if their accuracy was below .60, and repeat the same difficulty level if their accuracy was 

between two cutoffs. Each training session consisted of 170 trials (50 hit trials), for a total of 

1360 trials across the entire training (400 hit trials). 

Switching training 

As for the pre- and posttest tasks, the switching training tasks consisted of a task A/task 

B switching paradigm. For each trial, children were presented cartoon-like images of either one 



49 

 

 

or two car(s) or plane(s), and their task was to indicate whether the image depicted a car or a 

plane (independently of the number of objects; task A), or one or two objects (independently of 

the type of object; task B) by pushing the left and right arrow keys. The paradigm switched 

between tasks on every third trial (AABBAA…) and an icon above the central stimulus indicate 

whether the number or the vehicle task had to be performed. To increase switching difficulty 

across levels, the stimulus presentation was 3000ms on the first level, (followed by a 2000ms 

blank response window, if children did not already answer during the stimulus presentation), 

which decreased by 250ms on each level (and the duration of the blank response window 

increased by 250ms). Similarly, the duration of the fixation cross presented before each trial 

was 950ms on level one and decreased by 50ms on each difficulty level. Difficulty was 

individually adapted to children’s performance, so that they could advance to the next level if 

their accuracy on all trials of one block was above .80, decrease by one difficulty level if 

accuracy was below .60, and repeat the same difficulty level if their accuracy was between two 

cutoffs. Each training session consisted of 410 trials (200 switching trials), for a total of 3280 

trials across the entire training (1600 switching trials).  

Inhibition training 

As for the pre- and posttest tasks, the inhibition training tasks consisted of a Go-NoGo 

response inhibition paradigm. For each trial, children were instructed to push the spacebar as 

fast as possible as soon as a cartoon-like image appeared on the screen (Go-trials) except for 

when the image corresponded to a specific category (NoGo-trials). To keep children engaged 

but also to increase difficulty throughout the training program, the images changed throughout 

the sessions and detecting the NoGo-images became more difficult (e.g., houses among images 

of objects in an early session versus different types of tools among other household utilities in 

a later session). Further, to increase difficulty across levels within each session, the duration of 

the stimulus presentation was 1000ms on the first level, (followed by a 3000ms blank response 
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window, if children did not already answer during the stimulus presentation), which decreased 

by 50ms on each level (and the duration of the blank response window decreased by 100ms). 

Similarly, the duration of the fixation cross presented before each trial was between 1300ms 

and 1700ms on level one and the range decreased by 100ms on each difficulty level. Difficulty 

was individually adapted to children’s performance, so that they could advance to the next level 

if their accuracy on all trials of one block was above .80, decrease by one difficulty level if 

accuracy was below .60, and repeat the same difficulty level if their accuracy was between two 

cutoffs. Each training session consisted of 320 trials (80 NoGo trials), for a total of 2560 trials 

across the entire training (640 NoGo trials). 

Active control 

For the active control training, children had to categorize images (similar to the 

categorization tasks of the switching paradigm, but without having to switch between different 

tasks). Specifically, each training session consisted of ten blocks for which participants had to 

indicate whether stimuli belonged to one of two categories (e.g., cars versus planes) by pushing 

the left/right arrow keys. Difficulty was individually adapted to children’s performance, so that 

they could advance to the next level if their accuracy on all trials of one block was above .80, 

decrease by one difficulty level if accuracy was below .60, and repeat the same difficulty level 

if their accuracy was between two cutoffs. Task difficulty was adapted as in the other training 

paradigm (i.e., faster presentation of fixation cross and stimulus with increasing difficulty 

levels). To further engage and motivate children, categories changed between sessions. Overall, 

task structure and adaptive difficulty therefore was very similar to the other trainings, but 

performing the task did not significantly tapping into EF. Each training session consisted of 410 

trials, for a total of 3280 trials across the entire training.  
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Supplementary material S2: Parameter estimates of Model 3 

Regression weights, standard error of estimation, and p-values for predictors of latent changes in EFs in Model 3. 

 Predicting change in updating Predicting change in switching  Predicting change in inhibition 

Predictors b  S.E.         p 
 

b  S.E.        p 
 

b  S.E.    p 
 

Updating pretest -.52 -.46 .07 < .001  - - - -  - - - -  

Switching pretest - - - -  -.73 -.70 .05 < .001  - - - -  

Inhibition pretest - - - -  - - - -  -.66 -.55 .07 <.001  

Age  .03 .13 .01 .03 
 
-.04 -.17 .01 < .001 

 
-.01 -.06 .01 .33 

 

Gender .01 .02 .03 .73 
 
-.02 -.03 .03 .54 

 
.01 .03 .02 .65 

 

Updating group .19 .34 .05 < .001  .05 .06 .05 .35  -.01 -.03 .03 .64  

Switching group -.01 -.01 .05 .92  -.08 -.10 .05 .10  .01 .01 .03 .93  

Inhibition group -.02 -.09 .05 .20  .04 .04 .05 .49  -.01 -.01 .03 .95  

Active control group -.04 -.06 .05 .40  -.01 -.02 .05 .78  .03 .07 .03 .31  

R2 .30  .47  .33  

Note. b = raw regression weights.  = standardized regression weights. S.E. = standard error of estimation. Updating pretest = proportion of correctly 

detected hits minus the proportion of false alarms on non-hit trials; switching pre-test = switching cost in seconds (= mean reaction time on shift 

trials minus mean reaction time on non-shift trials on trials with correct responses only); inhibition scores = inhibition accuracy (proportion of 

correctly inhibited NoGo trials); age = children’s age in years; gender = coded 0 for girls and 1 for boys. To code for group, four dummy variables 

were computed, with the passive control group as a reference. R2 = Squared multiple correlation. Significant estimates in bold. 
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