Title of the summer school: Module 2 Statistical and Machine Learning for Big Data

Dates: 06-10/07/2020

Course description:

The main learning objective of the one-week summer course is to provide advanced undergraduate students, graduate students and researchers with formal training in analytics and skills necessary to apply popular statistical and machine learning methods to high dimensional data. This course includes several multivariate analytical methods and some new univariate methods. Health and business research examples particularly large medical insurance, environmental exposure, cancer, and suicide datasets will be comprehensively analyzed. This context based short course provides skills to analyze different types of data using primarily R programming. Programming instructions are also provided in Python. Students can work independently on big data analysis by the end of this one week course and also collaborate with other researchers on projects that require statistical expertise for large and complex data analyses. Topics of the course include:

- **Matrix algebra review using introductory R**
- **Introductory topics** (analytics and big data, predictive models, introduction to Python, machine and deep learning packages, bootstrapping, cross validation, GLM, GAM, high dimensional data presentation, Monte Carlo methods)
- **Supervised Learning** (k-NN, naive Bayes, SSVM, EM algorithm, Copula based methods, regularization methods, unbalanced data, undersampling and oversampling)
- **Unsupervised Learning** (cluster analysis, PCA, latent variables and factor analysis, decision trees, bagging, random forests, boosting)
- **Artificial Intelligence** (feedforward neural nets, backpropagation algorithm, contrastive divergence (CD), stochastic MLE, score/ratio matching, pseud-likelihood estimation, annealed importance sampling, deep belief networks)
- **Case Studies**

Course notes and materials. The e-copy of lecture notes with computer programs will be designed and provided by the presenter before the start of the course.

Target Audience: students with interests in analytics methods and numerical sciences.

Prerequisites: A knowledge of fundamental probability and statistics concepts (e.g. acquired at a non-specialized bachelor level) as well as a beginner-level familiarity with the R statistical programming language are strongly desirable.