Climate Change and Human Migration

Michael Oppenheimer at People on the Move: **Impacts of Climate Change** 01 Human Well-being University of Geneva 28 October 2010

How Large a Phenomenon Could Climate-induced Migration Become Later in This Century?

Some potential drivers of climateinduced migration

- Temperature/climate comfort
- Gradual land loss due to sea level rise
- Land becoming marginally habitable due to episodic flooding, perhaps stronger storms combined with higher sea level
- Relative changes in agricultural production potential

Example: Increasing Risk to Deltas

Courtesy J. Broadus

Sea level rise could prove disastrous in some regions

Deltas Worldwide Population 500,000,000

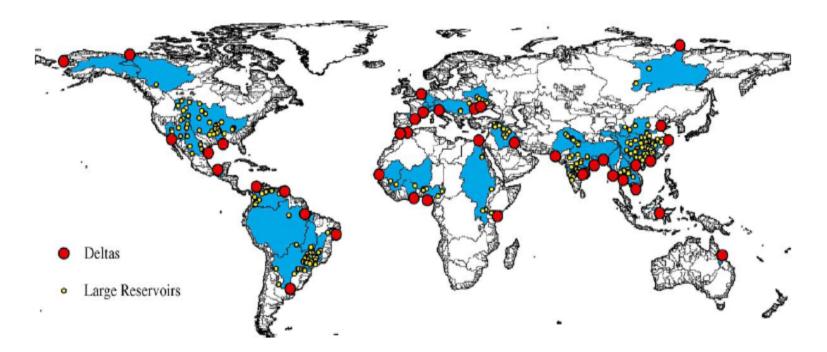
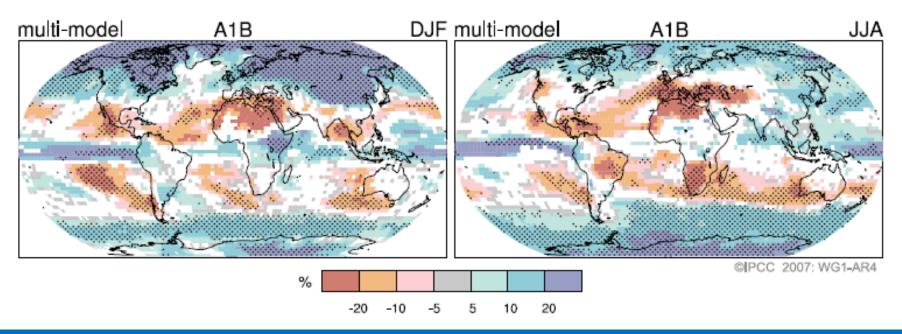



Fig. 1. Global distribution of the 40 deltas analyzed in this study, the potentially contributing drainage basin area of each delta (blue) and the large reservoirs (>0.5 km³ maximum capacity) in each basin.

Ericson et al, Global and Planetary Change 50 (2006) 63-82

Another Driver: Projected Drying Year 2100 (A1B scenarios, compared to current climate)

PROJECTED PATTERNS OF PRECIPITATION CHANGES

Food production tends to decline, low latitudes, 1-3°C

Complexity of migration: multiple factors

- Push/Pull: migration as a <u>strategy</u> rather than <u>tragedy</u>
 >Policy, economic, and political context
 >Immigration as a special case
- Each locality/border different: e.g., networks,
- Distance and duration matter

Complex relation to good vs. bad economy

Quantifying outcomes: Diverse techniques for climate &/or other environmental drivers

- Global estimates (Tickell, Myers and Kent, Stern)
- Nepal (Massey et al)
- Burkina Faso rainfall (Henry et al)
- US Dust Bowl (McLeman and Smits)
- New Orleans (Hurricane Katrina)
- Kniveton et al for IOM

Earlier Studies of Mexico

- Climate disasters (Saldaña-Zorrilla and Sandberg)
- Rainfall (Munshi)

But these methods can't be used to project into future to determine mirgation/immigration

Motivations for Current Study (Feng, Krueger, Oppenheimer, PNAS 2010)

 Seek confirmation (or not) that climate-induced migration may be significant

Complement existing studies

Test methodology for projection elsewhere

Strategy of Current Study

 Use recent sensitivity of migration to climate-related crop yield changes to project response to future climate changes

Statistical approach isolates climate factor

 Mexico: large flows, good data, familiar case

Method of Current Study

- Infer immigration from state-level census data, 1995-2005
- Statistical analysis of climate-related crop yield changes (wheat, corn), same period
- Apply instrumental variable (Temp, Precip) method to statelevel data (not time series); compare two 5-yr periods
- Infer sensitivity of immigration to climate-related crop yield variations: *change* in immigration associated with climate-related *change* in yields

History is an imperfect guide: Responses to climate variability may differ from responses to climate change

In studying past and recent migration, climate (variability) is often a small signal <u>amid a welter of "noise" (other factors)</u> Results of Current Study (response to recent climate variability)

 Every 10% reduction in crop yield due to temp., precip. variations is associated with a 2% increase in immigration (i.e., sensitivity ~ 0.2)

 Robust results: Insensitive to border/non-border states (e.g., to NAFTA), crop type, climate variable, rural/non-rural states

Projections

 Use projected climate-related crop yield changes for late 21st century (moderate warming, 1-3⁰C)

• Apply recent sensitivity (0.2)

All other things kept constant (ceteris paribus)
 >>relative status of US/Mexico economies
 >>demographic distribution
 >>vulnerable sector of comparable size

Scenario Change in emigrants Change in no. of adult emigrants, Change in as percent of millions[†] CO₂ effect Adaptation* crop yields, % population, % Current in US ~ 12M Rosenzweig and Iglesias (38): GISS[‡] No No -46 9.2 6.4 -35 7.0 4.9 Yes No -27 Yes Level 1 5.4 3.8 Yes Level 2 -13 2.6 1.8 Rosenzweig and Iglesias (38): GFDL^{*} No -39 7.8 5.5 No 5.6 -28 Yes No 3.9 Level 1 -20 Yes 4.0 2.8 Level 2 Yes 1.4 -10 2.0 Rosenzweig and Iglesias (38): UKMO^{*} No No -48 9.6 6.7 -37 7.4 5.2 Yes No Yes Level 1 -31 6.2 4.3 Yes Level 2 -15 3.0 2.1 Cline preferred estimates[§] 7.1 No Not Clear -35 5.0 Not Clear -26 5.1 3.6 Yes

Table 3. Forecast of future Mexican emigration at the national level under different climate scenarios

Additional Limitations of Current Study

- Period (1995-2005) of large changes in border policy, NAFTA, climate swings (hidden covariance or robust variation?)
- Mexico a special case (confounds and clarifies): cannot extrapolate geographically
- Provides no insight on individual motivations
- One very recent 2100 crop yield response estimate lower
- Linear model, possible non-linear immigration response
- Extrapolating response to variations into a trend

General Conclusions

- Suggests *potential* for large response elsewhere
- Future studies planned: domestic migrations (China, US), other borders (comparatives)
- Ideally, combine quantitative and qualitative, local and regional, ethnographic studies, interviews, surveys, local data, agent based approach