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Abstract To date, cognitive intervention research has

provided mixed but nevertheless promising evidence with

respect to the effects of cognitive training on untrained

tasks (transfer). However, the mechanisms behind learning,

training effects and their predictors are not fully under-

stood. Moreover, individual differences, which may con-

stitute an important factor impacting training outcome, are

usually neglected. We suggest investigating individual

training performance across training sessions in order to

gain finer-grained knowledge of training gains, on the one

hand, and assessing the potential impact of predictors such

as age and fluid intelligence on learning rate, on the other

hand. To this aim, we propose to model individual learning

curves to examine the intra-individual change in training as

well as inter-individual differences in intra-individual

change. We recommend introducing a latent growth curve

model (LGCM) analysis, a method frequently applied to

learning data but rarely used in cognitive training research.

Such advanced analyses of the training phase allow iden-

tifying factors to be respected when designing effective

tailor-made training interventions. To illustrate the pro-

posed approach, a LGCM analysis using data of a 10-day

working memory training study in younger and older adults

is reported.

Introduction

Complex cognitive abilities like memory, language and

attention are used in virtually all daily activities and

therefore play a central role in our everyday life. Conse-

quently, healthy cognitive functioning constitutes a key

ingredient for individual well-being and maintenance of

autonomy, a central component of successful aging (Baltes

and Baltes 1990; Willis et al. 1992). Advancing age,

however, is normally accompanied by cognitive decline,

which is observed in multiple cognitive domains, although

not in all, including the aforementioned ones (e.g., Lövdén

et al. 2004). Nowadays, much cognitive intervention

research is realized with the aim of triggering generaliza-

tion effects to untrained domains, with the hope to ulti-

mately counteract cognitive decline. Efforts are especially

made with regard to the older population, since gains in

cognitive functioning may help older people to preserve

independent living until a very old age.

In recent years, the concept of plasticity has become a

widely used term in many fields of cognitive psychology

and behavioral neuroscience. In the present work, we use

the term cognitive plasticity and define it in a life span

developmental view as the intra-individual modifiability of
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behavior and the potential for different forms of behavior

to adapt to environmental demands (Baltes and Linden-

berger 1988; de Ribaupierre et al. 2009; Willis et al. 2009).

The life span developmental approach supports the view

that human development is characterized by lifelong

modifiability and adaptability, which varies among indi-

viduals and is probably linked to the resources available to

them.

The study of cognitive plasticity by cognitive training is

not a new approach, and the training of intellectual abilities

has a long history, particularly in childhood and in older

adulthood (e.g., Baltes et al. 1988; Schaie and Willis 1986;

Willis et al. 1981). Over two decades ago, cognitive plas-

ticity in older adults was studied in a systematic way in a

seminal work by Baltes and Kliegl (1992; Baltes and

Lindenberger 1988; Kliegl et al. 1989). The authors

examined the limits of plasticity in episodic memory by

teaching a mnemonic technique, the method of loci. Up to

thirty-eight training sessions were provided in order to let

the participants reach asymptote in performance and the

limit in learning a list of 30 words. Results of this series of

age-comparative plasticity studies showed that cognitive

plasticity is preserved in older age but is nevertheless

reduced, as compared to younger age. Additionally, age

differences and inter-individual differences within age-

groups were magnified after the training.

Central in the context of learning and training research

is the concept of transfer (Hager and Hasselhorn 1998;

Willis 2001). Transfer refers to the generalization of

training effects to untrained tasks, in other words, to the

extension of the newly acquired knowledge or abilities to

new situations (Willis 2001; Willis and Schaie 2009). The

concept of transfer has already been discussed in very early

cognitive research where the interdependence of mental

functions in relation to training was investigated (Thorn-

dike and Woodworth 1901). Generally, two types of

transfer are distinguished: near-transfer and far-transfer

(Edwards et al. 2002; Willis et al. 1981). Near-transfer

occurs when the abilities required by the transfer situation

highly overlap with those in the training situation. Far-

transfer qualifies a gain in tasks that share few cognitive

processes with the trained task.

Recently, a set of studies drew attention to the efficiency of

working memory (WM) training interventions and to their

potential to bring transfer effects (Klingberg 2010; Perrig et al.

2009; Sternberg 2008). WM is considered to constitute a

central cognitive process, or set of processes, used in all

complex tasks. WM capacity is limited and increases/

decreases over the course of the life span and has been shown

to lead to large individual differences in cognitive perfor-

mance within age-groups (de Ribaupierre et al. 2011; Engle

et al. 1999). WM training was found to induce near- and far-

transfer effects in children (Klingberg et al. 2005; Klingberg

et al. 2002), younger adults (Jaeggi et al. 2008, 2010; Olesen

et al. 2004; Westerberg and Klingberg 2007) and older adults

(Borella et al. 2010; Buschkuehl et al. 2008; Richmond et al.

2011). However, the pattern of transfer effects was not uni-

form across studies, and results are somewhat controversial

(Redick et al. 2013; Shipstead et al. 2012). Near-transfer

effects were not consistently reported across all administered

tasks targeting WM (Jaeggi et al. 2008; Richmond et al. 2011)

or seemed to be modality specific; for instance, transfer was

only observed in the visuo-spatial domain but not in the verbal

domain (Buschkuehl et al. 2008). In other studies, however,

transfer effects were found in many tasks across a large range

of cognitive domains from short-term memory, WM, pro-

cessing speed, inhibition and fluid intelligence (Borella et al.

2010) to everyday attention (Richmond et al. 2011).

Only few studies directly compared WM plasticity

between younger and older adults. Dahlin, Nyberg, Bäck-

man and Neely (Dahlin et al. 2008) reported a significant

training gain (gain in the trained task) for both age-groups,

although larger in younger adults than in older adults.

Transfer effects were limited to younger adults who

showed both near- and far-transfer effects. These results

contradict another WM training study where both age-

groups improved significantly in the trained tasks and

presented similar near-transfer effects (Li et al. 2008). In

the more recent COGITO study, younger and older adults

were trained on twelve different tasks of WM, speed and

episodic memory over 100 daily 1-h sessions. With respect

to the WM training tasks, findings revealed a near-transfer

effect to WM tasks in both age-groups (Schmiedek et al.

2010). Far-transfer effects to fluid intelligence and episodic

memory tasks were limited to younger adults. Again, a

heterogeneous pattern of training effects has also been

observed with regard to age differences.

Overall, WM training appears to have potential to exhibit

near- and far-transfer in younger as well as in older adults.

Still, older adults usually exhibit less training gains and

transfer effects than younger adults. However, evidence for

near- and far-transfer effects is neither robust nor consistent,

which indicates that transfer may be task or modality spe-

cific or affected by other confounding effects. Given the

mixed results and since the factors impacting transfer

effects are still not fully understood, it has been proposed

that training research should focus on the mechanisms

predicting transfer effects (Redick et al. 2013; Shipstead

et al. 2012). Such a predictor could be individual training

improvement as discussed by Richmond and colleagues

(Richmond et al. 2011), who reported an enhanced far-

transfer effect when participants without improvement

during training were removed from the analysis. Therefore,

individual differences in training improvement predicted

training outcome. However, the large individual differences

in cognitive resources especially across older adults are
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often neglected in intervention research (Kliegel and Bürki

2012). The observed training effects might therefore be

relatively small relative to the large individual differences

in cognitive functioning (Hertzog et al. 2009). Training

groups are very likely to be heterogeneous so that individual

differences in cognitive resources may cover the true indi-

vidual training outcome and therefore account for the mixed

findings in training improvement and in transfer effects.

Hence, it seems important to consider individual differences

in cognitive resources as an important factor modulating

training outcomes. Still, to date, only few studies directly

addressed this issue. An exception is the study by Saczynski

et al. (2002) where this issue was already addressed more

than a decade ago. The authors investigated the predictors

of individual training gain in reasoning, in older adults.

Training gains in reasoning ability from pretest to posttest

were larger for participants who showed an enhanced

strategy use at posttest. Predictors of enhanced strategy use

were higher education and younger age (64–70). The pre-

dictor younger age is in line with results from a recent study

where predictors of WM training gain and transfer effects

were investigated in older adults (Zinke et al. 2014).

Findings revealed that younger age and lower performance

at pretest were related to larger training gains, and younger

age as well as larger training gains was related to larger

transfer effects. Another work also showed that only low

performers at pretest improved in the trained tasks (Zinke

et al. 2012). These findings are partially in line with the

results of the speed of processing training data by Ball and

colleagues from the ACTIVE study trial (Ball et al. 2007).

They reported that deficits in speed of processing at pretest

led to larger training gains, but no effect was found for

demographic variables such as age and education. In a more

recent paper from the ACTIVE study trial, inductive rea-

soning performance emerged as the best predictor of initial

everyday functioning and the composite memory score of

verbal episodic memory and everyday memory perfor-

mance was the best predictor of changes in everyday

functioning over time (Gross et al. 2011). The individual

trajectories of everyday functioning performance over the

measurements occasions during the training regimen were

therefore predicted by individual differences in memory

performance. Bissig and Lustig (2007) report individual

differences in episodic memory training. They observed

individual differences during encoding and were able to

figure out the best strategy to use which leads to more

training gains. Such findings empirically demonstrate that

age and individual differences in cognitive resources or in

strategy use impact training outcomes and that they need to

be considered to enhance the efficiency of training regimen.

Most studies on training, whether focusing on group or

on individual differences, focus on mean change from

pretest to posttest performance or from the first to the last

training session. We suggest analyzing the rate of learning

across all the training sessions. Individual differences in

these learning curves may provide valuable information

about individual differences in plasticity and consequently,

in the benefits of training gains. Such an approach was used

in short-term learning and allowed the investigation of

individual differences in learning rates and its predictors

(Jones et al. 2005; Ram et al. 2005; Rast 2011). A recent

work implemented a latent growth curve approach to assess

changes in personality traits during a cognitive training

intervention (Jackson et al. 2012). The findings revealed

that cognitive training increased openness to experience

over the course of the training intervention. Also individual

differences in episodic memory plasticity were investigated

by a latent curve analysis in a life span sample (Lövdén

et al. 2012). Age-group differences and between-person

differences were found to be increased as a function of

training, and baseline performance and cognitive abilities

tended to be positively associated with training gains. These

studies demonstrate that a latent curve analysis approach

may lead to a more fine-grained understanding of individual

differences in learning and cognitive plasticity. To this day,

however, too little research has been conducted on how

individuals progress over cognitive training sessions and

how that progression might be related to transfer effects. In

other words, research has primarily focused on the results of

training rather than on the training progression itself.

The aim of the present work was to use latent growth curve

modeling (LCGM) to examine the relation between the

growth of individual performance across training sessions

and the amount of WM training benefits. By considering the

starting point of the training (intercept) as well as the training

curve over all training sessions (slope) for each individual,

LGCM allows examining intra-individual change in learning

over time as well as inter-individual differences in intra-

individual change (Preacher et al. 2008). The focus is not on

mean change as in traditional analyses of variance but on the

analysis of individual trajectories (Voelkle 2007). The

individual differences shift into the center of interest while in

traditional analyses, individual differences are considered as

error variance (Duncan and Duncan 2009). LGCM analysis

also provides information about model fit, that is, whether

the model describes the data well or not. LGCM analysis

does further allow including predictors or covariates of

change into the model and thus building a larger model of

connections between growth and other variables (Muthén

1991). By testing conditional models, LGCM considers the

influence of specific predictors on intercept and slope, such

as age or a cognitive process. Doing so, the procedure allows

disentangling differential effects of the predictors on inter-

cept and slope. Finally, intercept and slope values can be

linked to transfer scores providing a way to estimate the

effect of individual differences on transfer effects.
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The purpose of the present work was to illustrate the

proposed method by using cognitive plasticity data collected

in younger and older adults (Bürki 2012). We analyzed data

on training and transfer performance and compared a WM

training group to an active and a passive training group. First,

when analyzing training performance with standard analyses

of variance, we expected to find training progress in both

younger and older adults, but more pronounced in younger

adults. Second, we explored individual differences in training

performance by a LGCM analysis. Third, with regard to

training effectiveness, we hypothesized larger training gains

and transfer effects in pretest to posttest differences in

younger adults compared to older adults. Finally, we exam-

ined the individual differences in the link between training

performance, training gain and transfer effects.

Method1

Participants

A total of 128 individuals, 63 younger and 65 older adults

met the inclusion criteria (i.e., aged between 18 and

38 years for the younger adults and 60 years and older for

the older adults group, practice of French for at least

5 years) and participated in the study. The present study

was approved by the ethics committee of the Faculty of

Psychology and Educational Sciences of the University of

Geneva. All participants signed a written informed consent

for participation. Several control tests were performed such

as the Freiburg Visual Acuity and Contrast Test (FrACT;

Bach 1996) for visual acuity control, a self-rating health

questionnaire and a crystallized intelligence test, the

French adaptation of the Mill Hill Vocabulary Scale

(Deltour 1993; Raven et al. 1998). The participants were

pseudo-randomly (age-, gender- and education-matched)

assigned to either a cognitive training group or an active or

a passive control group. The experimental groups did not

differ from each other within the age-groups regarding the

characteristics listed in Table 1, to the exception of the

total number of years of education [F(2, 62) = 3.38,

p =0.04]. The older no-contact control group had signifi-

cantly less years of education compared to its trained peers.

Procedure

All participants were individually tested in one session at

pretest and one at posttest. A subsample additionally

Table 1 Sample characteristics

Health scores reflect average

response to seven questions on a

scale from 1 = excellent health

to 5 = very bad health.

Gc crystallized intelligence

(Mill Hill Vocabulary Scale, see

text), Gc scores represent total

correct responses out of 44

words. Gf fluid intelligence

(Raven’s Progressive Matrices,

see text), Gf scores represent

total correct responses out of 48

at pretest. Range = minimum—

maximum value

Significant differences between

younger and older adults: ***

p \ 0.001. * p \ 0.05.

Variable Younger adults Older adults

WM

(n = 22)

Implicit

(n = 20)

No-contact

(n = 21)

WM

(n = 22)

Implicit

(n = 20)

No-contact

(n = 23)

Gender %

women

73 70 71 82 70 70

Age in years***

M 24.68 24.35 25.52 67.64 67.7 68.61

SD 5.26 5.18 4.54 4.73 4.96 6.54

Range 18–38 19–38 18–35 61–81 61–78 60–84

Health*

M 2.04 2.04 2.00 2.25 2.07 2.24

SD 0.45 0.43 0.26 0.31 0.50 0.38

Range 1.29–2.86 1.14–2.86 1.57–2.57 1.86–2.86 1.29–3.00 1.57–2.86

Education in years

M 14.86 14.65 15.57 15 15.2 13.52

SD 2.03 1.81 2.38 2.51 2.76 1.71

Range 12–19 10–19 12–21 12–22 11–22 11–18

Gc***

M 34.59 35.15 33.76 39.32 38.00 38.30

SD 5.26 5.1 4.37 2.63 4.40 3.30

Range 21–43 17–42 18–40 34–43 28–44 32–43

Gf***

M 36.23 34.85 35.57 27.05 30.3 25.17

SD 5.82 6.12 5.48 7.55 6.87 6.10

Range 24–45 24–46 22–43 9–36 14–42 14–36

1 For a detailed description of the method see Bürki (2012).
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participated in an EEG session described elsewhere (Bürki

2012). At pretest, participants completed a battery of

cognitive tasks assessing WM, fluid intelligence, inhibition

as well as perceptual-motor and processing speed. At

posttest, after the training period, a similar session was

administered. Between pretest and posttest, participants in

the training groups performed ten training sessions dis-

tributed over 2–4 weeks. The participants were trained

with either a WM task or an implicit sequence learning

task. The training sessions lasted about 30 min per day and

were administered individually. The control groups without

training were not contacted during 2–4 weeks between

pretest and posttest.

Material

Working memory training

The WM training group performed an adaptive verbal N-back

task training adapted from the dual N-back paradigm used by

Jaeggi et al. (2008). A single task condition with verbal

stimuli based on Chicherio (2006) and Ludwig et al. (2008)

was used. The task consisted in judging whether the current

letter matches the letter N positions back in a sequence of

letters presented one by one (see Fig. 1, left panel). The level

of difficulty (N-level) was varied by adapting the load in each

block to the participant’s performance reached in the pre-

ceding block.

Implicit sequence learning training

The active control group was trained with an implicit

sequence learning task which served as a placebo training

to control for the confounding variables resulting from a

training setting. The goal was to present a task requiring as

little attentional resources as possible during this training.

Therefore, a simple implicit sequence learning task was

chosen. The sequence should be implicitly learned while

attentional control decreases and speed increases in the

course of the training (Gaillard et al. 2009; Howard et al.

2004; Parkin 1993). The task consisted of four light gray

squares presented horizontally aligned in the center of the

screen (see Fig. 1, right panel). One stimulus consisted of

one pink and three gray squares, each square changing

color from gray to pink in turn. The participants had to

respond as fast and as accurately as possible by pressing

the key matching the position of the pink square. Similar to

the WM training, 15 blocks per training session were

provided.

Pretest and posttest tasks

As mentioned above, a battery of cognitive tests was

administered before and after the training. It included first

conditions of the trained task, a verbal 0-back and a verbal

2-back task in order to assess direct gains from training.

Three near-transfer tasks were included: a spatial 0-back

Fig. 1 Illustration of the training tasks. Left panel Working memory training illustrated with an example of a 3-back sequence in the adaptive

N-back task training. Right panel Implicit sequence learning training illustrated with a part of the trial sequence

Psychological Research (2014) 78:821–835 825
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and 2-back task, structurally similar to the trained one

(Braver et al. 1997; Chicherio 2006; Ludwig et al. 2008;

Owen et al. 1999), and two WM tasks, a Number Updating

task (Carretti et al. 2007) and a French adaptation of the

Reading Span task (Daneman and Carpenter 1980; de

Ribaupierre and Bailleux 1995; de Ribaupierre and Ludwig

2003; Delaloye et al. 2008). For the verbal and the spatial

N-back tasks, a WM load cost score was calculated, defined

as the difference between 2-back and 0-back condition.

Several far-transfer tasks were further included. First, a

fluid intelligence measure, the Raven’s Progressive

Matrices (Raven 1958, 1962), was administered. In order to

avoid a ceiling effect in younger adults and a floor effect in

older adults, both versions, i.e., the Raven’s Standard

Progressive Matrices and the Raven’s Advanced Progres-

sive Matrices, were used. Odd and even trials of each

version were separated and administered as different forms

at pretest and posttest as described in Jaeggi et al. (2010).

Second, an inhibition task, the computerized version of the

Color Stroop task (Ludwig 2005; Ludwig et al. 2010;

Spieler et al. 1996; Stroop 1935), was used. Finally, three

processing speed tasks were included: The Letter and the

Pattern Comparison tasks were developed by Salthouse and

Babcock (1991) in order to assess the verbal and the visual

information processing speed (de Ribaupierre 2001; de

Ribaupierre et al. 2011), and the computerized simple

reaction time (SRT) task measured the perceptual-motor

speed (de Ribaupierre et al. 2011; Hultsch et al. 2000).

Analyses

First, we conducted standard analyses of variance on the

training performance. The mean N-back level per training

session for the WM training and the mean reaction times

per training session for the implicit sequence learning

training were used as dependent variables. A repeated-

measures analysis of variance (ANOVA) was conducted

including age-group (younger, older) as a between-subjects

factor and training session (session 1–10) as a within-

subjects factor.

Second, we implemented LGCM analyses on the

dependent variables of the training data (Duncan et al.

1999; Muthén 1991) to model the individual form of

change over time and investigate systematic individual

differences in growth as well as the antecedents and con-

sequents of change (Preacher et al. 2008). Several model fit

indexes were checked to select the best model. Given that

the root-mean-square error of approximation tends to over

reject models at small sample sizes (Hu and Bentler 1999),

we retained v2 test, standardized root-mean-square residual

(SRMR), comparative fit index (CFI) and Tucker–Lewis

index (TLI) for absolute model fit evaluation. Values of the

SRMR smaller than .08 of the CFI above .90 and of the TLI

above .95 were considered to reflect adequate model fit.

Models were estimated with AMOS (Arbuckle 2009) using

the maximum likelihood estimator. A model with a random

intercept and a linear slope was fitted to the WM training

data as well as to the implicit sequence learning training

data (Duncan et al. 2006; Tisak and Meredith 1990). For

the sake of parsimony, the variances of the 10 training

sessions were fixed on the same estimated value. The linear

slope model for the WM training data presented a good

model fit [v2(59, n = 44) = 112.26, p \ .000, SRMR =

.04, CFI = .92, TLI = 0.94] with the exception of the TLI

value. We compared this model to a linear slope model

with released error variances for the training sessions

[v2(50, n = 44) = 103.41, p \ .000, SRMR = .03,

CFI = .92, TLI = 0.93]. The fit did not change signifi-

cantly [dv2(9) = 8.85], we therefore retained the first and

more constrained model, that is, the model in which error

variances were fixed.

We further assessed measurement invariance across the

two age-groups. We tested whether the model fit differs

significantly between a model where the error variances of

the training sessions are assumed to be equal across groups

versus a model where the error variances are left free to vary.

The model fit difference was significant [dv2(19) = 54.54]

between the equality constrained model [v2(119,

n = 22) = 212.22, p \ .000, SRMR = .07, CFI = .82,

TLI = 0.86) and the model without equality constraints

[v2(100, n = 22) = 157.68, p \ .000, SRMR = .06,

CFI = .89, TLI = 0.90]. The equality constraints do there-

fore not hold across the two age-groups, and error variances

over time seem to differ between the two age-groups. Hence,

the model has to be interpreted with care. However, the

model fits were not good as indicated by CFI and TLI values,

which is probably due to the small sample size.

In a next step, the effect of age-group on intercept and

slope was examined by introducing it as a dummy variable

predictor into the model. The effect of individual differ-

ences in fluid and crystallized intelligence, WM, inhibition

and speed performance on intercept and slope was tested in

separate models for each of these cognitive predictors

while controlling for age-group. Significance was tested

within each model separately. All cognitive predictors were

measures from pretest assessment and were entered as

grand mean-centered variables.

No adequate model fits were obtained for the implicit

sequence learning training data, neither for a model with

fixed error variances [v2(59, n = 44) = 780.05, p \ 0.000,

SRMR = 0.09, CFI = 0.45, TLI = 0.58] nor for a model

with released error variances [v2(50, n = 44) = 459.94,

p \ 0.000, SRMR = 0.13, CFI = 0.68, TLI = 0.72].

Third, training gains and transfer effects were analyzed

by comparing all experimental groups on the trained verbal

N-back task and on the transfer tasks. Training gains and
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transfer scores were calculated as the absolute difference

between pretest and posttest performance. The scores of the

respective dependent variable were submitted to a 2 9 3

two-way ANCOVA with age-group (young, older) and

training group (WM training, implicit training, no-contact

control) as between-subjects factors. Since the total number

of years of education was significantly lower in the older

no-contact control group compared with the older training

groups, education was included as a covariable. Partial g2

values were reported as effect size. Whenever variance

homogeneity assumption was violated—checked with the

Mauchly’s test of sphericity—results with Greenhouse–

Geisser-adjusted degrees of freedom were reported. Sig-

nificant interactions at an alpha level of p \ 0.05 were

followed up by post hoc pairwise t test comparisons with

adjusted significance level using Bonferroni corrections to

avoid family-wise alpha error inflation by multiple com-

parisons. The adjusted significance level was p \ 0.001 for

the training performance, and p \ 0.008 for the training

gains and transfer effects.

Finally, training gains and transfer scores were linked by

correlational analyses with training improvements for the

WM training group. The scores were correlated with the

individual intercept and slope values derived from the

LGCM. The correlations were examined in a conditional

model controlling intercept and slope for the predictors

age-group and fluid intelligence.

Results

Univariate analysis of training performance

Figure 2 shows the individual WM training curves as well

as the age-group means. First, as mentioned above, anal-

yses of variance were conducted on the scores obtained for

each session. The Age x Session ANOVA revealed a sig-

nificant effect of age [F(1, 42) = 31.13, p \ 0.001,

gp
2 = 0.43] and session [F(4.41, 185.24) = 54.7,

p \ 0.001, gp
2 = 0.57] as well as a significant Age x Ses-

sion interaction [F(4.41, 185.24) = 6.62, p \ 0.001,

gp
2 = 0.14]. Younger adults (M = 4.46, SD = 0.2) exhib-

ited a higher mean N-back level than older adults

(M = 2.9, SD = 0.2). For older adults, pairwise post hoc

comparisons revealed that the first, second and third

training sessions were significantly different from the fifth

through the last session. No more significant improvements

were observed from the fourth session on. For younger

adults, however, performance improvements were signifi-

cant up to the sixth training session. These results show that

the older adults tended toward an asymptotic-like perfor-

mance earlier than the younger adults. Age differences

persisted throughout the 10 training sessions, but were

larger toward the end of the training.

Training performance in the implicit sequence learning is

presented in Fig. 3. The ANOVA revealed a significant

effect of Age [F(1, 38) = 46.06, p \ 0.001, gp
2 = 0.55] and

Session [F(2.05, 77.78) = 508.99, p \ 0.001, gp
2 = 0.93]

and a significant Age x Session interaction [F(2.05,

77.78) = 3.73, p = 0.024, gp
2 = 0.09]. The post hoc com-

parisons revealed that all sessions were significantly differ-

ent from each other with the exception of the ninth and tenth

session for older adults and from the seventh to the tenth

session for younger adults. Younger adults tended toward an

asymptotic performance somewhat earlier than older adults

who did so only in the last two training sessions. Age dif-

ferences persisted throughout the ten training sessions.

Latent Analysis of Training Performance

Latent growth curve modeling using a linear model applied

on the ten WM training sessions revealed a significant

Fig. 2 Working memory training. Individual training curves of the

averaged N-back level as a function of session; younger adults in light

green (light gray), older adults in dark blue (dark gray), bold dashed

lines represent the mean of each age-group (color figure online)

Fig. 3 Implicit sequence learning training. Individual training curves of

the averaged correct reaction time as a function of session; younger adults

in light green (light gray), older adults in dark blue (dark gray), bold

dashed lines represent the mean of each age-group (color figure online)
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intercept of 2.77 (SE = 0.13, p \ 0.001) and a significant

slope of 0.20 (SE = 0.02, p \ 0.001; model fit: v2(59,

n = 44) = 112.26, p \ 0.000, SRMR = 0.04,

CFI = 0.92, TLI = 0.94). Slope and intercept were posi-

tively correlated (r = 0.56, cov = 0.05, p = 0.003). This

correlation suggested that individuals who started at a

higher level of performance gained more in cognitive

performance during the training.

The conditional model with age-group as predictor

[model fit: v2(67, n = 44) = 118.86, p \ 0.000,

SRMR = 0.04, CFI = 0.93, TLI = 0.94] indicated that

being in the one or the other age-group significantly pre-

dicted initial level and growth curve: For older adults, the

initial level was 0.9 (std. coefficient = -0.59, p \ 0.000)

N-back levels lower and slope was 0.14 (std. coeffi-

cient = -0.58, p \ 0.000) N-back levels lower than for

younger adults. Age-group accounted for 35 % of the total

variance in intercept and for 33 % of the total variance for

slope. Slope and intercept were no longer correlated

(r = 0.33, cov = 0.02, p = 0.081).

To further examine the potential modifiers of training

level and growth curve independently of age, LGCM

analyses were repeated with each of the cognitive predic-

tors separately, while controlling for age-group. Speed (std.

coefficient = -0.33, p = 0.017), fluid intelligence (std.

coefficient = 0.56, p \ 0.000), crystallized intelligence

(std. coefficient = 0.3, p = 0.047) and the spatial N-back

measures (std. coefficient = 0.42, p = 0.001) significantly

predicted intercept when controlling for age. Reading span

(std. coefficient = 0.42, p \ 0.000; slope: std.

coefficient = 0.3, p = 0.026) and the verbal N-back mea-

sures (intercept: std. coefficient = 0.54, p \ 0.000; slope:

std. coefficient = 0.29, p = 0.035) also significantly pre-

dicted slope. There was no significant effect of

interference.

In all these models including cognitive variables next to

age-group as predictors, age-group still significantly pre-

dicted slope and intercept with the exception when it was

combined with fluid intelligence: Fluid intelligence per-

formance was a significant predictor of intercept, whereas

age-group now significantly predicted slope only [see

Fig. 4; model fit: v2(75, n = 44) = 126.39, p \ 0.000,

SRMR = 0.04, CFI = 0.93, TLI = 0.94]. That is, with

every additional point reached in the Raven score, the

intercept increased by 0.05 N-back levels (std. coeffi-

cient = 0.56, p \ 0.000) while age-group predicted the

difference between groups of 0.11 N-back levels in the

growth curve (std. coefficient = -0.44, p = 0.009; lower

score for older adults). These results suggest that high fluid

intelligence ability predicted a high initial training perfor-

mance while age-group predicted the development during

training. Belonging to the younger group predicted a higher

linear growth during training but did not predict the initial

level. Together, the predictors age-group and fluid intelli-

gence explained 56 % of the variance in intercept and

37 % in slope. The additional explained variance proper to

fluid intelligence after controlling for age effects was 21 %

for intercept and 4 % for slope. Slope and intercept were

not significantly correlated in this model (r = 0.24,

cov = 0.01, p = 0.219).

Fig. 4 Working memory

training. Path diagram for the

conditional linear growth curve

model with age-group and

Raven score (at pretest) as

predictors. Observed variables

in rectangles (S session), latent

variables in circles (e error;

Icept intercept). Regression

paths are unstandardized

coefficients; standardized

coefficients are in parentheses
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Training effectiveness

Descriptive data of the raw pretest and posttest scores are

provided in Table 2. The ANOVA on the training gain score

of the proportion of correct responses in the trained verbal

2-back task yielded a significant effect of Age [F(1,

121) = 5.64, p = 0.019, gp
2 = 0.05] and Training [F(2,

121) = 10.66, p \ 0.001, gp
2 = 0.15], but no significant Age

x Training interaction [F(2, 121) = 1.13, p = 0.273,

gp
2 = 0.02]. Pairwise comparisons revealed that younger

adults (M = 0.03, SD = 0.06) had a significantly lower gain

score than older adults (M = 0.06, SD = 0.08). The average

gain score was significantly higher for the WM training group

(M = 0.08, SD = 0.09) than for the implicit training group

(M = 0.02, SD = 0.05) and the no-contact control group

(M = 0.02, SD = 0.06). The latter two did not differ signif-

icantly. The analysis on the transfer score of the proportion of

correct responses in the untrained spatial 2-back task yielded a

significant effect of age [F(1, 121) = 8.78, p = 0.004,

gp
2 = 0.07] and training [F(2, 121) = 3.28, p = 0.041,

Table 2 Descriptive statistics for mean accuracy data of the N-back

tasks presented as proportion; the proportion of correctly recalled

numbers in the Updating Task; the average number of words correctly

recalled per item for the Reading Span task; the total of correct

responses in the Raven Progressive Matrices; the interference ratio of

the Stroop task; the average response time in seconds for the Letter

Comparison task and the Patter Comparison task; average response

time in ms for the Simple Reaction Time (SRT) task; mean values at

pretest and posttest, standard deviation in parentheses

Task Younger adults Older adults

WM Implicit No-contact WM Implicit No-contact

Verbal 0-back

Pretest 0.96 (0.04) 0.97 (0.02) 0.98 (0.02) 0.98 (0.02) 0.97 (0.03) 0.97 (0.03)

Posttest 0.98 (0.05) 0.97 (0.03) 0.98 (0.02) 0.99 (0.01) 0.98 (0.02) 0.97 (0.03)

Verbal 2-back

Pretest 0.91 (0.08) 0.93 (0.06) 0.91(0.05) 0.86 (0.11) 0.90(0.08) 0.84 (0.12)

Posttest 0.96 (0.05) 0.94 (0.05) 0.92 (0.08) 0.96 (0.05) 0.92 (0.08) 0.87 (0.11)

Spatial 0-back

Pretest 0.94 (0.06) 0.97 (0.02) 0.97 (0.02) 0.95 (0.05) 0.96 (0.04) 0.94 (0.04)

Posttest 0.97 (0.03) 0.96 (0.03) 0.97 (0.02) 0.97 (0.04) 0.97 (0.02) 0.96 (0.05)

Spatial 2-back

Pretest 0.92 (0.06) 0.94 (0.06) 0.91 (0.08) 0.85 (0.13) 0.91 (0.08) 0.84 (0.14)

Posttest 0.93 (0.08) 0.93 (0.06) 0.92 (0.10) 0.93 (0.06) 0.94 (0.05) 0.86 (0.13)

Updating

Pretest 0.59 (0.20) 0.63 (0.21) 0.46 (0.25) 0.57 (0.22) 0.44 (0.20) 0.39 (0.21)

Posttest 0.70 (0.21) 0.66 (0.21) 0.52 (0.21) 0.49 (0.24) 0.44 (0.21) 0.43 (0.19)

Reading span

Pretest 2.74 (0.52) 2.84 (0.38) 2.63 (0.46) 2.76 (0.35) 2.82 (0.47) 2.71 (0.45)

Posttest 2.91 (0.41) 2.97 (0.41) 2.87 (0.30) 2.88 (0.34) 2.88 (0.48) 2.82 (0.32)

Raven

Pretest 36.23 (5.82) 34.85 (6.12) 35.57 (5.48) 27.05 (7.55) 30.30 (6.87) 25.17 (6.10)

Posttest 37.41 (6.43) 35.95 (7.35) 36.86 (6.55) 28.86 (7.10) 31.20 (6.67) 27.61 (6.82)

Stroop

Pretest 0.29 (0.11) 0.25 (0.12) 0.31 (0.16) 0.34 (0.12) 0.32 (0.13) 0.34 (0.14)

Posttest 0.22 (0.13) 0.20 (0.11) 0.30 (0.23) 0.29 (0.10) 0.29 (0.15) 0.33 (0.13)

Letter Comparison

Pretest 65.59 (17.86) 59.23 (16.12) 58.49 (17.27) 81.51 (15.75) 83.73 (20.29) 77.70 (18.09)

Posttest 63.79 (21.83) 60.22 (20.20) 60.00 (16.94) 80.70 (15.44) 78.16 (17.76) 75.65 (11.81)

Pattern Comparison

Pretest 52.00 (13.14) 51.67 (11.29) 49.25 (14.05) 75.00 (18.79) 70.70 (18.85) 73.28 (19.31)

Posttest 51.33 (16.34) 49.92 (11.55) 48.41 (15.48) 73.78 (10.76) 67.82 (11.63) 71.35 (16.19)

SRT

Pretest 304 (53) 278 (44) 289 (39) 342 (41) 328 (49) 309 (49)

Posttest 295 (48) 274 (32) 292 (56) 353 (55) 317 (54) 321 (73)
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gp
2 = 0.05], but no significant Age 9 Training interaction

[F(2, 121) = 1.42, p = 0.247, gp
2 = 0.02]. Younger adults

(M = 0.004, SD = 0.06) had significantly lower transfer

scores than older adults (M = 0.05, SD = 0.09). Pairwise

comparisons revealed that the WM training group had a

marginally significantly higher average transfer score

(M = 0.05, SE = 0.09) than the implicit training group

(M = 0.01, SE = 0.04) and the no-contact control group

(M = 0.01, SE = 0.09). The latter two groups did not differ

significantly. For the remaining pretest and posttest tasks,

analyses did not reveal any significant transfer effect.

Linking training performance and training effectiveness

Training gains and transfer scores were linked with training

performance for the WM training group in the latent

analyses of training performance. The training gain (dif-

ference score between pretest and posttest performance of

the verbal 2-back task) and all transfer scores were corre-

lated with intercept and slope values of the training per-

formance while controlling intercept and slope for age-

group and fluid intelligence (see Table 3).

The results revealed that the correlation between spatial

WM load cost (difference between 2-back and 0-back

condition) and slope reached marginal significance. This

means that the gradient of the growth curve was positively

associated with transfer score beyond the effect of age and

fluid intelligence. Those who improved more during

training showed more gain in a near-transfer task. In terms

of the remaining transfer tasks, the Updating task, the

Raven task, the Letter Comparison task and the SRT task,

transfer scores showed a significant positive correlation

with intercept or slope. The correlation with intercept

revealed that the Letter Comparison transfer score was high

for participants who showed a high initial training level.

The correlation with slope indicated that the participants

who showed a steep training curve also showed a high

transfer score in the Updating, the Raven and the SRT task,

beyond the effect of age and fluid intelligence.

Discussion

The aim of the present article was to propose a specific type

of data analysis of individual differences in cognitive

plasticity, namely LGCM, allowing estimating individual

differences in initial training performance and performance

changes, investigating their predictive power as well as

their correlations with training gains and transfer scores.

An illustration of the analysis was presented using data of a

10-day WM training in younger and older adults.

With regard to the standard analyses of variance of the

WM training, we found preserved cognitive plasticity in

older adults, but less pronounced than in younger adults;

this is in line with the literature (e.g., Baltes and Kliegl

1992; Brehmer et al. 2012; Shing et al. 2008). Both age-

groups reached a limit in performance over the course of

training and the learning curve seemed to become asymp-

totic; one can therefore consider that the participants were

pushed to their limits (Kliegl et al. 1989). Older adults

reached the performance limit earlier than younger adults,

which resulted in a magnification of age differences by the

end of the WM training and is in line with the results from

other training research (Brehmer et al. 2012; Kliegl et al.

1990).

As concerns the implicit memory training, response

times decreased in both age-groups over the course of

training. Younger adults reached their limit earlier than

older adults. Response times were generally longer in older

adults, but the amount of learning was similar between

groups. This confirms the findings that the implicit learning

rate is attenuated with age but that the total amount of

plasticity in implicit learning is preserved (Daselaar et al.

2003; Parkin 1993).

Individual growth curve analysis of the WM training

performance showed that the shape of growth is well

described by a linear slope model, even though perfor-

mance reaches a limit by the last sessions. The LGCM

revealed that younger adults started training at a higher

level (intercept) and improved faster during training

(steeper linear slope). This pattern results in a magnifica-

tion of age differences by the end of the training. With age-

group and fluid intelligence as predictors, analyses revealed

that the latter was a significant predictor of the initial

Table 3 Correlations between WM training intercept and slope with

training gain and transfer scores for the conditional model with age-

group and the Raven score as predictors

Variable Intercept Slope

Gain scores

Verbal 2-back -0.15 -0.07

Verbal WM load cost -0.18 -0.21

Transfer scores

Spatial 2-back -0.21 -0.20

Spatial WM load cost -0.12 -0.28?

Updating -0.07 -0.40*

Reading span -0.13 -0.11

Raven -0.21 -0.30?

Stroop interference ratio -0.25 -0.07

Letter Comparison RT -0.39* -0.06

Pattern Comparison RT -0.03 -0.12

SRT task -0.04 -0.32?

RT response time, SRT simple reaction time, WM load cost = dif-

ference 2-back—0-back.

* p \ 0.05. ? p \ 0.10. n = 44
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training performance, but not of the training improvement.

Age-group, by contrast, was a significant predictor of the

training improvement, but not of the initial training per-

formance. Individual differences in fluid intelligence per-

formance seem to explain individual differences in initial

training performance, independent of age-group. Age-

group in turn predicts individual differences in training

progression, that is, in cognitive plasticity, beyond indi-

vidual differences in fluid intelligence. Results are in line

with previous cognitive plasticity research, where age has

been reported to explain unique variance at the end of the

training (Kliegl et al. 1990). However, by introducing

latent analysis, we were able to refine the analysis of the

initial training performance. Individual differences in

cognitive performance (Raven’s Progressive Matrices) did

predict the initial training level, but age predicted the

amount of cognitive plasticity. Intercept and slope were no

longer correlated after controlling for both cognition and

age. Hence, taking into account age and individual differ-

ences in cognitive performance uncovered the indepen-

dence of the amount of individual cognitive plasticity from

the individual initial performance level.

One can now ask which mechanisms underlie the vari-

able age. Indeed, the variable age may reflect a confound of

influences, notably biological and sociocultural factors. In

older adulthood, age probably reflects the increasing

influence of biological factors and the decreasing efficacy

of cultural factors with advancing age (Baltes 1997; de

Ribaupierre et al. 2005, 2003). The initial level of training

was predicted by differences in fluid intelligence, inde-

pendent of age; however, once the limits of performance

reached, the negative influence of age becomes apparent

beyond individual differences in fluid intelligence. This

effect of age on cognitive plasticity might be related to a

general neurobiological mechanism. That mechanism rep-

resents a common factor influencing the integrity of the

cognitive processes across a wide range of brain regions

with advancing age such that the performance in many

different tasks is affected and so maybe also cognitive

plasticity (Baltes and Lindenberger 1997; Li and Linden-

berger 2002).

Training effectiveness was equivalent, as concerns the

verbal 2-back task, in younger and older WM training

groups. The result is to a certain extent in line with the

training literature, for example with the study of Li et al.

(2008), where younger and older adults also exhibited

similar training gain.

The near-transfer effect in the structurally similar spatial

N-back task also replicated findings from previous studies

(e.g., Brehmer et al. 2012; Buschkuehl et al. 2008; Karbach

and Kray 2009; Li et al. 2008; Richmond et al. 2011;

Schmiedek et al. 2010). The fact that younger and older

adults exhibited similar transfer effects is in line with some

training studies (Karbach and Kray 2009; Li et al. 2008)

but contradicts others (Dahlin et al. 2008) which reported

transfer effects in younger adults but not in older adults. No

additional transfer effects, that is, transfer to other tasks,

were observed. This result is in line with recent WM

training studies (Li et al. 2008; Zinke et al. 2012) in which

far-transfer effects were not reported, either in younger or

in older adults. Still, our findings are partially in contrast to

several recent WM training studies where far-transfer

effects in younger adults and in some studies also in older

adults were found (Borella et al. 2010; Brehmer et al. 2012;

Buschkuehl et al. 2008; Dahlin et al. 2008; Mahncke et al.

2006; Richmond et al. 2011; Schmiedek et al. 2010).

We demonstrated the importance of including control

groups in training studies. Test–retest effects and the pla-

cebo training effect (implicit training) were present; how-

ever, the latter did most often not exceed test–retest effects.

This confirms that, as hypothesized, the implicit training

did not tax updating processes. Effects of placebo were

therefore very small.

A shortcoming of the present study is the potential

ceiling effect in the verbal and spatial N-back tasks at

pretest and posttest in younger adults. This is a very

common problem in developmental and aging research,

since the challenge is to find a task which assesses the

performance level of both younger and older adults. The

ceiling effect may have biased age differences in training

gain preventing demonstrating any transfer effects. Youn-

ger adults might have shown more training effects if there

had been more room for performance improvement from

pretest to posttest. In order to further examine this possible

bias, accuracy data were reanalyzed in different explor-

atory ways. First, we reanalyzed data after excluding

potential ceiling participants from the sample. We identi-

fied and excluded the top third in accuracy performance at

pretest, for each experimental group separately. Second, we

checked for robustness of the ANOVA by a Tobit model

which takes into account the censored nature of data (for

details, see Bürki 2012). The results of these additional

analyses did not show a change in results and confirmed the

above reported findings. However, even by implementing

these analyses, we were not able to completely exclude the

possibility that there may exist ceiling effects in the N-back

tasks.

We further investigated the link between individual

intercept and slope values of the WM training, on the one

hand, and gain scores as well as transfer scores, on the other

hand, while controlling for the effect of age-group and

individual differences in fluid intelligence level. This

allowed us to examine the individual differences in cogni-

tive plasticity independent of age effects and of individual

differences in cognitive performance. No association

between training gain scores (verbal N-back task at pretest
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and posttest) and initial training performance as well as

training slope was found. This may be due to the lack of

variance as a result of the ceiling effect in the verbal N-back

task as discussed above. In terms of transfer scores, there

were positive associations between slope and transfer scores

in spatial N-back task, Updating task, Raven and SRT task.

The association was positive, that is, individuals showing

more cognitive plasticity also showed larger transfer scores.

By the individual analysis of cognitive plasticity and con-

trolling for age and fluid intelligence, we were able to detect

a link between growth curve and transfer effects.

By implementing a LGCM approach, we were able to

increase the explained variance in cognitive plasticity. We

were further able to show that the initial training perfor-

mance and cognitive plasticity are independent and medi-

ated differently by age and by individual differences in

cognitive performance. This result indicates that the indi-

vidual analysis of plasticity should begin at the training

performance, and not only focus on the difference in per-

formance between pretest and posttest. With the sole ana-

lysis of pretest and posttest performances, important

information is neglected.

LGCM analysis is not without limits, in particular with

regard to its application in training research. It requires a

large sample size which is frequently difficult to obtain in

training studies. The sample size in the present study was

rather small for an application of LGCM analysis, in par-

ticular for the assessment of the measurement invariance

across groups. However, the model fit indexes for the WM

training were acceptable so that the analysis was tenable.

Furthermore, we were not able to model a growth shape

other than a linear slope function. It may be meaningful to

model in addition an asymptotic growth shape for instance,

since the univariate analysis of training performance

revealed an asymptotic-like performance limit.

In sum, a substantial part of the variance in training

performance remained unexplained, suggesting that other

variables may account for individual differences in cogni-

tive plasticity. We propose to include further predictors

into a LGCM analysis such as social aspects, metacognitive

self-regulation or motivation which were recently proposed

as powerful tools to foster successful training (Borella et al.

2010; Hertzog and Dunlosky 2012; McDaniel and Bugg

2012; Redick et al. 2013). The inclusion of a broader range

of possible predictors will provide further insights into

individual differences in cognitive plasticity and allow

designing individually adjusted training programs.

As recently stated, there is currently little evidence that

memory interventions (…) are relevant to the ultimate goal

of training, which is to support older adults to remain

independent longer by reducing, remediating, or reversing

functional impairments (Zelinski 2012). We believe that

research which focuses on the analysis of individual

differences in cognitive plasticity represents a significant

cornerstone on the way to reach this ultimate goal of

training.
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