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ScienceDirect
Model-free (MF) reinforcement learning (RL) algorithms

account for a wealth of neuroscientific and behavioral data

pertinent to habits; however, conspicuous disparities between

model-predicted response patterns and experimental data

have exposed the inadequacy of MF-RL to fully capture the

domain of habitual behavior. We review several extensions to

generic MF-RL algorithms that could narrow the gap between

theory and empirical data. We discuss insights gained from

extending RL algorithms to operate in complex environments

with multidimensional continuous state spaces. We also review

recent advances in hierarchical RL and their potential relevance

to habits. Neurobiological evidence suggests that similar

mechanisms for habitual learning and control may apply across

diverse psychological domains.
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Introduction
The advantages of habits have been recognized since the

founding days of experimental psychology, when William

and Harter summarized the results of their seminal

experimental studies on habit learning in telegraphers,

noting that their participants had ‘no useful freedom for

higher language units [sentences] which [they have] not

earned by making the lower ones automatic’ [1]. Their

characterization of habits has influenced scientific inquiry

to this day. In general, the execution of a single goal

(preparing a favorite dish) might involve assembly of

several frequently performed subtasks (e.g. turning the

stove element on, or salting the boiling water) that are
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habitual in nature. Requiring minimal cognitive effort,

relying on habits releases cognitive resources that can be

applied to more demanding tasks. But there’s no free

lunch; the computational benefits of habits come at the

cost of relative inflexibility, occasionally rendering behav-

ior maladaptive if ingrained habits are difficult to over-

come. Thus, adaptive behavior is generally argued to

require a balanced mixture of habitual efficiency and

goal-directed flexibility.

Current computational models of habit learning can be

categorized according to their emphasis on three distinct

aspects of habit learning. One category of models aims to

capture the mechanisms of improving the accuracy and

efficiency of motor movements. Challenged with noisy or

delayed feedback, error-based learning mechanisms

improve forward models, which make predictions about

the outcome of motor movements, taking into account

that both the body and its surrounding environment may

have moved between the initiation of a motor command

and its completion [2] (for a review, see Shadmehr et al.
[3]). A second category of models focuses on use-depen-

dent learning [4]. These models predict that habitual

behaviors evolve merely from extended context-depen-

dent repetition of a behavior [5,6].

Reinforcement learning (RL) algorithms represent a third

category of computational models. In this context, habit-

ual behavior occupies the middle ground between

learned reflexes and goal-directed behavior. Learned

reflexes are stereotyped such that sensory stimuli have

innate activating tendencies, such as quickly withdrawing

one’s hand after noticing its placement on a stove-top

before realizing that the stove top is cold. In contrast to

reflexes, both habitual and goal-directed learning pro-

duces behavior not previously associated with a stimulus

[7]. Goal-directed behavior is produced because it is

expected to lead to a desirable outcome [8]. In contrast,

habitual behavior is not produced because of an expecta-

tion of a particular outcome, but because its execution in a

particular context has been consistently reinforced,

resulting in the acquisition of stimulus–response (S–R)

associations, as proposed by Thorndike’s law of effect [9],

or Hull’s later drive reduction theory [10].

Two alternative algorithmic accounts have attempted to

parsimoniously approximate habitual and goal-directed

behavior. They have assumed that goal-directed behavior

is the result of the belief in a causal association based
www.sciencedirect.com
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Figure 1

Habit strength as the combined result of Hebbian learning (e.g. [6])

and RL (e.g. sarsa [16]). The sensory system interprets the state s of

the environment at time t as s0t , according to internal needs, goals, or

believes about hidden states of the environment. The rate at of RL is

reduced by the experience of stable contingencies (e.g. [26]).

According to Hebbian learning, whether an action ai is strengthened or

weakened at rate b, depends on whether ai was selected at time t

(dit = 1, if ai = at, else dit = 0). Which action is executed (at) is the result

of weighting alternative actions aI (e.g. pulling a chain or pressing a

lever). w weights the respective contribution of Hebbian learning and

RL mechanisms to behavior. l is a temporal discounting factor. In an

alternative implementation, learning may itself be the combined effect

of Hebbian learning and RL [30��].
upon the rate of responding and the rate of reward [11�],
or the result of careful deliberation involving a cognitive

model of environmental contingencies (model-based RL,

MB-RL) [12,13]. Both accounts posit that habitual behav-

ior can be approximated with model-free RL (MF-RL).

MF-RL algorithms come in different flavors [14], but

share the common principle that an action’s value (repre-

senting habit strength) is determined by its reinforce-

ment history whereby appetitive and aversive outcomes

strengthen and weaken a habit respectively [15,16]. In the

following, we review how the MF-RL account of habitual

behavior handles three key experimental manipulations:

its ability to approximate persistent responding after a

previously desired outcome of an action has been deva-

lued, or action-outcome contingencies have changed, as

well as rapid reinstatement of behavior when rewards are

reintroduced after extended periods without reinforce-

ment. We then extend the developed framework to

return to hierarchies of habits in other, more complex

task domains.

Model-free reinforcement learning
The benchmark for habits has traditionally been their

insensitivity to outcome devaluation [17–20] and action-

outcome contingency degradation [21–23]. MF-RL suc-

cessfully captures the insensitivity to outcome devalua-

tion (induced by for example pairing the outcome with

illness), which is tested under extinction; as long as the

devalued outcome is not re-experienced as a reinforcer of

the learned action, subjects reduce the rate of responding

merely because of the lack of reinforcement, but without

additionally taking into account the devalued outcome

[13].

However, MF-RL has difficulty accounting for the insen-

sitivity of habitual behavior to changes in action-outcome

contingencies during two distinct types of behavioral

procedures, action-outcome contingency degradation

and omission training. During action-outcome contin-

gency degradation, subjects experience an increase in

non-contingent reward delivery. MF-RL incorrectly pre-

dicts that animals are sensitive to non-contingent reward

delivery, as long as the experimental protocol allows for

alternative behaviors (e.g. grooming, rearing) to be rein-

forced. At the same time, MF-RL also has difficulty

explaining the resilience of behavior during omission

training, when they experience an increase in non-rein-

forced behavior. Here, MF-RL incorrectly predicts that

the ensuing negative reward prediction errors (RPEs)

lead to a rapid reduction in habitual response rates if

behavior is no longer reinforced contiguously.

Two modifications to generic MF-RL enable it to account

for this insensitivity to action-contingency degradation

(see Figure 1). First, many MF-RL implementations

assume that the amount of learning is constantly pro-

portional to RPE magnitude, independent of whether
www.sciencedirect.com 
RPEs are experienced early or late in training. Existing

approaches to this limitation either suggest faster learn-

ing rates for acquisition than for unlearning [24], or a

decrease in learning rates with extended experience

of stable contingencies [25,26]. The latter proposal of

experience-dependent variations in associability has

successfully explained behavioral effects of backward

blocking [27] and attenuated learning after forward

blocking [28].

A second modification offers an opportunity for a unifica-

tion of use-dependent learning [4,6] and MF-RL models

of habits. Assuming that synaptic plasticity is the result of

Hebbian learning mechanisms ubiquitous throughout the

brain [29], RPEs are thought to be modulating the rate of

synaptic plasticity [30��,31]. The contiguous expression

of habitual behavior would therefore further ingrain a

habit via Hebbian processes after the learned value of an

action matches the value of the reinforcer and RPEs are

no longer experienced [32]. At the same time, this implies

that Hebbian learning may lead to the acquisition of

distinct stimulus–response associations, encoded in syn-

apses that are less susceptible to RPE driven plasticity

[33]. Hebbian learning is thus a primary candidate mech-

anism for explaining insensitivity to outcome contingency

degradation. Furthermore, in addition to accounting for

the insensitivity of habits to action-outcome contingen-

cies, Hebbian learning mechanisms also predict that the
Current Opinion in Behavioral Sciences 2018, 20:104–109
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1 DA also plays a role in model-based RL [57], working memory [58],

and synaptic plasticity in motor cortex during acquisition of motor skills

[59].
contiguous expression of goal-directed behavior may

eventually render behavior habitual.

Other computational models of habit learning have

focused on characterizing the behavioral context of a

habit. Instead of simulating behavior in discrete state

space environments, with individual states and a set of

actions to transition among states, these models operate in

RL environments consisting of continuous state spaces

with a temporally evolving behavioral context that has

multiple dimensions and attributes, and a set of actions

that can affect particular aspects of states. These models

posit that internal goals, and beliefs about hidden states

of the environment, influence the interpretation of the

behavioral context [34,35]. In doing so, these models can

account for the rapid reinstatement of behavior after

extended periods without reinforcement during an

extinction test: rather than unlearning, agents instead

assume that the context has changed, preserving existing

stimulus–response associations, but temporarily render-

ing them irrelevant in the extinction context [34].

Enabling MF-RL algorithms to learn about the relevant

dimensions of the behavioral context has significant

implications for computational psychiatry [34], but also

leads to qualitative performance increases in artificial

cognitive architectures [36,37].

Hierarchical integration of behavior
A separate but related question is whether and how

animals assemble habits hierarchically to efficiently solve

familiar tasks with minimal oversight [1]. In continuous

state space models with multidimensional behavioral

contexts, RL and Hebbian learning mechanisms inde-

pendently contribute to the aggregation of individual

responses, which become associated with overlapping

context characteristics. Model-free hierarchical RL

(MF-HRL) [38,5] provides a formal account of how

agents may learn to aggregate actions into reusable sub-

routines and skills, and how agents can identify the

potential relevance for action routines to be applied to

a wide range of future problems. Similar to MF-HRL,

hierarchical dual system models have focused on how the

acquisition of action sequences leads to saltatory behav-

ioral control, where actions within each sequence are no

longer evaluated individually [39�]. Reversion to goal-

directed control occurs when action sequences no longer

lead to the desired goals, prompting the sequence to be

decomposed into its constituent actions for reevaluation.

A complementary account posits that goals may be

selected according to their model-free values, but that

goal-directed planning is deployed to attain desired out-

comes [40�]. Thus, these hierarchical models differ

in their formalization of the trade-off between flexible

goal-directed actions and computationally efficient hab-

its when it comes to goal selection, deliberation, and

monitoring.
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By assuming a hierarchical integration of habitual and

goal-directed systems, these models go beyond existing

proposals for arbitration mechanisms that determine the

contribution of either system to behavior. Arbitration

models differ in their assumption about the criteria by

which an arbitrator weights the contribution of each

system (e.g. the respective uncertainty or expected inac-

curacy [13], or reliability of the two systems [41], based

on cost–benefit analyses [42,43], or based on deviations

of the reward rate from the expected reward rate [6]).

Because of the significant computational effort associated

with evaluating the performance and predictions of

constituent models during arbitration, these models

do not speak to the benefits of hierarchical integration

of behavior.

Biological substrates of habitual behavior
Although MF-RL approximates habit learning on the

algorithmic level of analysis [44], significant progress

has also been made in characterizing analogous neuro-

computational mechanisms across mammalian species

(for a review, see [45]). Briefly, convergent inputs to

the midbrain dopamine system [46,47��] drive phasic

activity of dopamine (DA) neurons that resembles a

RPE learning signal [48–51]. These dopaminergic signals

modulate synaptic plasticity in the striatum [52�,53,54],
leading to the acquisition of stimulus–response associa-

tions in the dorsolateral striatum (DLS) [23,55,56].1 Other

evidence suggests that habits eventually become inde-

pendent of striatal and dopaminergic mechanisms, relying

instead on cortical areas [33]. Still more evidence suggests

that the rodent infralimbic cortex [60], or human sub-

genual cortex [20], represents values of actions, in terms

of their reinforcement history, to mediate the incremental

ability of habits to out-compete goal-directed behavior

after over-training.

In sum, the available evidence converges on the idea that

the striatum learns to act as a gate-keeper for tentative

motor plan representations in posterior frontal cortex

through RL and Hebbian mechanisms. Decisions as to

whether to execute a motor plan rely on highly conver-

gent input to the striatum, including action value repre-

sentations in ventromedial frontal cortex. Interestingly,

several lines of research indicate a regional specialization

within the striatum for diverse psychological functions

[61�]. Critically, anatomical studies in primates [62] and

rodents [63] describe topographically organized circuit

architectures analogue to those supporting stimulus–

response behavior. Topographic connections among the

functionally organized frontal cortex [64] with distinct

striatal regions may provide some of the neural architec-

ture required to support hierarchical integration between
www.sciencedirect.com
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goal-directed and habitual behavior. At the same time,

this topography may support habits in diverse psycholog-

ical domains [65�], potentially including psycho-linguistic

habits [66].
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