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Neural substrates of parallel devaluation-
sensitive and devaluation-insensitive
Pavlovian learning in humans

Eva R. Pool 1,2 , WolfgangM. Pauli2,3, Logan Cross4,5 & John P. O’Doherty 2,3

Weaim todifferentiate the brain regions involved in the learning and encoding
of Pavlovian associations sensitive to changes in outcome value from those
that are not sensitive to such changes by combining a learning task with out-
come devaluation, eye-tracking, and functional magnetic resonance imaging
in humans. Contrary to theoretical expectation, voxels correlatingwith reward
prediction errors in the ventral striatum and subgenual cingulate appear to be
sensitive to devaluation. Moreover, regions encoding state prediction errors
appear to be devaluation insensitive.We can also distinguish regions encoding
predictions about outcome taste identity from predictions about expected
spatial location. Regions encoding predictions about taste identity seem
devaluation sensitive while those encoding predictions about an outcome’s
spatial location seem devaluation insensitive. These findings suggest the
existenceofmultiple anddistinct associativemechanisms in thebrain andhelp
identify putative neural correlates for the parallel expression of both deva-
luation sensitive and insensitive conditioned behaviors.

Pavlovian learning is one of the simplest and most fundamental forms
of learning, whereby an initially neutral stimulus (conditioned stimulus
or CS; e.g., a metronome sound) acquires or changes value by being
associated with an affectively significant outcome (e.g., food)1–3. This
formof associative learning exerts a profound influence onbehavior4,5,
cognition6,7, and mental health8–10. Despite being extensively studied
across animals and humans, the neurocomputational mechanisms
involved in Pavlovian learning appear to be more elaborate than pre-
viously conceived11–16.

Value learning signals during Pavlovian conditioning have been
extensively characterized in the brain. Reward prediction errors – a
learning mechanism through which the CS becomes endowed with an
outcome’s affective value17–20 – have been shown to correlate with
dopaminergic activity in the midbrain21, as well as blood oxygenation
level dependent (BOLD) responses in the ventral striatum22 and
midbrain23. Moreover, the acquisition of affective conditioned
responses appears to involve frontomedial structures such as the

ventromedial prefrontal cortex (vmPFC)24 and subgenual anterior
cingulate cortex (sgACC)25,26. Lesion studies in monkeys26 and
humans24 suggest that these structures are critical for a CS to trigger
affective conditioned responses, reflected either in pupil dilation26 or
in skin conductance24.

In the last decade, a growing number of studies have found evi-
dence for other kinds of learning signals. Specifically, neural signals
associated withmodel-based representations, or cognitive maps, have
been identified during Pavlovian learning5,11,13,27–29. A key learning signal
suggested to be involved in the building of a cognitivemap is the state
prediction error. This prediction error quantifies how unexpected a
particular perceptual state is given the previous state, independently
of its affective value and is implicated in the acquisition of a
state–space transition model. State prediction errors have been
reported in the lateral prefrontal cortex (PFC)30, lateral orbitofrontal
cortex (OFC), anterior insula, superior frontal gyrus (SFG)31,32, and the
intraparietal cortex5,30. It has been shown that rewardprediction errors
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in the ventral striatum exist alongside state prediction errors in other
structures such as the lateral OFC32. The OFC has been implicated in
the representation of states and cognitive maps in a large corpus of
studies33–37 and increasing evidence implicates OFC model-based
representations in Pavlovian learning, including representations of
outcome identity, an outcome’s sensory features, sensory feature
changes, and the acquisition of stimulus–stimulus associations
underlying the construction of cognitive maps11,27–29. Interestingly,
model-based learning signals during Pavlovian conditioning have also
been found in brain regions typically involved in value learning such as
the striatum11, amygdala4, and the dopaminergic midbrain – with
activity coding for the updating of expectations about perceptual
attributes of the outcome28,38,39.

The co-existenceof distinct neural signals related to anoutcome’s
affective value on one hand and the perceptual properties of an out-
come on the other, are broadly consistent with theoretical models
postulating that Pavlovian learning is not a unitary process, but rather
involves several parallel associations between the CS and multiple
attributes of the outcome40,41. There has been a long-standing con-
ceptualization of multiple and parallel conditioned responses to a
given CS42–44, but only recently have these classes of behavioral
responses and their underlying neural learning signals been investi-
gated in humans16,45. Strikingly, these parallel behavioral responses to a
given CS diverge in their sensitivity to changes in outcome value,
leading to the expression of conditioned responses—such as increased
pupil dilation—that flexibly adapt to the updated value of an outcome,
and others that persist unchanged, despite the outcome being deva-
lued within the same individual16.

Devaluation insensitive behaviors are often suggested to rely on
brain signals approximated through model-free reinforcement learn-
ing algorithms that use reward prediction errors to make predictions
based on cached values14,46. A key empirical test of this hypothesis as

applied to Pavlovian conditioning would be whether brain regions
correlating with model-free reinforcement learning based on reward
prediction errors are sensitive to changes in outcome value. If brain
regions sensitive to reward prediction errors are indeed insensitive to
devaluation, this would provide evidence for the role of model-free
reinforcement-learning in the acquisition of devaluation insensitive
Pavlovian behaviors. On the other hand, if such reward prediction
error signal coding brain regions are actually sensitive to outcome
devaluation, this would suggest that Pavlovian reward prediction
error-based learning is not model-free.

Within a model-based framework, some computations would be
expected to be devaluation sensitive while others would not. Model-
based predictive representations of expected-value should be deva-
luation sensitive by definition, as these representations are proposed
to emerge by integrating knowledge of stimulus-stimulus associations
with knowledge about current expected outcome value. On the other
hand, internal representations of the cognitive model itself should not
be sensitive to changes in outcome-value, for instance, information
about where in the environment an outcome is expected to occur.

Here, we scanned human participants with fMRI while they per-
formed a Pavlovian learning paradigm16, in which they were asked to
learn associations between various neutral images and videos of the
delivery of a food outcome (see Fig. 1A). There were five images: one
image was more often associated with the delivery of sweet food on
the left side of the screen (CS+ left sweet); one image was more often
associated with the delivery of the sweet outcome on the right side of
the screen (CS+ right sweet); one image was more often associated
with the delivery of salty food on the left side of the screen (CS+ left
salty); one image was more often associated with the delivery of the
salty outcome on the right side of the screen (CS+ right salty); and
another image was more often associated with no outcome (CS−). We
measured the pupil dilation at the CS onset as a conditioned response

Fig. 1 | Schematic representation of the experimental design. A Illustration of
the sequence of events in a trial during the acquisition phase administered before
devaluation. At the beginning of each trial a conditioned stimulus (CS) was pre-
sented randomly in the upper or lower portionof the screen for 1.5–4.5 s (uniformly
distributed). After an anticipation screen of 3 s, a video showing the snack delivery
appeared either to the right or the left side of the screen for 3 s. Participants were
asked to detect the locationof the videoof the snack delivery as rapidly as possible.
The intertrial interval (ITI) lasted for 4–8 s (uniformly distributed). At the end of

each run, participants received the actual snacks deliveredduring the task andwere
allowed to eat them.B Illustration of the sequenceof events in a trial during the test
phase administered after devaluation. All aspects were identical to the acquisition
phase with the exception that the outcome delivery happened behind two black
patches. C Manipulation check of the outcome devaluation procedure. Mean
pleasantness ratings of the snack that was devalued through the selective satiation
procedure (devalued pleasantness) and the snack that was not (valued pleasant-
ness). Error bars indicate the within--participant s.e.m. N = 29 participants.
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reflecting affective value11,13,16 and the anticipatory gaze direction (left
vs. right) as a conditioned response reflecting a specific perceptual
representation of the outcome (i.e., its spatial location)16. We used
these conditioned responses to fit a model that learns through reward
predictionerrors—tracking changes in affective value independently of
the perceptual attributes of the outcome18—and a model that learns
through state prediction errors—tracking how unexpected a particular
perceptual outcome state is given the previous state independently of
its affective value5,30.

We identified brain regions involved in learning associations
between the CS and an outcome’s affective value as well as other
attributes of an outcome such as its perceptual features, by correlating
the BOLD signal with trial-by-trial reward- and state- prediction errors.
We then tested the sensitivity of these identified regions to outcome
devaluation. State prediction errors were found to carry information
concerning predictions about two perceptual attributes of an out-
come: its taste identity (sweet or salty) and its spatial localization (left
or right). Therefore, to further investigate the representations of pre-
dictions about outcome attributes and their sensitivity to outcome
devaluation, we performed a supplementary analysis. We imple-
mented a multivoxel pattern analysis (MVPA) on the BOLD responses
to the CS onset. We decoded predicted outcome taste identity by
training a classifier to discriminate between the CS+ sweet and the CS+
salty associated with the outcome delivery to the left side and then
tested its ability to discriminate between the CS+ sweet and the CS+
salty associated with the outcome delivery to the right side. Following
the same logic, we decoded predicted outcome delivery location by
training a classifier to discriminate between the CS+ left and the CS+

right associated with the sweet outcome and then tested its ability to
discriminate between the CS+ left and the CS+ right associated with
the salty outcome.

Using this approach,we aimed to test for the extent towhichbrain
regions involved in implementing different learned associations in
Pavlovian conditioning are sensitive to changes in outcome value. We
further aimed to directly test for the applicability of the distinction
between model-based and model-free reinforcement learning as a
means of explaining differences in devaluation sensitivity across these
different Pavlovian associations.

Results
Behavioral results
Pavlovian learning. During the acquisition phase, we tested whether
pupil dilation and anticipatory gaze direction reflect patterns of dis-
tinct classes of Pavlovian response as in Zhang et al.’s study45 and our
previous study16. We expected pupil dilation to follow a value pattern
(all CSs+ different from CS-) and gaze direction to follow a lateralized
pattern (larger dwell time for CSs+ left compared to CSs+ right and the
CS- on the left side of the screen; larger dwell time for CSs+ right
compared to CSs+ left and the CS- on the right side of the screen).

Pupil dilation. As expected, a planned contrast analysis on the
CS condition (CSs+ left, CSs+ right, CS- with the following weights:
+0.5, +0.5, –1) revealed that the pupil was less constricted for CSs+
left and CSs+ right compared to CS- (β = −0.030, SE =0.011, 95%
CI = [− 0.053, −0.007], p =0.016, BF10 = 3.68; see Fig. 2A).

Anticipatory gaze direction. The first planned contrast analysis
on the CS condition (CSs+ left, CSs+ right, CS- with the following
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Fig. 2 | Effects of Pavlovian conditioning and outcome devaluation on eye
behavior. A Averaged pupil response over time aligned to the conditioned sti-
mulus (CS)onset for theCSspredicting either thedeliveryof a snack to the left (CS+
L), the delivery of a snack to the right (CS+ R) or no snack delivery (CS-). Shaded
areas indicate the within--participant s.e.m. B Heatmaps of the fixation patterns
during the anticipation screen (normalized frequency), after the offset of CS+ L and
of the CS+ R. C Devaluation effect calculated as the mean difference of the deva-
luation induced change for the CS valued and the CS devalued (post[valued—

devalued]—pre[valued—devalued]) in the pupil response (CS- corrected) and in the
dwell time of the anticipatory gaze direction (CS- corrected). Error bars indicate
95% confidence interval adapted for within participants design. Statistical sig-
nificance was determined by the interaction term (session: pre or post devalua-
tion ×CS: value or devalued) in a linear mixed-effects model. Asterisks indicate
statistically significant differences (β =0.040, SE =0.008, 95% CI = [0.023, 0.057],
p <0.001, BF10 = 44.77). N = 29 participants.
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weights: +1,-0.5, -0.5), revealed an increased dwell time in the left
region of interest (ROI) after the perception of CSs+ left compared to
CSs+ right and CS-(β = −0.072, SE =0.019, 95% CI = [−0.110, −0.033],
p =0.0010, BF10 = 85.07; see Fig. 2B). The second planned contrast
analysis on the CS condition (CSs+ left, CSs+ right, CS- with the fol-
lowing weights: -0.5, +1, -0.5), revealed an increased dwell time in the
right ROI after the perception of CSs+ right compared to CSs+ left and
CS- (β = −0.079, SE =0.020, 95% CI = [−0.118, −0.039], p =0.0005,
BF10 = 53.18; see Fig. 2B).

Reaction times.We testedwhether participants’ reaction times to
the outcome delivery were influenced by Pavlovian predictions about
(a) the outcome lateralization (i.e., left or right) and (b) the taste
identity of the outcome (i.e., sweet or salty). For outcome lateraliza-
tion, results showed that participants had a significantly longer reac-
tion time when the side of the outcome (but not the identity) was
different than the one most often predicted by the CS compared to
when it was the same (e.g., unexpected side effect; β = −0.054, SE=
0.012, 95% CI = [−0.078, −0.0306], p <0.001, BF10 = 270.42). For out-
come identity, we did not find statistically significant effects, although
descriptively participants showed longer reaction times when the
identity of the outcome (but not the side) was different than the one
most often predicted by the CS compared to when it was the
same (e.g., unexpected identity effect; β = −0.017, SE = 0.010, 95% CI =
[−0.037, 0.002], p =0.101, BF10 = 0.579).

Outcome devaluation. A statistically significant interaction between
session (pre- or post-satiation) and outcome (valued or devalued)
showed that the outcome devaluation procedure decreased the plea-
santness of the devalued food outcome in comparison to the valued
food outcome (β = 0.629, SE =0.113, 95%CI = [0.406, 0.869], p >0.001,
BF10 = 434.23; see Fig. 1C and Supplementary Fig. 4).

Outcome devaluation induced changes. To test for sensitivity to
outcome value, we compared the change induced by devaluation in
the differential conditioned responses (i.e., CS + −CS− ) to the still
valued CS+ to the change induced by devaluation to the devalued CS+
in a 2 (session: pre- or post-satiation) by 2 (CS: valued or devalued)
interaction. We expected the conditioned pupil response to adapt
more readily to outcome devaluation than the conditioned antici-
patory gaze direction.

Pupil dilation. We averaged the pupil response of the CSs asso-
ciated with the valued outcome and the CSs associated with the
devalued outcome and corrected it by subtracting the average pupil
dilation during the CS-. We did this operation at two time points: the
last run before satiation and the test run. A statistically significant
interaction between session and CS showed that the decrease in pupil
dilation induced by satiation was larger for the CSs associated with the
devalued outcome than the CSs associated with the valued outcome
(β =0.040, SE =0.008, 95% CI = [0.023, 0.057], p < 0.0001,
BF10 = 44.77; see Fig. 2C and Supplementary Fig. 5A).

Anticipatory gaze direction. We averaged dwell time allocated
to the congruent region of interest (ROI) for all the CSs+ (dwell time in
the right ROI after CSs+ right and dwell time in the left ROI after CSs+
left) for the CSs associated with the devalued outcome (CS devalued)
and the CSs associated with the valued outcome (CS valued) and
corrected it by subtracting the averaged dwell timeduring theCS- over
both ROI. We did this operation at two time points: the last session
before satiation and the test session. We did not find evidence for
an interaction between session and CS (β = 0.013, SE =0.007, 95%
CI = [−0.0006, 0.027], p =0.0710, BF10 = 0.262; see Fig. 2C and Sup-
plementary Fig. 5B).

Reaction times. We also measured reaction times taken to guess
which video was being displayed behind the black patches during the
test session following the CS associated with the valued outcome and
the devalued outcome. We did not find a statistically significant

difference between the CS valued and the CS devalued conditions
(β =0.006, SE = 0.008; 95% CI = [−0.009, 0.021], p =0.459,
BF10 = 0.440).

fMRI Results
Parallel Pavlovian predictions about affective value andperceptual
attributes of the outcome. To identify the brain ROIs separately
involved in implementing Pavlovian predictions about the affective
value and perceptual attributes of the outcome, respectively, we
derived trial-by-trial prediction errors during the first two runs from
two models: one learning through reward prediction errors—tracking
changes in affective value, independently of the perceptual attributes
of the outcome itself; and the other learning through state prediction
errors—tracking how unexpected a particular perceptual outcome
state is independently of its affective value. We then tested for the
sensitivity to devaluation of the ROIs identified with these twomodels.

Reward prediction errors. We tested the devaluation sensitivity
of the brain regions involved in reward prediction error coding. To do
so, we defined ROIs by extracting the contrast correlating with the trial-
by-trial reward prediction errors. We focused on three ROIs identified
by this contrast: one ROI covering parts of the ventral striatum and of
the sgACC (VS / sgACC), a second ROI covering parts of the midbrain,
and a third ROI covering parts of the vmPFC (see Fig. 3A and Table 1).

To test for devaluation effects inside these ROIs, we compared
activity while participants expected a valued versus a devalued out-
come, during the run after the devaluation procedure. We also used
pseudo-extinction, whereby the visual presentation of the outcomes
was obscured behind two black patch covers present at the time of
the outcome delivery. Pseudo-extinction is a crucial manipulation
that prevents rapid relearning of a CS’s expected value via the
newly devalued outcome. Thus, this procedure allows predictive
representations linked to the incentive value of the predicted
outcome to be dissociated from those associated with outcome-value
insensitive representations. We observed a statistically significant
devaluation effect in the VS / sgACC ROI (β = −0.149, SE =0.057, 95%
CI = [−0.267, −0.030], p =0.0157, BF10 = 2.98; see Fig. 3B and Supple-
mentary Fig. 6), which survived correction for multiple comparisons
across ROIs. We did not find statistical evidence for a devaluation
effect in the midbrain ROI (β = −0.037, SE = 0.054, 95% CI = [−0.149,
0.074], p =0.498, BF10 = 0.230; see Fig. 3B) and the vmPFC ROI
(β = −0.190, SE =0.142, 95% CI = [−0.481, 0.099], p = 0.189, BF10 =
0.390; see Fig. 3B and Supplementary Fig. 6).

State prediction errors. We next tested the devaluation sensi-
tivity of the brain regions putatively involved in model-based learning,
such as when forming stimulus–stimulus associations between stimuli
and an outcome’s perceptual features. To do so, we defined ROIs by
extracting the contrast correlating with the trial-by-trial state predic-
tion errors, which tracked how unexpected a particular outcome state
is, given the previous state. We focused on four ROIs identified from
this contrast: one covering parts of the lateral orbitofrontal cortex and
anterior insula (OFC), a second covering parts of the middle frontal
gyrus and inferior frontal gyrus (MFG), a third covering parts of the
superior frontal gyrus (SFG), and a fourth covering parts of the mid-
brain (see Fig. 3C and Table 2)

We did not find evidence for a statistically significant
effect of devaluation in the MFG ROI (β = − 0.124, SE = 0.174, 95%
CI = [− 0.482, 0.233], p = 0.480, BF10 = 0.298; see Fig. 3D and Sup.
Fig. 7), the SFG ROI (β = − 0.031, SE = 0.259, 95% CI = [− 0.455,
0.392], p = 0.878, BF10 = 0.258; see Fig. 3D and Sup. Fig. 7), the
OFC ROI (β = − 0.039, SE = 0.141, 95% CI = [− 0.320, 0.241],
p = 0.781, BF10 = 0.281; see Fig. 3D and Supplementary Fig. 7), or
the midbrain ROI (β = 0.0526, SE = 0.114, 95% CI = [− 0.182, 0.287],
p = 0.649, BF10 = 0.208; see Fig. 3D and Supplementary Fig. 7)

State prediction errors could potentially be involved inmediating
learning about two different perceptual attributes of an outcome: a
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stimulus could be unexpected because of a violation in the expected
taste identity of the outcome (sweet or salty) or because of an unex-
pected arrival of the outcome in a particular spatial location (left or
right side). To test to what extent these two aspects are reflected in the
state prediction error brain signals, we extracted the β effect of the
state prediction error from the state prediction error ROIs and aver-
aged this across the different ROIs. Then we correlated the averaged β
effect of the state prediction error against the unexpected side effect
and the unexpected identity effect as measured with reaction times
during the two runs of the acquisition phase. More precisely, to
compute a reaction time index reflecting the unexpected side effect,
we only used the trials where the identity was the one most often
predicted by the CS but the side of the outcome varied. We subtracted
the average reaction time on trials where the side of the outcome was
the same as the one most often predicted by the CS from the average
reaction time on trials where the side was different from the one most
often predicted by the CS. To compute a reaction time index reflecting
the unexpected identity effect, we only used the trials where the side

was the one most often predicted by the CS but the identity of the
outcome varied. We subtracted the average reaction time in trials
where the identitywas the sameas the onemost often predictedby the
CS from the average reaction time on trials where the identity was
different from the one most often predicted by the CS.

We found that the magnitude of state prediction errors was
associated with the magnitude of the unexpected identity effect in
reaction times (β = 1.956, SE = 0.830, 95% CI = [0.339, 3.583], p =0.026,
BF10 = 3.05; see Fig. 4A) andwith themagnitude of the unexpected side
effect in reaction times (β = 1.883, SE = 0.671, 95% CI = [0.566, 3.199],
p =0.009, BF10 = 7.30; see Fig. 4A). As a control, we correlated these
behavioral indexes with the β effect of reward prediction errors. We
did not find conclusive evidence that reward prediction errors are
associated with the magnitude of either the unexpected taste identity
effect (β =0.966, SE=0.520, 95% CI = [−0.053, 1.986], p = 0.066,
BF10 = 1.40) or the unexpected side effect (β =0.587, SE =0.441, 95%
CI = [−0.277, 1.452], p =0.195, BF10 = 0.816) in the reaction times
(see Fig. 4B).

t-score

t-score

Fig. 3 | Reward and state prediction errors and sensitivity to outcome deva-
luation. A Brain regions correlating with reward prediction error (Reward PE).
Sensitivity to outcomedevaluationwas estimatedby calculating themeandifference
between thebetas for the valued contrast - betas for devalued contrast in the regions
of interest (ROI). B Sensitivity to outcome devaluation in the midbrain ROI the
ventral striatum / sgACC ROI (VS), the ventromedial prefrontal cortex ROI (vmPFC).
C Brain regions correlating with state prediction error (State PE). D Sensitivity to
outcome devaluation in the midbrain ROI, the superior frontal gyrus ROI (SFG), the
bilateral orbitofrontal/anterior insulaROI (OFC), themiddleprefrontal gyrus/inferior
frontal gyrus ROI (MFG). The valued contrast was defined as the difference in the

BOLD signal at the outcome delivery (displayed behind two black patches) after
the perceptionof thepositive conditioned stimulus (CS+) valued versus the negative
conditioned stimulus (CS-). The devalued contrast was defined as the difference
in the BOLD signal at the outcome delivery (displayed behind two black patches)
after the perception of the CS+ devalued versus the CS-. Error bars indicate 95%
confidence interval adapted for within participants design. Statistical significance
was determined by the effect of the outcome value (value or devalued) in a
linear mixed model. Asterisks indicate the statistically significant difference that
survives correction formultiple comparisons across ROI (β = −0.149, SE =0.057, 95%
CI = [−0.267, −0.030], p =0.0157, BF10 = 2.98). N = 29 participants.
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Pavlovian predictions about spatial location and taste identity
attributes of the outcome. In a supplementary analysis, we identified
two distinct sets of brain regions involved in encoding predictions
about outcome taste identity and predictions about outcome delivery
location, respectively, using a multivariate pattern analysis on the
BOLD responses to the CSs. To identify voxels encoding predictions
about an outcome’s taste attributes, we trained a classifier to dis-
criminate between the CSs+ sweet and CSs+ salty cues associated with
outcomedelivery to one sideof the screen (e.g., CS+ left sweet andCS+

left salty) and then tested for its ability to discriminate between the
CSs+ sweet and CSs+ salty associated with outcome delivery on the
other side of the screen (e.g., CS+ right sweet and CS+ right salty). To
identify voxels encoding predictions about the spatial location (side)
of outcome delivery, we followed the same logic: we trained the clas-
sifier to decode between the CSs+ left and CSs+ right associated with a
specific taste outcome (e.g., CS+ left sweet and CS+ right sweet) and
then tested its ability to discriminate between the CSs+ left and right
associated with the other taste outcome (e.g., CS+ left salty and CS+

Table 1 | Summary of the results for the BOLD activations correlating with reward prediction errors

Region Laterality Extent β (SE) 95% CI BF10 Coordinates

x y z

Precentral gyrus / Postcentral gyrus R 908 –55 –21 36

Precentral gyrus / Postcentral gyrus L 1506 –32 –24 50

Midbrain ⋆ R 242 0.428 (0.079) [0.265, 0.591] 2226 0 –18 –7

VS / sgACC ⋆ L 142 0.350 (0.060) [0.227, 0.473] 6804 –2 6 –7

vmPFC ⋆ L 140 0.545 (0.126) [0.287, 0.804] 156.65 –8 52 –14

Thresholding t(28) > 3.41, p < 0.001, and minimum cluster level simulation extent for multiple comparisons correction at p < 0.05 = 101. Coordinates are expressed in the Montreal Neurological
Institute (MNI) space in the left-right, anterior-posterior, and inferior-superior dimensions, respectively.
⋆ indicates activations used to define ROIs. N = 29 participants.
vmPFC ventromedial prefrontal cortex, VS ventral striatum, sgACC subgenual anterior cingulate cortex.

Table 2 | Summary of the results for the BOLD activations correlating with state prediction errors

Region Laterality Extent β (SE) 95% CI BF10 Peak Coordinates

x y z

MFG / IFG ⋆ R 748 0.562 (0.119) [0.317, 0.808] 390.29 50 29 20

OFC / anterior insula ⋆ R 0.425 (0.103) [0.224, 0.676] 158.60 30 24 –2

Midbrain ⋆ R 170 0.181 (0.036) [0.106, 0.255] 786.36 8 –28 –14

SFG ⋆ R 288 0.568 (0.132) [0.297, 0.840] 146.29 5 22 50

OFC / anterior insula ⋆ L 158 0.426 (0.103) [0.215, 0.637] 100.59 –35 24 –4

Thresholding t(28) > 3.41, p < 0.001, and minimum cluster level simulation extent for multiple comparisons correction at p <0.05 = 101. Coordinates are expressed in the Montreal Neurological
Institute (MNI) space in the left-right, anterior-posterior, and inferior-superior dimensions, respectively.
⋆ indicates activations used to define ROIs. N = 29 participants.
MFG Medial frontal gyrus, IFG Inferior frontal gyrus, OFC orbitofrontal cortex, SFG superior frontal gyrus.

Fig. 4 | Correlationbetween state and rewardpredictionerrors andunexpected
effects measured with reaction times during the acquisition phase.
A Correlation between themagnitude of the state prediction error (SPE) effect and
difference in the reaction times (RT) to detect the outcome when the side was
unexpected vs expected (in yellow) and when the taste identity was unexpected vs

expected (in red). B Correlation between the magnitude of the reward prediction
error (RPE) effect and difference in the reaction times to detect the outcome when
the side was unexpected vs expected (in yellow) and when the taste identity was
unexpected vs expected (in red). Shaded area represents 95% confidence interval.
N = 29 participants.
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right salty). We then tested the sensitivity to outcome devaluation of
these two different sets of ROIs, thereby enabling us to determine
whether different kinds of predictive representations about percep-
tual outcome attributes might have differential sensitivity to changes
in outcome value. Please note that to define the ROIs for their use in
the subsequent outcome devaluation test, we used a liberal threshold
of p < 0.005 uncorrected (with an extent threshold of 100) on voxels
identified from the two MVPA analyses.

Representations of predicted taste identity. We defined our
first set of ROIs based on decoding the predicted taste identity (sweet
or salty) of the outcome during the time of the CS onset. We focused
on four ROIs identifiedwith this approach: one ROI in the right inferior
frontal gyrus (IFG), a second ROI covering the the superior temporal
lobule and the right intraparietal sulcus (IPS), a third ROI covering the
left paracentral lobule and post central gyrus (PCL), and a forth ROI
covering the post central gyrus (PCG; see Table 3 and Supplemen-
tary Fig. 2).

We then tested for devaluation sensitivity inside these ROIs, by
comparing devaluation induced changes in the BOLD signal between
the valued anddevalued conditions.We found a statistically significant
effect of devaluation sensitivity in the left PCG: β = −0, 187, SE =0.061,
95% CI = [−0.313,−0.061], p =0.005, BF10 = 4.73, which survived cor-
rection for multiple comparisons across ROIs. We found an effect
pointing in the same direction in the left PCL (β = −0.0713, SE =0.030,
95% CI = [−0.134, −0.008], p =0.027, BF10 = 0.937) and the right
IPS (β = −0.118, SE =0.046, 95% CI = [ −0.213, −0.022], p =0.017,
BF10 = 1.59), but these effects did not survive correction for multiple
comparisons across ROIs. We did not find any statistically significant
effect in the right IFG (β = −0.064,SE = 0.083, 95%CI = [−0.235, 0.106],
p =0.445, BF10 = 0.155; see Fig. 5 and Supplementary Fig. 8).

Representations of the predicted spatial location of an out-
come (side). We defined our second set of ROIs based ondecoding the
predicted spatial location (left or right) of the outcomeduring the time
of onset of the CS. We focused on four ROIs identified with this
approach: one ROI covering left and right portions of the cuneal and
calcarine cortex (Cuneus), a second ROI covering the right superior
temporal lobule and intraparietal sulcus (IPS), a third ROI covering
parts of the left and right supramarginal gyrus (SMG), and a forth ROI
covering the parts of the right middle temporal gyrus and the lateral
occipital cortex (LOC; see Table 4 and Supplementary Fig. 2).

Then, we tested for devaluation sensitivity inside these ROIs by
comparing devaluation induced changes in the BOLD signal between
the valued and devalued conditions. We did not find any statistical
evidence for devaluation sensitivity in the ROIs defined based on the
predicted outcome spatial location (Cuneus: β = −0.096, SE =0.051,
95% CI = [−0.203, 0.009], p=0.073, BF10 = 0.640; right IPS: β = −0.036,
SE =0.034, 95% CI = [−0.108, 0.034], p =0.300, BF10 = 1.001; right LOC:
β = −0.080, SE =0.061, 95% CI = [−0.206, 0.045], p=0.201,
BF10 = 0.357; SMG: β = −0.089, SE =0.062, 95% CI = [−0.216, 0.0379],
p =0.161, BF10 = 0.631; see Fig. 5 and Supplementary Fig. 9).

Discussion
This study aimed to investigate how the brain encodes parallel asso-
ciations between a CS and multiple attributes of an outcome, and to
address which of these associations are sensitive to outcome deva-
luation. To this end,we combined anappetitive Pavlovian learning task
with eye-tracking and fMRI measures and an outcome devaluation
manipulation. We found evidence for parallel representations of out-
come attribute predictions, relying on distinct brain regions that differ
with respect to their sensitivity to outcome devaluation. Specifically,
while a subset of regions involved in encoding reward prediction
errors (the ventral striatum and sgACC) were found to be sensitive to
devaluation, a different brain network involved in encoding state
prediction errors appeared to be less sensitive to changes in outcome
value. These distinct brain areas underlie different classes of condi-
tioned responses such as pupil dilation—an indicator of affective value
that flexibly adapts to outcome devaluation without the need to
resample environmental contingencies—and approach tendencies in
gaze behavior—ameasure of perceptual properties of an outcome that
appear to be less sensitive to changes in outcome value.

Learning processes underpinning predictions about an outcome’s
affective value associatedwith reward prediction errors were localized
in medial brain regions such as vmPFC, sgACC, and ventral striatum;
these regions have been typically implicated in value
representation47,48, value learning22, and affective representations in
appetitive Pavlovian learning reflected in conditioned responses
measured with pupil dilation26. Learning processes underpinning
stimulus–stimulus learning involving predictions about perceptual
attributes of an outcome were by contrast found in more lateral brain
regions such as the lateral PFC, the lateral OFC and the anterior insula,
but also the SFG. These regions have been argued to play a role in
model-based processes during value learning. Specifically, the lateral
OFC has been implicated in the representation of states and cognitive
maps in reinforcement learning and decision-making33–36 and in the
representation of perceptual attributes of outcomes in Pavlovian
conditioning11,29. By comparison, activity in the dorsolateral PFC30,31

and in the anterior insula and SFG31 has been found to correlate with
state prediction errors. We found evidence for the involvement of the
midbrain in associative learning processes related to both perceptual
and affective value attributes of the outcome. This result is congruent
with seminal findings showing that dopaminergic activity in the mid-
brain codes reward prediction errors21 and with recent findings
showing that the midbrain might also be involved in prediction errors
about the perceptual identity of a reward28,38,39,49.

Interestingly, we found evidence for devaluation sensitivity in the
ventral striatum and sgACC, which were part of the brain network
involved in learning predictions about an outcome’s affective value,
but not in the brain regions involved in learning predictions about the
perceptual properties of the outcome. The finding of flexible adapta-
tion to changes inoutcome value in ventral striatal regions in Pavlovian
conditioning is congruent with previous findings in human fMRI

Table 3 | Summary of the searchlight results for the decoding of predicted outcome taste identity

Region Laterality Extent ACC (SE) 95% CI BF10 Coordinates

x y z

IFG ⋆ R 174 0.525 (0.007) [0.510, 0.540] 23.055 52 22 18

IPS ⋆ L 179 0.534 (0.009) [0.514, 0.553] 31.317 38 –38 56

PCL ⋆ L 401 0.543 (0.009) [0.524, 0.563] 428.646 –38 26 78

PCG ⋆ L 113 0.531 (0.010) [0.510, 0.552] 8.522 –62 –8 36

Thresholding puncorr > 0.005, k = 100. Coordinates are expressed in theMontreal Neurological Institute (MNI) space in the left-right, anterior-posterior, and inferior-superior dimensions, respectively.
ACC = classifier accuracy.
⋆ indicates activations used to define ROIs. N = 29 participants.
IFG inferior frontal gyrus, IPS intraparietal solcus and parts of the superior temporal lobule, PCL paracentral lobule and parts of the post central gyrus, PCG post central gyrus.
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Fig. 5 | Decoding predictions about spatial location (side) and taste identity
representations of the outcome. A Schematic of the decoding strategy. To
decode the predicted location of the outcome, we trained a classifier to distinguish
the left versus right side of outcomedelivery at the onset of theCSs associatedwith
the sweet outcome and then tested the classifier’s ability to discriminate the left
versus right side of the outcomedelivery at the onset of the CSs associatedwith the
salty outcome and vice-versa. To decode the predicted taste identity representa-
tion of the outcome, we trained a classifier to distinguish between the sweet versus
salty outcome at the onset of the CSs associated with the outcome delivery to the
left side and then tested its ability to discriminate the sweet versus salty outcome at
the onset of the CSs associated with the outcome delivery to the right side of the
screen and vice-versa. B Sensitivity to outcome devaluation was evaluated by

calculating the mean difference between the differences in betas for the CS valued
and the CS devalued pre- and post-devaluation (post[valued - devalued] - pre[-
valued - devalued]) in the regions of interest (ROI) identifiedwith theMPVA analysis
for decoding predicted side and predicted taste identity of the outcome. Error bars
represent 95% confidence interval adjusted for within participants designs. Statis-
tical significance was determined via a linearmixed-effectsmodel. Double asterisks
indicate the statistically significant difference that survives correction for multiple
comparisons across ROIs (β = −0, 187, SE =0.061, 95% CI = [−0.313, −0.061],
p =0.005, BF10 = 4.73). N = 29 participants. IPS intraparietal sulcus, SMG supra
marginal gyrus, LOC lateral occipital complex, IFG inferior frontal gyrus, PCL
paracentral lobule, PCG post central gyrus.

Table 4 | Summary of the searchlight results for the decoding of predicted outcome spatial location (side)

Region Laterality Extent ACC (SE) 95% CI BF10 Coordinates

x y z

Cuneus ⋆ L 1972 0.593 (0.022) [0.547, 0.639] 105.898 –21 –81 8

Outside atlas 111 –32 –28 78

IPS ⋆ R 156 0.527 (0.011) [0.503, 0.551] 2.081 20 –51 63

SMG ⋆ R 147 0.524 (0.009) [0.505, 0.544] 3.302 60 –31 23

SMG ⋆ L 123 0.527 (0.009) [0.507, 0.547] 5.827 –65 –44 26

LOC ⋆ R 145 0.539 (0.0140) [0.510, 0.567] 4.635 52 -66 3

Thresholding puncorr > 0.005, k = 100. Coordinates are expressed in theMontreal Neurological Institute (MNI) space in the left-right, anterior-posterior, and inferior-superior dimensions, respectively.
⋆ indicates activations used to define ROIs. N = 29 participants.
ACC classifier accuracy, IPS intraparietal sulcus, SMG supra marginal gyrus, LOC lateral occipital complex.
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studies50. We did not find evidence for devaluation sensitivity in ROIs
coding for state prediction error signals, even in the anterior insula and
lateral OFC. However, we note that previous studies have found that
parts of the lateral OFC are sensitive to devaluation procedures50–52. In
the present study, we used a functional localizer wherein we likely
identified a portion of the OFC that specifically encodes predictions
about perceptual features and found that this portion of the lateral
OFC is insensitive to devaluation. Thus, it is possible that multiple
representations exist simultaneously in the lateral OFC, some of which
are sensitive and some of which are insensitive to devaluation.

The results of the current study also align well with our prior
behavioral findings16. In that previous study, by measuring different
classes of Pavlovian responses with eye tracking and tracking their
sensitivity to outcome devaluation, we found that conditioned pupil
dilation reflects the outcome’s affective value because it adapted to
changes in outcome value. On the other hand, the tendency to adjust
gaze direction toward the expected spatial location of the outcome – a
key perceptual feature of the outcome – was found instead to be
relatively insensitive to changes in outcome value. We also replicated
these behavioral findings in the current study. These findings might
appear to be at odds with a large portion of the traditional Pavlovian
learning literature inwhich it is typically reported that responses based
on sensory features of the outcome are indeed sensitive to outcome
devaluation53–56. In our main analysis, we identified brain regions
involved in learning affective value and perceptual attributes of an
outcome by identifying regions correlating with reward and state
prediction errors, respectively. However in the present study, we
found that state prediction errors could play a role in facilitating
learning about two different predictions about an outcome’s percep-
tual attributes: its taste identity and its spatial localization. This pos-
sibility is supported by brain-behavior correlations showing that the
magnitude of the BOLD signal in brain regions coding for state pre-
diction errors is correlated with slower reaction times when an out-
comewas delivered in anunexpected spatial location and alsowhen an
unexpected taste identity was delivered following a given CS. Thus,
these state prediction error coding regions are sensitive to two dif-
ferent perceptual features of an outcome.

To address the differential outcome sensitivity of predictions
about outcome taste identity and outcome spatial location, respec-
tively, we then performed a supplementary but more fine-grained
MVPA analysis in which we identified distinct sets of regions encoding
predictions about spatial location and taste identity. We found that
these two distinct sets of regions responded in markedly different
ways following outcome devaluation. While we did not find evidence
for outcome devaluation sensitivity in voxels encoding predictions
about the spatial location of the outcome, we found evidence for a
flexible adaptation to the new outcome value in some of the voxels
encoding predictions about outcome taste identity. This finding is
consistent with previous findings from Howard et al.57, reporting that
brain regions decoding taste identity appear to be sensitive to out-
come devaluation procedures. More importantly, these findings could
reconcile the present findings with the classical animal literature
showing that Pavlovian responses based on specific sensory repre-
sentations of the outcome are sensitive to manipulations of outcome
value15,53–56. Specifically, in the present study, we found that a subset of
the representations involving predictions about those perceptual
features relevant to outcome identity are sensitive to changes in out-
come value, while predictive representations about other outcome
features such as expected spatial location are not sensitive to changes
in outcome value. Please note that this interpretation relies on a sup-
plementary analysis carried out with a lenient threshold to define the
regions of interest, therefore gathering further empirical data would
be prudent before drawing more definitive conclusions. It is also
important to emphasize thatour devaluation sensitivity test relied ona
univariate approach, which would not be sensitive to changes in

outcome value representations manifesting via changes in multi-voxel
patterns.

A complementary approach to investigate representations of
outcome side and outcome identity would be to derive specific state
prediction errors frommodels that only track the taste identity of the
outcome (irrespective of the side of the delivery) andmodels that only
track the sideof the outcomedelivery (irrespective of the taste identity
of the outcome). In the present study, due to a limited amount trials
available to test for these specific conditions in our design, we could
not use this approach; but future studies could perform experiments
designed to parse different aspects of the outcome based on different
kinds of state prediction errors.

From a theoretical point of view, our findings support models of
Pavlovian conditioning whereby Pavlovian learning is not a unitary
process, but rather involvesmultiple and parallel forms of CS–outcome
attribute associations40,41, reflected at a behavioral level in multiple
classes of Pavlovian conditioned responses42,44,45. Classical models of
Pavlovian learning42 distinguish between two classes of Pavlovian
responses triggered in parallel by the same conditioned stimulus: pre-
paratory responses influenced by the affective or motivational value of
the outcome (e.g., heart rate) and consummatory responses influenced
by theperceptual attributesof theoutcome (e.g., chewingvs. liking for a
liquid vs. solid food outcome). Other models40,41 have extended this
parallel learning model to multiple associations between the CS and
different attributes of the outcome such as perceptual features, moti-
vational, hedonic, and even temporal attributes.

We found a pattern of sensitivity to outcome devaluation in
regions encoding reward and state prediction errors that largely con-
tradicts the pattern that would be expected from a straightforward
transposition to the Pavlovian domain of the model-based versus
model-free dichotomy from instrumental conditioning14,46. Contrary to
the predictions of that theory, some of the regions encoding reward
prediction errors were sensitive to changes in outcome value. The
reported sensitivity to outcome devaluation of regions involved in
reward prediction error coding is contrary to theoretical predictions
about reward prediction errors being purely model-free. Nonetheless,
our findings are compatible with several recent findings in the animal
literature supporting the idea that reward prediction errors carry
model-based information28,49,58–60 and that they show sensitivity to
changes in outcome value59. In the present study, we found such
devaluation sensitive signals in the ventral striatumand sgACC. Because
BOLD fMRI signals are thought to reflect inputs into a region alongside
intrinsic computations therein61,62, the ventral striatum and sgACC
responses we found in the present study could reflect at least in part,
the effects of dopaminergic input.On theother hand, rewardprediction
errors in the midbrain were found to be insensitive to changes in out-
come value. When taken together, these results could suggest the
existence of bothmodel-based andmodel-free reward-prediction error
signals in parallel. The reward-prediction error codes found in the
ventral striatum perhaps reflect a convergent influence of model-based
signals on reward prediction error computations63, while the signals
observed in the midbrain itself could instead reflect a version of the
reward prediction error signal that is clearly more model-free. Our
findings suggest heterogeneity within reward-prediction error codes in
thebrain, supporting thepossibility that reward-prediction errors could
facilitate the acquisition of both devaluation sensitive and devaluation
insensitivepredictive value representations. Thepresentfindings add to
a burgeoning literature suggesting that the computations underlying
Pavlovian learning might be more complex than previously
thought14,15,64.

To conclude, our findings support the notion that multiple pro-
cesses play a role in the construction of Pavlovian cognitive maps40,41.
They further suggest that some of these processes focus on aspects
that are less reactive to changes inoutcomevalue andothers thatmore
readily react to changes in outcome value. The present study could
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also provide new perspectives on problematic reward-seeking beha-
viors that characterize many psychological disorders such as sub-
stance use disorders, binge eating, and gambling. The persistent
pursuit of outcomes that are no longer valued has been typically
conceived as being controlled by stimulus–responsemechanisms that
do not rely on internal representations65–67 in instrumental learning.
Here, we found evidence suggesting that Pavlovian responses which
persist despite changes in outcome value might actually rely on
internal representations of certain perceptual features of the outcome.
The potential over-representation of some devaluation insensitive
outcome attributes during Pavlovian learning could therefore be an
additional candidatemechanismbehind pathological situations where
outcomes that are no longer valuable are nevertheless assigned high
behavioral priority.

Methods
Participants
Thirty healthy volunteers participated in this fMRI study. One partici-
pant had to be excluded from the analysis because of a hardware
failure during data acquisition. The remaining sample was composed
of 29 participants (11 females; 18 males) with a mean age of 24 years
(SD = 8.4 years). Gender and age were self-reported. Written informed
consent was obtained from all participants, according to a protocol
approved by the Human Subjects Protection committee of the Cali-
fornia Institute of Technology (Pasadena, CA). Participants received
$50 compensation for their participation in this study. The sample size
was determined based on the smallest devaluation effect in the pupil
we found in a series of previous studies using similar behavioral
paradigms16. Participants were prescreened to ensure they were not
dieting and they were asked not to eat for at least 6 h before the
experimental session (they were allowed to drink water).

Materials
Stimuli. All stimuli were identical to Experiment 2 reported in16. The
Pavlovian cues consisted of five neutral fractal images. The reward
outcome consisted of a 3 s long video of the experimenter’s hand
delivering the participant’s favorite snack into a small bag. At the end
of each run, participants received the bag containing the snacks they
had collected during the task, to consume. The correspondence
between the amount of food consumed at the end of each session was
not identical (i.e., 1 video:1 piece of snack) but proportional. The pro-
portion varied from 1:2 to 1:6 according to the amount of calories per
individual piece of the snack selected by the participant. All stimuli
were displayed on a computer screen with a visual angle of 6∘ using
Psychtoolbox 3.0 (http://psychtoolbox.org/), a visual interface imple-
mented on Matlab (version 8.6; The Mathworks Inc.).

Pupil dilation and gaze direction. Pupil dilation and gaze direction
were used to reflect two classes of Pavlovian responses: The pupil
dilation on cue presentationwas used as an index reflecting a response
based on the value representation of the outcome; the anticipatory
gaze direction was used as an index reflecting a response based on the
spatial localization of the outcome16. Pupil dilation and gaze direction
were recorded at 500Hzusing anEyeLink 1000Plus eye tracker, which
was calibrated at the beginning of each run using a five-point calibra-
tion screen. The pupil dilation and gaze direction were extracted using
the same method as in Pool et al.16. Briefly, the pupil data were pre-
processed to remove eye blinks and extreme variations, and baseline
corrected with a pre-stimulus baseline pupil size average of 1 s calcu-
lated for each trial and subtracted from each subsequent data point.
The statistical analysis was conducted using the average pupil dia-
meter between 0.5 and 1.8 s after stimulus onset. The averaged pupil
diameter was adjusted to account for linear trends, independently of
the trial type and changes related to switching responses fromone side
of the screen to the other. The dwell time in the ROIs was extracted

through the EyeMMV toolbox68. The ROIs were defined as squares
centered on the food outcome delivery video, but 25% bigger than the
actual video.Moreover, the index reflectingpupil dilationwas adjusted
by regressing out the gaze position on the screen and the index
reflecting gaze direction was adjusted by regressing out the pupil size.

Experimental design
The experimental procedure involved four main parts. First, partici-
pants selected their favorite sweet snack and salty snack. Second, they
completed a Pavlovian conditioning task. Third, they underwent an
outcome-devaluation procedure. Finally, they performed the test
session under extinction. This procedure was the same as procedure
used in Experiment 2 of Pool et al.16, except that the Pavlovian task and
the test session were administered in an fMRI scanner.

Snack selection. There were 16 snacks divided into two categories:
sweet (M&M’s, Buncha Crunch candy, almonds covered in cacao,
Skittles, cereal covered in chocolate, raisins, yogurt-covered raisins,
Milk Chocolate Morsels) and salty (roasted cashews, roasted peanuts,
Goldfish, Simply Balanced Popcorn, cheese-flavored crackers, Ritz Bits
cheese crackers, potato sticks, pretzel sticks). Participants tasted each
sample and indicated their favorite salty snack and sweet snack (see
Sup. Fig. 1 for pleasantness ratings). The participants’ favorite snacks
were used as outcomes during the Pavlovian conditioning task.

Pavlovian conditioning session. The task consisted of two learning
runs lasting approximately 15 min each, both administered inside the
scanner. Each run was composed of 60 trials for a total of 120 trials. At
the beginning of each trial, four squares (6∘ visual angle each) high-
lighted by a white frame were displayed at the top and bottom hor-
izontal center (18∘ visual angle on the x axis from the center) and the
left and right vertical center (9∘ visual angle on the y axis from the
center). These squares stayed on the screen for the whole duration of
the trial.

Each trial was composed of (a) a cue presented for 1.5 s to 4.5 s in
either the upper or lower white frames; (b) an empty screen with only
the background white frames presented for 3 s; and (c) a video of the
experimenter’s hand delivering their favorite snack into a small bag
lasting 3 s.When the video appeared in either the left or the right white
frame (see Fig. 1), a picture depicting the small bag without any action
was displayed on the opposite side of the screen. If no video was
displayed, both sides displayed a picture of the small bag without any
action. The inter-trial interval consisted of a fixation cross and was
presented for 4 s to 8 s (uniformly distributed).

Participants were instructed to focus on the cue and to try to
predict what was going to happen next. They were instructed to move
their eyes freely around the computer screen, but to focus their gaze
on the fixation cross during the inter-trial interval. Participants were
asked to press the left keywhen the foodoutcomeappearedon the left
side of the screen and the right key when the food outcome appeared
on the right side of the screen as quickly and accurately as possi-
ble.They were informed that the key-pressing task was a measure of
their sustained attention, independent of the cue-outcome
contingencies.

Contingencies were created so that one cue was more often
associatedwith the delivery of the sweet food outcomeon the left side
of the screen (CS+ left sweet); one cue wasmore often associated with
the delivery of the sweet food outcome on the right side of the screen
(CS+ right sweet); one cue wasmore often associatedwith the delivery
of the salty food outcome on the left side of the screen (CS+ left salty);
one cue was more often associated with the delivery of the salty food
outcome on the right side of the screen (CS+ right salty); and another
cue was more often associated with no outcome delivery (CS-). Spe-
cifically, one cue predicted the delivery of a specific outcome 70% of
the time (e.g., salty foodoutcomeon the left), the remaining 30%of the
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time the cue was followed by one of the other possible outcomes (e.g.,
10% salty food outcome on the right; 10% sweet food outcome on the
left; 10% no outcome; see Sup. Table 1). This created unexpected
events where the identity of the outcome was as expected but the side
was not (e.g., salty food outcomeon the right), and unexpected events
where the sideof theoutcomewas as expectedbut the identitywasnot
(e.g., sweet food outcome on the left).

Trials were presented in a pseudo-randomized order within par-
ticipants with amaximumof three consecutive repetitions of the same
kind of trial and with the first ten trials of the first session to be rein-
forced with the outcome they predicted more frequently (e.g., salty
food to the left forCS+ left salty). The assignment of the neutral images
to particular Pavlovian cue conditions (e.g., CS+ left salty, CS-) was
counterbalanced across participants.

At the end of each run, there was a break taken outside the
scanner during which participants received snacks to consume, which
they collected during the task. The amount of food to consume
depended on the amount of calories per individual piece of the snack
the participant selected. Each participant ate the entirety of the snacks
they received during the learning session.

Outcome devaluation. Participants were presented with a large bowl
containing a very large amount of one of the two food outcomes used
in the Pavlovian conditioning task. They were asked to eat it until they
found the target food no longer palatable. We measured the level of
hunger and food pleasantness with a visual analog scale before and
after the selective satiation procedure. The food chosen for the
devaluation procedure was counterbalanced across participants.

Test session. The test sessionwas administered inside the scanner and
was composed of a single run of 60 trials identical to the Pavlovian
conditioning session, except that the outcome delivery was no longer
visible. Participants were explicitly told that they would not be able to
see any food outcome delivery video during this phase because the
area where they were usually displayed would be hidden by two black
patches for the whole duration of the session, but that they should
assume that all the outcome deliveries would still occur as they had
during the previous runs. They were also asked to press a key to guess
under which of the two black patches the outcome delivery video was
being displayed. The reason for using this strategy during the test
session was to measure the influence of the outcome devaluation on
the Pavlovian responses without confounding effects of the outcome
itself, and at the same time to prevent the effects of behavioral
extinction (e.g., disappearance of the conditioned responses due to
lack of reinforcement) from happening too quickly4,16.

Statistical analysis
Behavioral data. Statistical analyses of the behavioral data were per-
formed with R (version 4.0; R Core Team, 2019)69. We used the lmer4
package70 and the lmerTest package71 with the ‘bobyqa’ optimizer and
set the number of model iterations to 1’000’000 to build the general
linear mixed-effects models described hereafter.

To test for Pavlovian learning effects on the pupil dilation and the
gaze direction, we built three contrasts. The first compared the dwell
time in the left ROI after the perception of theCSs+ left (weight contrast
+1) to the CSs+ right (weight contrast –0.5) and the CS- (weight contrast
–0.5). The second compared the dwell time in the right ROI after the
perceptionof theCSs+ right (weight contrast +1) to theCSs+ left (weight
contrast –0.5) and the CS- (weight contrast –0.5). The third compared
the pupil dilation during the perception of the CSs+ right (weight
contrast +0.5) and the CSs+ left (weight contrast +0.5) and the CS-
(weight contrast –1). For each of the dependent variables in the statis-
tical model, we entered (1) the relevant contrast in interaction with (2)
the run (first or second) as within-participants fixed factors. As random
effects, we modeled random intercepts for participants (ID) and by-

participant random slopes for the relevant contrast in interaction
with the run. The final models were built as follows (in lme4 syntax):

DV ∼ contrast*run+ ð1 + contrast*runjIDÞ ð1Þ

To test for Pavlovian learning effects on the reaction times (RT) to
detect the locationof theoutcomedelivery,we subset thedatabases to
remove all responses to the CS- and then built twomodels. In the first
one, we entered (1) the frequency of the outcome side for the asso-
ciated CS (frequent or rare side) and (2) the run (first or second) as
within fixed factors. In the secondmodel, we entered (1) the frequency
of the outcome identity for the associated CS (frequent or rare iden-
tity) and (2) the run (first or second) as within fixed factors. In both
models, we entered random intercepts for participants (ID) and by-
participant random slopes for the interaction between the two within-
participants fixed factors. The final models were built as follows (in
lme4 syntax):

RT ∼ f requency*run + ð1 + f requency*runjIDÞ ð2Þ

To test for devaluation effects, we entered (1) the CS (valued or
devalued) and (2) the session (pre- or post-devaluation) as within-
participants fixed factors. We entered random intercepts for partici-
pants and by-participant random slopes for the main effects. The by-
participant random slope for the interaction was not included in the
random-effects structure as its inclusion led to model singularity,
indicating overfitting72. We ran this model on two dependent variables
(DVs): pupil dilation and the dwell time in the congruent ROI. For the
pupil dilation,we averaged the pupil dilationduring theCSs associated
with valued outcome and the CSs associated with the devalued out-
come and corrected it by subtracting the average pupil dilation during
theCS-. For the gaze direction, we averaged dwell time allocated to the
congruent ROI for all the CSs+ (dwell time in the right ROI after CS+
right anddwell time in the left ROI after CS+ left) for the CSs associated
with the devalued outcome (CS devalued) and the CSs associated with
the valued outcome (CS valued) and corrected it by subtracting the
averaged dwell time during the CS- over both ROIs. We also ran this
model on the pleasantness ratings of the food outcome (except that
for the food outcome we entered food outcome [valued or devalued]
rather than CS as a fixed effect). The final models were built as follows
(in lme4 syntax):

DV ∼CS*session+ ð1 +CS+ sessionjIDÞ ð3Þ

We extracted Bayes factors through a linear mixed-effects Baye-
sian analysis using the BRMS package73. The models were estimated
using Markov chain Monte Carlo (MCMC) sampling with 4 chains of
5000 iterations and a warm-up of 40’000 iterations. The dependent
variables were scaled before being entered in the model. Priors para-
meters were set as Cauchy (media = 0.00, scale =0.50) distributions.
For one sample t tests, we computed Bayes factors with the function
ttestBF from theBayesFactor package74. TheBayes factors reported for
the main effects compared the model with the main effect in question
versus the null model, while Bayes factors reported for the interaction
effects compared the model including the interaction term to the
model including all the other effects but the interaction term. Evidence
in favor of the model of interest was considered anecdotal
(1 <BF10 < 3), substantial (3 <BF10 < 10), strong (10 < BF10 < 30), very
strong (30 < BF10 < 100) or decisive (BF10 > 100). Similarly, evidence in
favor of the null model could also be qualified as anecdotal
(0.33 < BF10 < 1), substantial (0.1 <BF10 < 0.33), strong
(0.033 <BF10 < 0.1), very strong (0.01 < BF10 < 0.033) or decisive
(BF10 < 0.01).
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Computational model analysis
We implemented two learning models. The first model learned value
through reward prediction errors18, while the second learned expec-
tations about the perceptual properties of the outcome through state
prediction errors5,30.

The first model was a simple adaptation of the Rescorla-Wagner
algorithm18, where the reward prediction error was computed as fol-
lows:

δRPE =R� VRW
ðCSÞ ð4Þ

The reward prediction error was used to update the expected
value VRW of a given CS by multiplying it by a free parameter (α; also
referred to as learning rate) and summing this termwith theCS current
expected value, as follows:

VRW
ðCSÞ  VRW

ðCSÞ +α × ðδRPE Þ ð5Þ

R was coded as 1 when a food outcome was delivered – inde-
pendently of the side (left or right) or the identity (sweet or salty) of the
outcome. As participants were expecting to receive a food outcome at
the start of the conditioning session (because of the instructions), we
set the initial expected value V0 for each of the five CSs to 0.5. The free
parameter α was bounded within the range [0, 1].

The second model was an adaptation of the Forward model from
Glascher et al.30 and Schad et al.5. The model learns about the prob-
ability of transitioning from a given CS to another state such as the
outcome with all its perceptual properties (unconditioned stimulus;
US). These are called state-transition probabilities (T(CS,US)), which are
updated by state prediction errors (δSPE). State prediction errors signal
the discrepancy between ending up in a state and the expected
probability of transitioning to that particular state. They were com-
puted as follows:

δSPE = 1� T ðCS,USÞ ð6Þ

Because the five US outcome states (left sweet, right sweet,
left salty, right salty, or nothing) were equally likely across conditions,
we set the initial value of each transition probability (T0) to 0.2.

State prediction error signals are not related to value, as they
simply quantify howunexpected aparticular state is given theprevious
state and are based on the perceptual properties (e.g., side and iden-
tity) of the outcome. Formally, the transition probabilities were
updated as follows:

T ðCS,USÞ  T ðCS,USÞ + η× δ
SPE ð7Þ

To keep the matrix normalized to total probabilities of one,
transitionprobabilities for theotherUS stateswere updated as follows:

T ðCS,USÞ  T ðCS,USÞ × ð1� ηÞ ð8Þ

The free parameter η is boundedwithin the range [0, 1] and acts as
a learning rate determining the extent to which the state prediction
error is weighted in the updating of the transition probabilities.

R = E½RjUS� ð9Þ

This function attributed 1 to the rewarding outcomes (indepen-
dently of their taste identity or location delivery) and 0 to the neutral
outcome. The expected value was later computed for each of the CSs
by multiplying the expected reward for each of the USs as follows:

VFW =T ðCS,USÞ ×R ð10Þ

To determine the best-fitting learning rates α and η, we used
maximum a posteriori estimation with the mfit toolbox (https://
github.com/sjgershm/mfit)75. This consisted in finding the free
parameter maximizing the likelihood of each participant’s trial-by-
trial pupil dilation data to the CSs given the model, constrained by a
regularizing prior75,76. The free parameters were constrained with a
β(1.2, 1.2) prior distribution slightly favoring values that were in the
middle of the parameter range. We used the trial-by-trial timeseries
of predictive values to optimize the free parameters for the
Rescorla-Wagner model (VRW) and the adapted Forward model (VFW;
see Sup. Fig. 3).

fMRI data acquisition
Acquisition was performed at the Caltech Brain Imaging Center
(Pasadena, CA) using a 3-Tesla MRI system (Magnetom Tim Trio,
Siemens Medical Solutions) using a 32-channel radio frequency coil.
Functional images were acquired using a multi-band echo-planar
imaging (EPI) sequence with the following parameters: 56 axial sli-
ces (whole-brain), A-P phase encoding, echo time (TE) = 30 ms,
repetition time (TR) = 1000ms,multi band acceleration of 4, field of
view (FoV) = 200 × 200 mm, flip angle = 60∘, 2.5 mm isotropic
resolution, EPI factor of 80, echo spacing = 0.54 ms. Positive and
negative polarity EPI-based field maps were collected before each
run to allow geometric correction of the EPI data. Field maps were
single band, TE = 50 ms, TR = 4800 ms, flip angle = 90∘. We also
acquired whole brain T1-weighted (T1w) and T2-weighted (T2w)
anatomical images both with sagittal orientation (isotropic voxel
size = 0.9 mm; FoV = 256 × 256 mm)

fMRI data preprocessing
For the preprocessing, we used a combination of the Functional
Magnetic Resonance Imaging of the Brain (FMRIB) Software Library
(FSL, version 4.1)77 and the Advanced Normalization Tools (ANTS,
version 2.1)78. First, we reorientated and brain extracted all scans
using fslreorient2std and the bet FSL commands, respectively.
Following alignment of the T2 to the T1 (FSL flirt command), T1 and
T2 scans were transformed into standard space using ANTs (CIT168
high resolution T1 and T2 templates79). Then, we used an fMRI
independent component analysis (ICA) to remove artifacts. The
multivariate exploratory linear optimized decomposition tool
(MELODIC)80 decomposes the raw BOLD signal into independent
components (IC). These components were classified as signal or
noise using a classifier that was trained on previous datasets from
the laboratory. Noise components were removed from the signal
using FSL’s ICA-based X-noiseifier (FIX). We next applied field maps
to correct geometric distortions. Field maps were extracted using
FSL topup. De-noised functional scans were then unwarped with
field maps using FSL fugue. Finally, we used ANTS to implement
diffeomorphic co-registration of the preprocessed functional and
structural images in the Montreal Neurological Institute (MNI)
space, using the nearest-neighbor interpolation and leaving the
functional images in their native resolution. Finally, we applied a
spatial smoothing of 8 mm full-width half maximum (FWHM).

fMRI data analysis
The Statistical Parametric Mapping software (SPM; version 12;81) was
used to perform a random-effects univariate analysis on the voxels of
the image time series following a two-stage approach to partition
model residuals to take into account within- and between-participant
variance82,83.

For the first level, we specified a general linear model (GLM) for
each participant. We used a high-pass filter cut-off of 1/128 Hz to
eliminate possible low-frequency confounds. Each regressor of inter-
est was derived from the onsets by constructing sets of stick functions
(duration = 0) and were convoluted using a canonical hemodynamic
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response function into the GLM to obtain weighted parameter
estimates.

Univariate analysis to define affective value and perceptual
attributes ROIs. The design matrix of the GLM contained the trials
from the two learning runs. It consisted of the following regressors:

• the onsets of the CS and the anticipation screen parametrically
modulated by the expected value

• the onsets of the outcomedelivery parametricallymodulated by
(a) the presence/absence of the reward, (b) the reward predic-
tion error, and (c) the state prediction error. All parametric
modulators were allowed to compete for variance (no serial
orthogonalization)

• the onsets of the left motor response
• the onsets of the right motor response

The resulting parameter estimates for the reward prediction
errors and the state prediction errors were then entered into
second-level one-sample t tests to generate the random-effects
level statistics.

The multiple comparisons correction was done using the Ana-
lysis of Functional magnetic resonance NeuroImages software
(AFNI; version 20.2)84. We used the 3dFWHMx function to estimate
the intrinsic spatial smoothness of each dimension. Then, we used
the new 3dClustSim function85 to create—via Monte Carlo simula-
tion to form those estimates—a cluster extent threshold corrected
for multiple comparisons at p < 0.05 for a height threshold of
p < 0.001 within the whole brain. This provided an extended
threshold of k = 101 for both the the reward prediction error and the
state prediction error contrasts. The functional ROIs were defined
using these corrected thresholds.

Multivoxel pattern analysis to define identity and side ROIs. First,
we used SPM to build a GLM using the unsmoothed functional EPI
volumes. We entered all the trials of the three runs into one design
matrix. The design matrix included the following regressors:

• the onsets of the CS and the anticipation screen for each trial
• the onsets of the outcomedelivery parametricallymodulated by

the presence/absence of the reward (in the first two runs only)
• the onsets of the left motor response
• the onsets of the right motor response

We extracted a T-map for each trial at the onsets of the CS and the
anticipation screen and performed the classification analysis based on
the parameter estimates of this GLM.

The classification analysis was performed in PyMVPA (version
2.5.0)86. We built two classifiers to decode two different attributes of
the outcome associated with the CS during the CS presentation.

For the decoding of the side of the outcome, we first removed all
the CS- trials and split the remaining trials into two sets. The first set
included the two CSs sweet (i.e., the CSs predicting the delivery of the
sweet outcome on the left and on the right). The second set was
composed of the two CSs salty (i.e., the CSs predicting the delivery of
the salty outcomeon the right and on the left).We trained the classifier
to decode the CS left versus right on one set and then tested the
classification accuracy on the other set and vice-versa (see Fig. 5A,
upper panel).

For the decoding of the outcome identity, we first removed all the
CS- trials and split the remaining trials into two sets. The first set
consisted of the twoCSs left (i.e., the CSs predicting the delivery of the
sweet outcome and the salty outcome on the left). The second set
consisted of the two CSs right (i.e., the CSs predicting the delivery of
the sweet outcome and the salty outcomeon the right).We trained the
classifier to decode the CS salty versus the CS sweet on one set and

then tested the classification accuracy on the other set and vice-versa
(see Fig. 5 A, lower panel).

Classifier training and testing was done in a cross-validated man-
ner with 2 folds and classification analyses were performed with a
linear support vector machine (SVM) classifier.

This approach (see27,87) allowed us to target the voxels repre-
senting the identity or the side of the associated outcome indepen-
dently of the visual features of the CSs themselves.

We performed a whole brain searchlight analysis with a sphe-
rical searchlight, using a radius of 3 voxels. The SVM cost/penalty
parameter C was set to 1.0 for all searchlight analyses. The classifi-
cation accuracy of each searchlight was assigned to the center voxel
of the sphere. Before second-level analyses, individual accuracy
maps were smoothed with a Gaussian smoothing kernel of 8 mm
(FWHM). To test the global null hypothesis that there is no infor-
mation in the test population, we used a one-sample t test testing
whether the classifier performance was above 50% (i.e., chance
level). None of the second level contrasts survived whole brain
correction. Therefore, we defined the functional ROIs involved in
the representation of the side and the identity of the outcome by
using a lenient threshold of puncorrected = 0.005, k = 100. The map of
the side decoding was masked to remove motor movements and
residual eye movements.The motor movements mask was created
based on the GLM to define affective value and perceptual attri-
butes. More specifically by the contrast: left motor response > right
motor response and the contrast: right motor response > left motor
response. Two clusters from motor areas (left and right) were
extracted with a threshold of p > 0.005 and used as a mask. The
residual eye movements mask was created based on the GLM to
define identity and side. We used the second level t-map to decode
side. Two clusters over from the residual activations from the eye-
ball (left and right) were extracted with a threshold of p < 0.01 and
used as a mask. The thresholds of the masks were set to be one step
more lenient than their respective analysis of interest (i.e., p < 0.005
for the univariate analysis at p < 0.001 and p < 0.01 for the multi-
variate analysis at p < 0.005).

Univariate analysis testing devaluation effects. We built two differ-
ent GLMs to test for devaluation effects at (1) the time of the outcome
delivery in the ROIs defined based on the state and reward prediction
errors, and (2) at the time of the CS onset in the ROIs defined based on
the outcome identity and outcome side decoding.

The first GLM was built using SPM on the test run only and con-
sisted of the following regressors:

• the onsets of the CS and the anticipation screen
• the onsets of the delivery of the valued outcome predicted by

the CSs+ hidden by the black patches
• the onsets of the delivery of the devalued outcome predicted by

the CSs+ hidden by the black patches
• the onsets of the no-outcome delivery predicted by the CS-

hiddenby theblackpatches (half of the trials sampled randomly)
• the onsets of the no-outcome delivery predicted by the CS-

hidden by the black patches (the other half of the trials)
• the onsets of the left motor response
• the onsets of the right motor response

From the ROIs, we extracted the β estimates of the contrast
between the valued outcome versus the no outcome (i.e., valued out-
come > no outcome) in the first subset of trials and the devalued out-
come versus the no outcome (i.e., devalued outcome > no outcome) in
the second subset of trials. We thereby obtained the β estimates for (1)
the valued outcome and (2) the devalued outcome.

The β estimates extracted from the relevant ROIs were entered
in R and analyzed with a repeated-measures regression using the
package nlme with the lme function88. We entered outcome value
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(valued or devalued) as a fixed factor and participant (ID) as a
random-effect factor. The model was built as follows (in the nlme
syntax):

β estimates∼ value,random= ∼ valuejID ð11Þ

The p-value threshold was also adjusted for the number of tests.
Specifically, the level of statistical significance α was divided by the
number of ROIs for a given contrast in which the devaluation effect was
tested.

The second GLMwas built using SPM by entering the last learning
run and the test run in adesignmatrix. TheGLM included the following
regressors:

• the onsets of the CSs+ and the anticipation screen associated
with the delivery of the valued outcome

• the onsets of the CSs+ and the anticipation screen associated
with the delivery of the devalued outcome

• theonsets of theCS- and the anticipation screen (half of the trials
sampled randomly)

• the onsets of the CS- and the anticipation screen (the other half
of the trials)

• the onsets of the outcome delivery modulated by the presence/
absence of the reward (for the learning run only)

• the onsets of the left motor response
• the onsets of the right motor response

From the ROIs, we extracted the beta estimates for: (1) the CS+
valued pre-devaluation compared to the CS- pre-devaluation (i.e., CS+
valued pre >CS-pre) in thefirst subset of trials; (2) TheCS+ valuedpost-
devaluation compared to the CS- post-devaluation (i.e., CS+ valued
post >CS- post) in the first subset of trials; (3) The CS+ devalued pre-
devaluation compared to the CS- pre-devaluation (i.e., CS+ devalued
pre >CS- pre) in the second subset of trials; (4) The CS+ devalued post-
devaluation compared to the CS- post-devaluation (i.e., CS+ devalued
post >CS- post) in the second subset of trials.

Via this procedure, we obtained a β estimate for (1) the CS+ valued
pre-devaluation; (2) the CS+ valued post-devaluation; (3) the CS+
devalued pre-devaluation; and (4) the CS+ devalued post-devaluation.

The β estimates extracted from the relevant ROIs were entered in
R. We computed the difference in the β estimates pre- and post-
devaluation for each of the CSs. We then analyzed the differential β
estimates in a repeated-measures regression using the package nlme
with the lme function88. We entered CS value (valued or devalued) as a
fixed factor and participant (ID) as a random-effect factor. The model
was built as follows (in the nlme syntax):

Δβ estimates∼ value,random= ∼ valuejID ð12Þ

Thep-value thresholdwas also adjusted for the number of tests by
dividing the level of statistical significance α by the number of ROIs for
a given contrast for which the devaluation effect was tested.

Brain-behavior correlations. To test whether reward prediction
errors and state prediction errors are associated with predictions
about the side and the identity attributes of the outcome, we cor-
related the individual β estimates from the state and reward pre-
diction errors with the individual difference in reaction times to
detect the outcome. More precisely, we computed two indices
based on reactions times.

The first index reflects the unexpected side effect. To compute
this index, we removed the CS- trials and used only trials where the
identity was the one most often predicted by the CS but the side of
the outcome delivery varied. We subtracted the average reaction
time in trials where the side of the outcome was the same as the
one most often predicted by the CS from the average reaction time

in trials where the side was different from the one most often pre-
dicted by the CS.

The second index reflects the unexpected identity effect. This
index was calculated by removing the CS- trials and using only the
trials where the side was the onemost often predicted by the CS but
the outcome identity varied. We subtracted the average reaction
time in trials where the identity was the same as the one most often
predicted by the CS from the average reaction time in trials where
the identity was different from the one most often predicted
by the CS.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The fMRI data generated in this study has been deposited in the
YARETA database89 under accession code: https://doi.org/10.26037/
yareta:dyhmmxkwkfbwvaq4yotxziszva.Source data are provided with
this paper.

Code availability
The code used to generate the figures and the results reported in this
manuscript is available on the following repository: https://github.
com/evapool/PavlovianPredictions/; Zenodo https://doi.org/10.5281/
zenodo.10004873.
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