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economic dynamics and (ii) stochastic SEIRD model with unpredictable birth and vaccine

discovery events, and mitigating policy and behavioral responses, for disease propagation.

We estimate the model based on economic time series and COVID-19 data. We show it

explains the behaviors and levels of the S&P 500, the index volatility, and the number of

new cases during the recent outbreak, while providing a good match for 25 unconditional

moments of economic time series. Beliefs-dependence emerges as a critical ingredient for

this comprehensive explanation of short term dynamics during the COVID-19 outbreak

and of long run statistical properties. A comparison study establishes the performance of

BDRA-SSL versus alternative specifications.
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1. Introduction

The COVID-19 outbreak challenges economic theory on several grounds. It is characterized

by a sharp decline in the consumption growth rate followed by a quick reversal. It features a

rapidly declining stock market followed by a slower increase to levels commensurate with initial

values. It displays episodes of large and fluctuating volatility in the market. This paper seeks to

explain the magnitudes and patterns of these short run empirical regularities in an integrated

epidemic-economy model consistent with moment properties of long run economic time series.

The outbreak took markets across the world by surprise. Although data from China showed

clear and early evidence of rapid propagation and associated economic damage, markets initially

failed to react, discounting the possibility of contagion across regions and continents. The

rapid decrease in the US market, for instance, began on February 20, several months after the

epidemic started to rage in China. The S&P500 reached its trough on March 23, about 30%

below average levels during the first two months of 2020. The index took nearly 5 months to

recover its February 20 level. In parallel, the VIX, a measure of market volatility, went from

15.56 on February 20 to a peak of 82.69 on March 16. It then progressively decreased to 24.52 on

June 5, before spiking at 40.79 on June 11. A second spike occurred on September 3 following

a short-lived downward adjustment. It has since evolved in the 15-40 range. Markets in

other countries have experienced similar patterns although at different dates and over different

periods.

The goal of this paper is to explain these phenomena, more specifically levels and patterns

that have characterized US markets. A key question is whether the empirical evidence associ-

ated with COVID-19 is consistent with the predictions of a “finely-tuned” asset pricing model.

By finely-tuned, we mean an asset pricing model explaining the long run behavior of financial

markets, i.e., outside epidemic states. Given such a model, questions pertaining to the origins

of economic fluctuations can be addressed. Are level adjustment patterns and volatility bursts

the result of certain policy decisions or of natural disease propagation mechanisms? Do they

reflect behavioral responses of economic agents? Are they tied to events unrelated to COVID-
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19? Answers to these question may help to provide perspective on the scope and effectiveness

of policy making.

For these purposes, we use the model with beliefs-dependent risk aversion (BDRA) in

Berrada, Detemple and Rindisbacher (2018) as a starting point. This choice is motivated

by the overall performance, static and dynamic, of the model. On the static front it provides

a good match for 25 moment condition, e.g., unconditional estimates of the equity premium,

log price-dividend ratio (PDR), stock market volatility and correlations between log PDR and

growth rate of consumption. On the dynamic front it has attractive properties, e.g., spikes in

model-implied recession probabilities coincide with NBER recession periods, model volatility

tracks realized volatility, and the equity premium displays countercyclical behavior.

First, we extend the model to incorporate short term dynamics associated with a pandemic.

This extension accounts for the unpredictable nature of pandemic events and vaccine discoveries,

mitigating governmental policies, and social distancing responses. Pandemic uncertainty is

modelled through a non-recurrent Markov chain with three possible regimes: no pandemic,

pandemic and vaccine. It is injected into the benchmark pandemic model employed, the SEIRD

model.1 Mitigating government policy takes the form of mandates to shelter-in-place (SIP) and

terminations thereof (LIFT). Social distancing responses take the form of variations in the

transmission rate of the disease at certain times including policy change dates. The combined

model is called the BDRA-SSL model, i.e., BDRA with SEIRD pandemic propagation and

SIP-LIFT policy response. Of particular note is the fact that BDRA-SSL produces closed

form solutions for equilibrium quantities, including stock prices and volatilities, in spite of the

unpredictability associated with the pandemic uncertainty and the complexities of policy and

social responses.

Second, we estimate the model based on COVID-19 data, S&P 500 level and volatility

data and time series for consumption, dividends, macro aggregates and others. Estimation is

carried out in two stages. In the first stage, the pre-pandemic stage, the economic model is

1More complex propagation mechanisms can be substituted without affecting the solution procedure and the
main structural results.

3



estimated based on 25 moment conditions. Relative to prior literature relying on the BDRA

model, the estimation uses an augmented data set from 1957 to 2019. In the second stage, the

pandemic stage, the disease propagation parameters and the parameters governing its effects

on consumption, dividend and unemployment are estimated. Estimation is carried out so as to

minimize the mean squared distance between model-implied and observed trajectories of the

S&P 500 level, index volatility, and number of new COVID-19 cases. The data set used for

that purpose goes from January 1, 2020 to August 7, 2020.

Third, we document the performance of the BDRA-SSL model. There are two aspects.

We first show that the model performs well regarding the quantities that were targeted in the

estimation. Model-implied variables and statistics are close to their empirical counterparts,

both during the pre-pandemic period and the early stages of the outbreak. Pre-pandemic, the

estimated model provides a good fit for 25 targeted moment conditions, confirming the results

in Detemple et al (2018) for the longer data set. Intra-pandemic, it closely matches the number

of new cases and the levels of volatility recorded during the COVID-19 outbreak, and it displays

the asymmetric V-shape pattern of the S&P 500 while providing good matches for the index size

and the timing of variations. Next, we document the reasons behind the model’s performance.

At the core is the behavior of the model-implied recession probability. It increases during the

COVID-19 recession period declared by the NBER, but decreases immediately thereafter, thus

explaining the ability to capture sharp variations in the data. Crucially, BDRA is a necessary

ingredient for explaining the empirical patterns.

Fourth, the paper compares performance across models. Alternatives examined are the

nested specifications BDRA (without pandemic component), CRRA-SSL (constant relative

risk aversion), BDRA-SSL-C (constrained version of BDRA-SSL), and the non-nested model

BDRA-SIRD-SL (with SIRD pandemic propagation). It shows that standalone BDRA, without

feedback effects from an epidemic component, is unable to explain patterns and magnitudes. It

also shows that the standard CRRA model augmented by the same SEIRD epidemic propaga-

tion model with SIP-LIFT policy response (CRRA-SSL) performs poorly. Model specification
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tests reject the nested alternatives BDRA, CRRA-SSL and BDRA-SSL-C. Model selection

criteria show BDRA-SSL dominates all nested specifications as well as the non-nested BDRA-

SIRD-SL model. It also performs best pre-pandemic based on 25 moment conditions. Hence,

BDRA-SSL dominates alternatives in terms of simultaneously fitting short term and long term

properties of the data.

The paper relates to three branches of the literature. First, it generalizes recent contribu-

tions seeking to examine the impact of pandemics on equilibrium asset prices, e.g., Detemple

(2022). It differs in that it (i) integrates an epidemiology propagation model into the model

with BDRA preferences, (ii) allows for unpredictable events such as the outbreak of a pandemic

and the discovery of a vaccine, (iii) includes volatility and correlations in the analysis and fo-

cuses not only on patterns but also levels, and (iv) estimates a version of the model allowing

for time-dependent contamination rate and examines its performance. The estimated model

fits the data well: on the economic front, it explains the levels and adjustment patterns of the

S&P 500 index and its volatility, during the COVID-19 outbreak.

Second, it contributes to the general equilibrium asset pricing literature. It extends, in

particular, the BDRA model in Berrada, Detemple and Rindisbacher (2018) showing that

market value and volatility inherit new components tied to the likelihood of occurrence of an

outbreak and the likelihood of a vaccine discovery. Equilibrium formulas obtained are explicit

allowing for estimation and straightforward simulation. It also complements earlier studies

such as Merton (1973), Breeden (1979) and Cox, Ingersoll and Ross (1985), by incorporating

an unexpected epidemic phenomenon into an equilibrium valuation framework.

Third, it connects to the growing literature dealing with the COVID-19 outbreak. Recent

contributions have documented the empirical impact on the market, e.g., Gorsuch and Koijen

(2020) and volatility, e.g., Cheng (2020). The present paper explains this empirical evidence,

along with other aspects, in an equilibrium setting. It shows in particular that BDRA is essential

for rationalizing the data. Other recent articles examine the role and impact of mitigation

policies, e.g., Eichenbaum et al (2021), Jones et al (2021) and Hong et al (2021). The first
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study investigates the implications of individual decisions and government policies for disease

propagation mechanisms and economic aggregates dynamics. The second one incorporates

similar elements, but focuses on the implications of inefficient work-at-home policies, taking

account of learning-by-doing and heterogeneity across sectors. The last one focuses on optimal

mitigation policies of firms in a partial equilibrium setting with stochastic transmission rate,

unpredictable vaccine discovery rate and fixed cost of mitigation. The scope of our contribution

differs as we explain short run dynamics during the COVID-19 outbreak along with the long

run behavior of economic variables in a setting with endogenous stochastic discount factor,

unpredictable economic regimes and unpredictable pandemic events.

Section 2 presents the model and provides equilibrium formulas. Section 3 describes the

estimation procedure and examines the fit to the data, both long term and during the early

stages of the COVID-19 outbreak. Section 4 performs a comparison of models. Conclusions

follow. Appendix A details the SEIRD model under a shelter-in-place (SIP) policy. Proofs are

in Appendix B. Complementary results are in Appendix C.

2. Economic and Epidemiology Model

We extend the BDRA model in Berrada, Detemple and Rindisbacher (2018) to account for

a pandemic outbreak triggered by an unpredictable initial infection event and a subsequent

unpredictable vaccine discovery event.

2.1. A Time-Dependent and Stochastic SEIRD Model

The epidemic propagation is assumed to be driven by a SEIRD model with time-dependent

infection rate β , unpredictable triggering event and unpredictable vaccination discovery event.

The population is split in five categories: susceptible ( S ), exposed ( E ), infectious ( I ), re-

covered (R ), and deceased ( D ). Let ps, pe, pi, pr, pd be the fractions in each categories, where

the sum equals 1 . The infectious population further splits in three groups: asymptomatic pasyi ,

symptomatic mild psmi , and symptomatic severe pssi , so that pi “ pasyi ` psmi ` pssi . The last
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two categories consist of mildly sick and severely sick individuals, respectively. We assume

pssi “ piλ , pasyi “ pip1 ´ λqλw , psm “ pip1 ´ λqp1 ´ λwq where fractions λ and λw are

constants. Before the initial infection event, ps “ 1 and pe “ pi “ pr “ 0 . At the initial

infection event date τ0 , the infectious population jumps up and the susceptible population

down: ∆piτ0 ą 0 and ∆psτ0 “ ´∆piτ0 ă 0 . Thereafter populations evolve as

dps “ pµp1´ pd ´ psq ´ βptqpsp
asy
i ´ pνo ` ν1Vtqpsqdt(2.1)

dpe “ pβptqpsp
asy
i ´ pµ` σqpeqdt(2.2)

dpi “ pσpe ´ pµ` µi ` γqpiqdt(2.3)

dpr “ pγpi ´ µpr ` pν
o
` ν1Vtqpsqdt(2.4)

dpd “ µipidt(2.5)

where the indicator 1Vt indicates a pandemic has occurred and a vaccine has been found. The

parameter βptq is the disease transmission rate, a function of time, σ is the incubation rate,

γ the recovery rate, νo is the natural immunity rate, and ν is the vaccination rate upon

discovery of a vaccine. The birth and natural death rates µ are assumed to be equal, hence

ensuring a stable population in the absence of disease mortality. Incremental disease mortality

is µi , and individuals who die as a result of the pandemic are in D . All parameters, except

for βptq are constants. The specific form of βptq is described in Section 3.2.1.

A policy intervention such as shelter-in-place (SIP) modifies the dynamics as follows. First,

upon implementation, it introduces an outflow at rate q , called the compliance rate, in each

of the populations above to corresponding sheltered populations pQs , p
Q
e , p

Q
i , p

Q
r , p

Q
d , identified

by the superscript Q . Second, upon lifting (LIFT) of the policy, it induces a reverse flow from

sheltered populations to those that are not. This reverse compliance rate is q2 . In the sequel

we refer to this model as the SEIRD-SIP-LIFT (SSL) model. Details of the model can be found

in Appendix A.

7



2.2. Regimes, Consumption, Dividends, and Information

We assume there are six regimes: expansion, recession, boom, no pandemic, pandemic and

vaccine. The first three regimes are unobservable. They are the outcomes of a Markov chain

smt with three states, recession ( smt “ e1 ), expansion ( smt “ e2 ) or boom ( smt “ e3 ), where ek

is the 3ˆ 1 -dimensional kth unit vector. The last three are observable and are the outcomes

of an independent Markov chain set with three states, no pandemic ( set “ e1 ), pandemic

( set “ e2 ) or vaccine ( set “ e3 ). The pandemic Markov chain is non-recurrent: it evolves from

state e1 , to e2 , then e3 , which is an absorbing state. The vaccine event 1V “ 1 is triggered

when set “ e3 . In this event, the dynamics of the susceptible and infectious populations depend

on the vaccination rate ν as described in ps and pr . To simplify derivations we assume the

pandemic is a one-time event, so does not subsequently reoccur: set “ e3 is an absorbing state.

To model the Markov chains, consider independent continuous-time switching process psm, seq

dsmt “
´

Λmdt` dÑm
t

¯1

smt´(2.6)

dset “
´

Λedt` dÑ e
t

¯1

set´(2.7)

where dÑα
t “ dNα

t ´ Λαdt for α P tm, eu and Nα is 3 ˆ 3 -matrix valued Poisson pro-

cesses with independent off-diagonal elements, diagonal elements dNiit “ ´
ř

j‰i dNijt , and

intensity matrix Λα with diagonal elements Λα
ii “ ´

ř

j‰i Λ
α
ij . Each process takes values

sαt P tei; i “ 1, 2, 3u where e1i denotes the ith unit vector. We can interpret the different

states as follows: expansion smt “ e1 , recession smt “ e2 , boom smt “ e3 , no pandemic

set “ e1 , pandemic set “ e2 , pandemic and vaccine set “ e3 .2 A pandemic arises with intensity

Λe
12 . As the development of a vaccine takes time Λe

13 “ 0 . If there is a pandemic Λe
21 “ 0 .

The vaccine enters development and becomes available with intensity Λe
23 . Once available the

pandemic ends, Λe
31 “ Λe

32 “ 0 . The event triggering the pandemic is determined by the jump

of set to e2 . The vaccine event resolving the pandemic is determined by the jump to e3 .

2At this stage the labeling of economic regimes is arbitrary. Estimation will show that regime 1 corresponds
to a normal expansion regime, 2 to a recession regime and 3 to a boom regime.
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The state variables in the model are pC,G, Y q where C is aggregate consumption and

pG, Y q are orthogonalized variables constructed from consumption, dividend and unemploy-

ment; see Appendix C for details. The model for pC,G, Y q is

dCt
Ct

“
`

µCo ps
m
t q ` A

C
psmt qF

w
t 1Et

˘

dt` σCdWC
t(2.8)

dGt

Gt

“
`

µGo ps
m
t q ` A

G
psmt qF

w
t 1Et

˘

dt` σGdWG
t(2.9)

dYt
Yt

“
`

µYo ps
m
t q ` A

Y
psmt qF

w
t 1Et

˘

dt` σY dW Y
t(2.10)

Fw
t “ µp

e
wpt, set´q{p

e
wt(2.11)

where Fw
t is a pandemic factor, ACpsmt q, A

Gpsmt q, A
Y psmt q are sensitivity parameters capturing

the response to the pandemic factor, and 1Et is the indicator of an epidemic outbreak Et “

tset P te2, e3uu . The pandemic factor is the expected growth rate of the effective workforce

pew generated by the SSL model (see end of next section for details), and µ
pew
t is the drift of

pew . The processes WC ,WG,W Y are independent Brownian motions representing economic

shocks. The terms
`

µCo ps
m
t q, µ

G
o ps

m
t q, µ

Y
o ps

m
t q
˘

represent the respective drifts in the absence of

an epidemic. The terms involving Fw
t capture the impact of the pandemic on the expected

growth rates of pC,G, Y q . These components kick in either when an outbreak is in process

set “ e2 , or when it has already occurred and a vaccine has been found set “ e3 . The model

(2.8)-(2.10) is a generalization of the reduced form suggested by the pandemic production model

in Detemple (2022); it generalizes that specification by allowing for additional state variables

pG, Y q and for a dependence on the economic regime sm .

2.3. Beliefs-Dependent Risk Aversion: BDRA(K,K)

To model economic processes during a pandemic, we extend the BDRA(K,K) model in Berrada,

Detemple and Rindisbacher (2018). Let K ” t1, ..., Ku be a set of regime indices, where K

is an arbitrary, but fixed, positive integer. The model has K unobserved economic regimes

smk : k P K , K preference parameters Rk : k P K and uses consumption C , orthogonalized
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dividends G and orthogonalized macro variables Y as information sources. Let Pk : k P K

be the conditional regime probabilities based on public information. Instantaneous utility of

consumption, for population j , is ujpct, tq “ e´βut
řK
k“1 Pkta

Rk
j c1´Rk

t {p1 ´ Rkq where βu is

a subjective discount rate and aj ă 1 is a discount factor depending on the health and

employment status of the population. The coefficients Rk are parameters of the risk aversion

function, as explained below. Marginal utility of consumption is

(2.12) ujcpct, tq “ e´βut
K
ÿ

k“1

Pkt

ˆ

ct
aj

˙´Rk

, j P ts, e, i, ru

and depends on the ratio of consumption to discount factor. Relative risk aversion is RR
jt “

řK
k“1 qjktRk where qjkt “

Pkta
Rk
j c

´Rk
t

řK
k“1 Pkta

Rk
j c

´Rk
t

, different across populations for a given consumption

level ct . As shown in the next section, equilibrium is completely determined by the dynamics

of pC,G, Y, P q , such that

(2.13) dPkt “ Pkt
`

µpktdt`∆C
ktdν

C
t `∆G

ktdν
G
t `∆Y

ktdν
Y
t

˘

where µpkt “
řK
j“1 Pjtλjk{Pkt with λjk the transition intensity from regime j to k , and for

α P tC,G, Y u

(2.14) ∆α
kt “

µαk ´ µ̂
α
t

σα
, dναt “

1

σα

ˆ

dαt
αt
´ µ̂αt dt

˙

,
dαt
αt

“ µαpstqdt` σ
αdWα

t

(2.15) µαk “ µαpsmt , s
e
t qsmt “ek ; µαpstq “ µαpsmt , s

e
t q “ µαo ps

m
t q ` A

α
psmt qF

w
t 1Et

(2.16) µ̂αt “
ÿ

k

µαkPk.

The processes
`

νC , νG, νY
˘

are informational innovations associated with the underlying Brow-

nian motions, the coefficients t∆α
k : α P tC,G, Y u, k P Ku are sensitivities to news, and

tµpk, k P Ku are the conditional means.

We also assume the supply of labor by households is inelastic. Aggregate labor supply
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is L̄ “ 100 in the absence of an epidemic. During an outbreak available supply is limited

to individuals who do not exhibit symptoms: the workforce is pw “ ps ` pe ` pasyi ` pr . If

SIP is implemented, and a fraction h of quarantined individuals is able to work at home,

the effective labor supplied is pew “ pw ` ωpqw where ω ă 1 is an efficiency factor and

pqw “ pqs,h ` pqe,h ` pq,asyi,h “ h ppqs ` p
q
e ` p

q,asy
i q is the sheltered population able to work. The

effective workforce impacts the growth rate of aggregate variables as described in (2.8)-(2.10).

The model combining the pandemic and economic dynamics described above is called the

BDRA-SSL model, which stands for BRDA-SEIRD-SIP-LIFT.

2.4. Equilibrium

The consumption demand of population j is cjt “ ajIpHtq for a function I commmon to all

populations and where Ht “ yξt{at is the normalized state price density. Aggregate demand is

pactIpHtq where pact “
ř

jPts,e,i,ru pjtaj is the consumption discount factor of the representative

agent.3 Alternatively, pact can be interpreted as an equivalent population of normal consumers.

In equilibrium pactIpHtq “ Ct so that IpHtq “ C{pact . The equilibrium allocation satisfies

cjt{aj “ IpHtq “ Ct{p
a
ct , which is identical across populations.

Let τ0 ” inftv ě 0 : ∆N e
12v ą 0u be the time marking the birth of the pandemic. At that

time the infectious population becomes positive, ∆piτ0 ą 0 , and all quantities related to pi

jump. In particular, the equivalent population of normal consumers jumps from pact´ “ as “ 1

to pacτ0 “
ř

jPts,e,i,ru pjτ0aj .

Equilibrium is then given by

Proposition 2.1. Consider the BDRA-SSL model and suppose that t “ 0 is pre-pandemic.

The equilibrium stochastic discount factor (SDF), interest rate and market prices of risk are

ξt “y
K
ÿ

k“1

e´βt
ˆ

Ct
pact

˙´Rk

Pkt; y´1 “
K
ÿ

k“1

C´Rk
0 Pk0(2.17)

3Subgroups of populations can have different discounts for consumption, reflecting their economic status or
their health status. The variable pac is adjusted as needed to capture these effects.
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rt “β `

˜

K
ÿ

k“1

Rkqkt

¸

´

µ̂Cot `
´

pACt F
w
t ´ F

a
t

¯

1Et

¯

´
1

2

˜

K
ÿ

k“1

Rkp1`Rkqqkt

¸

pσCq2(2.18)

´

K
ÿ

k“1

µPktqkt `
K
ÿ

k“1

Rkqktpµ
C
k ´ µ̂

C
t q ` Λe

12θ
J
t´

θCt “

˜

K
ÿ

k“1

Rkqkt

¸

σC ´
K
ÿ

k“1

qkt∆
C
kt, θGt “ ´

K
ÿ

k“1

qkt∆
G
kt(2.19)

θYt “´
K
ÿ

k“1

qkt∆
Y
kt, θJt´ “

K
ÿ

k“1

e´βt pCtq
´Rk Pkt

řK
k“1 e

´βt pCtq
´Rk Pkt

´

1´ ppactq
Rk

¯

(2.20)

where

Fw
t “

µp
e
wpt, set´q

pewt
; F a

t “
µp

a
c pt, set´q

pact
; µ̂Cot “

ÿ

k

Pktµ
C
ok; pACt “

K
ÿ

k“1

PktA
C
k(2.21)

qkt “
PktpCt{p

a
ctq
´Rk

ř

k PktpCt{p
a
ctq
´Rk

.(2.22)

The quantity µp
a
c pt, set q is the drift of the aggregate consumption discount factor, F a

t its

growth rate, µ̂Cot is the expected consumption growth rate in the absence of a pandemic, pACt “
řK
k“1 PktA

C
k is the expected value of ACpsmq , qkt is the equilibrium pricing measure, and θJt´

is the market price of jump risk. The interest rate has a jump component θJt´Λ12 .

Remark 2.2. The SDF is marginal utility evaluated at the equilibrium consumption allocation.

Note that it is discontinuous: it jumps down at τ0 , and the relative jump size, i.e., the negative

of the market price of jump risk, is

(2.23)
∆ξτ0
ξτ0´

“

řK
k“1C

´Rk
τ0

Pkτ0

´

`

pacτ0
˘Rk

´ 1
¯

řK
k“1C

´Rk
τ0 Pkτ0

ă 0.

where pacτ0 “ 1 `∆ipλi ` λsai ´ 1q and ∆i is the size of the jump in pi at τ0 . Coefficient

λs “ p1 ´ λqp1 ´ λwq is the fraction of symptomatic mild in the infectious population, while
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λi “ p1´ λqλw is the fraction of asymptomatic. The expected relative jump is

(2.24) Eτ0´

„

∆ξτ0
ξτ0´



“

řK
k“1C

´Rk
τ0

Pkτ0

´

`

pacτ0
˘Rk

´ 1
¯

řK
k“1C

´Rk
τ0 Pkτ0

Λe
12dt ă 0.

The epidemic impact on the structure of the SDF is through pact , the equivalent population

of normal consumers. A decrease in pact increases consumption per head, hence reduces the

SDF. There are three effects on equilibrium coefficients. The first, encapsulated in the term

ÂCt F
w
t ´F

a
t , is structural in nature. It represents the net impact on the expected output growth

rate and the growth rate of the equivalent population of normal consumers. The second, arises

through the adjusted probabilities qkt which depend on cjt{aj “ Ct{p
a
ct . The third arises

through the jump associated with the initial infection event. Variations in the equivalent

consuming population pact combine with variations in consumption and regime probabilities to

determine the behavior of these effects over time. The interest rate level and evolution reflect

all effects. Market prices of risk reflect the second and third effects.

The next proposition extends the stock valuation formula in Berrada, Detemple and Rindis-

bacher (2018) to the epidemic context.

Proposition 2.3. Define the matrix Υpt, set q as in Proposition 6.1 in the Appendix and suppose

that its elements Υijpt, s
e
t q are finite for all pairs pi, jq . The stock price is then given by

(2.25) St “ Et

„
ż 8

t

ξt,sDsds



“ DtZ
1

tΥpt, s
e
t qPt

where Etr¨s is the conditional expectation operator and Zt “ r..., qkt{Pkt, ...s
1 is the density

of the probability measure q with respect to P . The stock market return volatility is σSt “
a

pσSCt q2 ` pσSGt q2 ` pσSYt q2 where

(2.26)

»

—

—

—

—

–

σSCt

σSGt

σSYt

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

ρσD ` σSCRt ` σSCGt

a

1´ ρ2σD ` σSGGt

σSY Gt

fi

ffi

ffi

ffi

ffi

fl
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and, using diagKpvq for the diagonal K ˆK matrix with vector v on the diagonal,

(2.27) σSCRt “ Z 1tdiagKr´Rkσ
C
s

ˆ

Υpt, set´q

Z 1tΥpt, s
e
t´qpt

´ IK

˙

Pt,

(2.28) σSαGt “ Z 1t

ˆ

Υpt, set´q

Z 1tΥpt, s
e
t´qPt

´ IK

˙

diag r∆α
ktsPt, α P tC,G, Y u.

The component σSCRt is the volatility of Zt due to consumption uncertainty, and the

components σSCGt , σSGGt , σSY Gt are associated with beliefs uncertainty. The correlation between

the stock return and the consumption growth rate (resp. orthogonalized dividend growth rate)

is ρSCt “ σSCt {σSt (resp. ρSDt “ σSDt {σSt ). Correlations are stochastic.

Remark 2.4. Note that the equilibrium stock price and its volatility coefficients are contin-

uous. In contrast, the state price density is discontinuous, because marginal utility jumps at

the pandemic starting time. Market prices of diffusion risk are independent of the pandemic

state variable set , hence are continuous. The market price of jump risk is discontinuous. The

equity premium, as the product of market prices of diffusion risk and volatility components, is

continuous as well.

Remark 2.5. The stock price has the decomposition St “ Snpt ` Spt where Snpt “ DtZ
1
tΥPt

and Spt “ DtZ
1
t

`

Υpt, set q ´Υ
˘

Pt represent, respectively, the price when a pandemic cannot

arise and when a pandemic is possible. The matrix Υ is defined in (6.6).

3. Empirical Results

We proceed in two stages. First we estimate the model without pandemic effects, based on

pre-pandemic data. Second, we estimate pandemic-related parameters, using data during the

COVID-19 outbreak.
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3.1. Estimating the BDRA Model: Before the Pandemic

The estimation for the BDRA(K,K) model without pandemic effects follows the approach in

BDR (2018). Estimation is based on longer time series with 5 additional years of data.

3.1.1. Data Description

The estimation is based on quarterly data from January 1957 to December 2019. The per

capita consumptions of nondurable goods ( Cn,t ) and services ( Cs,t ) are obtained from the

Saint-Louis Federal Reserve Bank. Consumption growth is defined as

(3.1) ln
Cs,t`1 ` Cn,t`1
Cs,t ` Cn,t

,

Other time series are constructed as in Beeler and Campbell (2012). Using the CRSP value

weighted return indexes including dividends ( vwretdt ) and excluding dividends ( vwretxt )

gives the dividend series Dt ,

(3.2) Pt`1 “ Pt p1` vwretxt`1q , Dt`1 “ Pt`1

„

1` vwretdt`1
1` vwretxt`1

´ 1



.

The price-dividend ratio (PDR) is obtained by dividing the current price index level by the

sum of the 12 previous months’ dividends. All further computations and estimations use the

log of the PDR. Quarterly returns are constructed from log monthly returns. Real returns are

obtained by adjusting for inflation using the seasonally adjusted consumer price index (obtained

from the Saint-Louis Federal Reserve Bank). Quarterly series of ex-ante real three-month rates

and real ten-year rates are constructed from monthly series of nominal yields as in Beeler and

Campbell (2012). The ex-post real rate is obtained by subtracting the realized inflation from

the observed three-month treasury bill rate. It is then regressed against the average quarterly

log inflation over the previous year πt´12,t (annual log inflation divided by four) and the three-
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month nominal yield y3,t ,

(3.3) y3,t ´ πt,t`3 “ β0 ` β1y3,t ` β2πt´12,t ` εt`3.

The ex-ante real rate is then defined as β̂0 ` β̂1y3,t ` β̂2πt´12,t . The same procedure is used,

with an adjustment for the time period, for the ten-year ex-ante real rate.4

The information variable in Eq. (2.10) is defined as the unemployment rate (UE), It “ UEt .

The data for UE is obtained from the Saint-Louis Federal Reserve Bank.

3.1.2. Estimation Procedure

Model parameters are estimated using a just identified sequential GMM procedure pioneered

by Ogaki (1993). The set of parameters is partitioned into subsets Θ “ Θ1 YΘ2 YΘ3 with

Θ1 ”
 

σC , σD, σI , ρ, ρIC , ρID
(

, Θ3 ” tR2, R3u

Θ2 ”
 

µC1 , µ
C
2 , µ

C
3 , µ

D
1 , µ

D
2 , µ

D
3 , µ

I
1, µ

I
2, µ

I
3, λ12, λ13, λ21, λ23, λ31, λ32, Rmin, β

(

.

The first subset, Θ1 , contains parameters of the covariance matrix of consumption, dividends

and the information variable (unemployment). Parameter estimates are obtained by matching

corresponding sample moments. Given the constant volatility structure of state variables these

estimates are equivalent to maximum likelihood estimates (MLE).

The second subset, Θ2 , determines the steady state behavior of the model. These param-

eters are estimated using sample analogs of the invariant theoretical counterparts.

Parameters in the third subset, Θ3 , do not affect the steady state equilibrium values, but

only the dynamics of equilibrium quantities. In order to address this part of the estimation

procedure, we rely on the extensive literature originating from Campbell and Shiller (1988)

that identifies a link between stock returns and PDR. We consider the following two moment

conditions (i) correlation between log simple returns and changes in log PDR, and (ii) correlation

4This procedure is also used by Harvey (1988) to test whether the real term premium can forecast recessions.
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between log simple returns and changes in log PDR lagged by one quarter. Given the estimates

for parameters in the subset Θ1YΘ2 , these two moments within the model use filtered values

of state variables to generate a sample path that depends on the unknown parameters in Θ3 .

Parameters in Θ3 are estimated by minimizing the squared error of deviations of these two

moments of sample paths within the model and in the statistical sample.

Table 1 summarizes the moment conditions used in the estimation of the different sets of

parameters. Additional details and justification of this procedure can be found in BDR (2018).

3.1.3. Parameter Estimates and Model Performance

Table 2 shows that parameter estimates are close to their empirical values, and typically lie

within the 95% confidence bands or are close to the edges of these bands. Exceptions are

the mean 3-month and 10-year yields and the volatility of the 10-year yield. Relative to the

estimation results in BDR (2018), which is based on the shorter sample from 1957 to 2014, the

mean consumption growth rate is further away from its sample value.

Table 3 reports estimates for the drifts of consumption, unemployment, and dividends, and

for the preference parameters, in the three growth regimes. Patterns for the coefficients per-

taining to consumption and unemployment are the same as in BDR (2018), with reduction in

some of the point values obtained. In contrast, dividend drift coefficients display an increasing

pattern, as opposed to the previous U-shape pattern, due to an increase in the estimate for

regime 2. The risk aversion function implied by estimates of preference parameters displays

the same inverted U-shape as in BDR (2018), but with a slight upward shift. Taken together,

these results suggest the interpretation of regime 2 as a recession regime is also maintained,

even though neither estimation imposed a priori restrictions on the ordering of regimes. Fi-

nally, standard deviation estimates for consumption, dividend and unemployment are about

the same, whereas the correlations between dividend and consumption (positive), and dividend

and unemployment (negative) are both cut in half.

Overall, the results obtained based on the augmented sample 1957-2019 are consistent with
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those in BDR (2018) for the period 1957-2014.

Table 1: Moment conditions. The table lists the moment conditions used for the just identified sequential

GMM estimation of model parameters. Theoretical expressions for steady state values are in Detemple et al

(2018). Sample moments are based on standard sample statistics for means, standard deviations, correlation, and

auto-correlation coefficients. The operator {CORRT,Θ3
rXt, Yts calculates the empirical correlation coefficient

between Xt and Yt based on model trajectories of length T as a function of parameters Θ3 .

Parameter estimation: moment conditions

Moment condition Invariant moment (definition) Sample moments

Covariance of state variables: Θ1 “
 

σC , σD, σI , ρ, ρIC , ρID
(

1. Vol. cons. σC
zSTDT r∆ logCts

2. Vol. div. σD
zSTDT r∆ logDts

3. Vol. unemp. σI
zSTDT r∆ log Its

4. Corr. cons., div. ρ {CORRT r∆ logCt,∆ logDts

5. Corr. cons., unemp. ρIC {CORRT r∆ logCt,∆ log Its

6. Corr. div., unemp. ρID {CORRT r∆ logDt,∆ log Its

Steady state values: Θ2 “
 

µC
1 , µ

C
2 , µ

C
3 , µ

D
1 , µ

D
2 , µ

D
3 , µ

I
1, µ

I
2, µ

I
3, λ12, λ13, λ21, λ23, λ31, λ32, Rmin, β

(

1. Exp. cons. µC
8 ` 0.5

`

σC
˘2

pET r∆ logCts

2. Exp. div. µD
8 ` 0.5

`

σD
˘2

pET r∆ logDts

3. Exp. unemp. µI
8 ` 0.5

`

σI
˘2

pET r∆ log Its

4. Log-PDR log S8

D8

pET rlogPDRts

5. Exp. 3-m. yield Y 8`0.25
8 τ “ 0.25 pET

“

Y t`0.25
t

‰

6. Exp. 10-y. yield Y 8`10
8 τ “ 10 pET

“

Y t`10
t

‰

7. Stock volatility σS
8

zSTD r∆ logSts

8. Volatility of 10-y. yield σY
8 pτq

pET

“

Y t`0.25
t

‰

9. Exp. excess return µS
8 ´ r8

pET r∆ logSt ´ rts

10. Corr. return, cons. ρS,C8 {CORRT r∆ logSt,∆ logCts

11. Corr. return, div. ρS,D8 {CORRT r∆ logSt,∆ logDts

12. Corr. 3-m. yield, cons. ρY,C8 pτq τ “ 0.25 {CORRT

“

Y t`0.25
t ,∆ logCt

‰

13. Corr. 3-m. yield, div. ρY,D8 pτq τ “ 0.25 {CORRT

“

Y t`0.25
t ,∆ logDt

‰

14. Corr. 10-y. yield, cons. ρY,C8 pτq τ “ 10 {CORRT

“

Y t`10
t ,∆ logCt

‰

15. Corr. 10-y. yield, div. ρY,D8 pτq τ “ 10 {CORRT

“

Y t`10
t ,∆ logDt

‰

16. Volatility log-PDR ratio σlog´PDR
8

zSTDT rlogPDRts

17. Corr. log-PDR, cons. ρlog´PDR,C
8

{CORRT rlogPDRt,∆ logCts

Path dynamics: Θ3 “ tR2, R3u

1. Corr. log-PDR, return {CORRT,Θ3
r∆ log PDRt,∆logSts {CORRT r∆ log PDRt,∆logSts

2. Corr. log-PDR, return (1 lag) {CORRT,Θ3
r∆ log PDRt´1,∆logSts {CORRT r∆ log PDRt´1,∆logSts
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Table 2: Moment conditions and confidence intervals. Model moment conditions are based on

stationary values and estimated parameters. Confidence bounds are obtained using the station-

ary bootstrap for weakly dependent data of Politis and Romano (1994). The 95% confidence

intervals are based on 1000 replications and optimal average blocksize.

Confidence Confidence
Model Data lower bound upper bound

Mean

Consumption growth 0.01336 0.01878 0.01619 0.02094
Dividend growth 0.00862 0.02089 0.00842 0.03150
Unemployment growth 0.00586 0.00492 -0.03042 0.02911

Log PDR 3.77885 3.61139 3.56689 3.66143
Excess returns 0.05318 0.05238 0.00914 0.09553
Mean 10-year yield 0.02919 0.02187 0.02083 0.02299
Mean 3-month yield 0.02968 0.00864 0.00691 0.01048

Volatility

Log PDR 0.16681 0.17046 0.15448 0.19169
Excess returns 0.21168 0.16792 0.14972 0.19018
10-year yield 0.02101 0.00902 0.00828 0.01004

Correlations

Stock returns / consumption 0.08920 0.24046 0.11367 0.36834
Stock returns / dividend 0.26655 0.09437 –0.04243 0.20755
10-year yield / consumption 0.12260 0.14894 0.00985 0.27520
10-year yield / dividend -0.04092 -0.17219 -0.27332 -0.06401
3-month yield / consumption 0.26685 0.25407 0.13769 0.36103
3-month yield / dividend -0.02821 -0.08680 -0.20495 0.04073
log PDR / consumption 0.26323 0.22340 0.08522 0.35540

Stock return and log(PDR) correlation

Contemporaneous 0.99716 0.96457 0.9402 0.9758
Lagged logpPDRq 0.06060 0.06030 -0.0707 0.2064

19



Table 3: Estimated parameters (standard errors). GMM parameter estimates with standard

errors obtained from stationary bootstrap (Politis and Romano (1994)).

Growth regime

Normal Low High

Consumption
µC

1 µC
2 µC

3

0.00969 0.00572 0.03554
(0.0081) (0.0075) (0.0102)

Dividend
µD

1 µD
2 µD

3

0.00672 0.00746 0.01707
(0.0099) (0.0098) (0.0104)

Growth regime

Normal Low High

Unemployment
µUE

1 µUE
2 µUE

3

-0.00067 0.12653 –0.09982
(0.0332) (0.0460) (0.0424)

Preferences: risk aversion
R1 R2 R3

2.06340 2.5550 2.2416
(0.3788) (0.0983) (0.0133)

Preferences: subjective discount rate
β1 β2 β3

0.01000 0.01000 0.01000
(0.0021) (0.0021) (0.0021)

Standard deviations and correlations
Consumption Dividend Unemployment

Consumption 0.0092 0.0799 –0.3626
(0.0641) (0.1096) (0.2230)

Dividend 0.0799 0.0449 –0.1836
(0.1096) (0.0744) (0.1895)

Unemployment –0.3626 –0.1836 0.1214
(0.2230) (0.1895) (0.9587)

Infinitesimal generator (intensity matrix)
Normal Low High Steady state probabilities

Normal –0.07343 0.07343 3.859425 E-07 0.645
- (0.0148) (1.86 E-06)

Low 0.24417 –0.25736 0.01320 0.184
( 0.0343) - (0.0037)

High 0.01426 1.789710 E-07 –0.01426 0.170
(0.0046222) (1.70 E-06) -
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3.2. Estimating the BDRA Model: During the Pandemic

We now focus on the pandemic period, assuming that parameters ACpsmt q “ AC , AGpsmt q “ AG

are constant across economic regimes. First, we complete the SSL model by specifying the

transmission intensity. Second, we describe the estimation procedure for the pandemic-related

parameters. Last, we present the results and discuss performance.

3.2.1. Transmission Intensity Specification

We consider a version of the SSL pandemic model with time-decay and threshold effects in the

transmission intensity β . We assume

(3.4) βt “ β0e
´κ0t1tďt1 ` β1e

κ1pt´tmq1t1ătďt2 ` β2e
´κ2pt´t2q1t2ăt

where t1, t2 are transmission intensity change dates, κ0, κ2 are decay rates respectively pre-

vailing up to the first date and after the second one, and κ1 is an decay/expansion rate in

the intermediate period up to time t2 . The parameter β1 “ β0e
´κ0t1 is the value at t1 and

β2 “ β1e
κ1pt2´tmq at t2 . The parameter tm P rt1, t2s cuts the intermediate period in two parts.

From t1 to tm the transmission intensity decreases, from tm to t2 it increases, hence the dual

interpretation of κ1 . This formulation captures social distancing effects taking place as the

epidemic propagates and disease mitigation recommendations by health authorities and gov-

ernmental agencies. For instance, the dates t1, t2 might be associated with recommendations

to implement and lift a SIP policy. The reversal of decay during the period rt1, t2s captures

weariness and overconfidence effects that may develop during SIP.

3.2.2. Estimation Procedure for Pandemic Parameters

In light of Sections 2.1 and 3.2.1, and Appendix A, the set of pandemic propagation parameters

is Θ4 “ tβ0, t0, t1, t2, tm, κ0, κ1, κ2, σ, γ, µi, µ, ν
o, λ, λw, q, q2u .5 In addition, we have parameters

5We estimate a version of the model with ν “ 0 .
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in Θ5 “ tAC , AD, AUpsmt q, ai, al, ω, hu governing the impact of the pandemic on the time

series of consumption, dividend and unemployment. Hence, the full set of pandemic-related

parameters to be estimated is Θ4 YΘ5 .

Estimation is based on the number of new COVID-19 cases, the level of the S&P 500 index

during the outbreak and a measure of the index return volatility. Data for new cases are from

the COVID Tracking Project.6 Volatility is proxied by the average squared total return on the

S&P 500 index computed over a 10 days rolling window. The sample period is January 1, 2020

until August 7, 2020, therefore covering the first and second waves of the COVID pandemic in

the US.7

All target quantities are available at daily frequency. Input quantities in the model, however,

are available at different frequencies. Unemployment, consumption and dividend are available

at monthly frequency and are held constant between observations. This results in innovation

processes that are updated at monthly frequency. The regimes conditional probabilities Pt

therefore change at monthly frequency. The drift processes of unemployment, consumption and

dividend, are adjusted at daily frequency using the pandemic related effect Aαt ps
m
t qF

w
t 1E . The

stock price level and volatility are functions of the conditional probabilities, the consumption

and dividend level. They also depend on the volatility of the conditional probabilities which are

functions of the drift processes of unemployment, consumption and dividend. It follows that

through the updating procedure of the drift processes driven by the pandemic model, stock

price level and volatility can also be updated at daily frequency. The entire process is displayed

in a diagram in Figure 1. The estimation is performed jointly by minimizing the weighted

squared distance between model implied and observed (i) stock volatility (ii) stock price level

and (iii) number of new COVID cases, all measured at daily frequency. The weights applied

ensure that time series have the same average.8 Joint estimation of parameters in Θ4 YΘ5 is

6See https://covidtracking.com/data/us-daily
7The quantitative easing program started in March 2020 with a significant inflation of the FED balance

sheet. There is strong empirical evidence that QE affected stock prices, but with a significant delay. We focus
on the immediate real effect of the pandemic and do not extend the analysis to a period where the market is
too heavily biased by QE.

8The reference average is arbitrary. We use the average volatility in our implementation. Thus, we adjust
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justified by the fact that populations behavior affects the pandemic propagation parameters,

in particular the infection rate (3.4) and its evolution through time.

3.2.3. Parameter Estimates

The lower panel in Table 4 reports estimates of pandemic propagation and related policy pa-

rameters in Θ4 . The initial transmission rate β0 “ 2.345420 is found to decay at rate

κ0 “ 3.625968 pre-SIP, decay/appreciate at rate κ1 “ 22.887898 during SIP, to finally de-

cay at rate κ2 “ 12.877192 post-SIP. Estimates of infection regime changes are respectively

t1 “ 61.031222 (days) and t2 “ 123.08807 (days), roughly in line with average times of SIP and

LIFT implementations across states. The pandemic birth time is estimated at τ0 “ 12.287299

(days), and the time marking an acceleration of transmission during SIP is tm “ 64.078406

(days). The mean latency duration is σ´1 “ 15.665977 days, and the mean infectious duration

γ´1 “ 12.540573 days. Both values are consistent with estimates reported during the initial

phases of the COVID-19 outbreak. The fraction of severe and asymptomatic cases are estimated

at λ “ 0.018777 and p1´λqλw “ 0.622215 , respectively, again consistent with reported values.

The disease mortality parameter µi “ 2.22ˆ 10´5 is commensurate with COVID-19 mortality

statistics. As might be expected, the natural immunity rate νo “ 1, 2489ˆ 10´5 is extremely

low. Finally, the migration rates into and out of lockdown are respectively q “ 0.080264 and

q2 “ 0.000620 . Compliance q is low because some states never went into lockdown while

others implemented SIP at various dates. In addition, the policy did not apply to essential

workers. Reverse migration q2 is even lower because businesses were slow to reopen or because

firms continued operating using work-at-home.

time series Fi as F adjusted
ij “ FijˆpV̄

data{F̄i
data

q where V̄ data is the mean volatility over the sample period,

F̄i
data

is the mean of F data
i and the subscript j denotes the sampling time tj : j “ 1, ..., Nj .
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Table 4: Estimated coeficients for the BDRA-SSL model. Sample period for estimation is

January 1, 2020 to August 7, 2020.

Economic Model
Parameters Estimate
AUpsmt “ e1q -0.025679074
AUpsmt “ e2q -0.000101566
AUpsmt “ e3q -0.466881675
ACpsmt q 0.000465526
ADpsmt q 0.001137158
ai 0.99979819
al 0.999967397
ω 0.04120106
h 0.999786164

Pandemic Model
Parameters Estimate
βS 2.345420310
σ 0.063832594
γ 0.079741168
λ 0.018777052
λw 0.634122452
µi 0.000005600
νo 1.24892E-05
µ 0.000022200
κ0 (pre SIP) 3.625968997
q 0.080264840
q2 0.000620225
κ1 (during SIP) 22.88789899
κ2 (post SIP) 12.87719289
t1 61.03122276
t2 123.08807000
tm 64.07840632
τ0 (pre SIP) 12.28729912

The upper panel of Table 4 reports estimates of the economic effects of the pandemic on the

drifts of consumption, orthogonal dividend and orthogonal unemployment. The sensitivity of

consumption, assumed to be constant across economic regimes, is estimated at AC “ 0.000465 ,

showing a low response to the propagation via pew . The sensitivity of dividend, also assumed
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constant, is higher at AD “ 0.001137 . Estimates of both of these coefficients are positive

indicating a negative impact as the growth rate of the effective workforce falls. In contrast

the sensitivity of orthogonal unemployment, assumed to depend on the economic regime in the

estimation, is negative in all of these regimes. Its greatest magnitudes are in regimes smt “ e1

and smt “ e3 at respectively AUpe1q “ ´0.025679 and AUpe3q “ ´0.466881 . Unemploy-

ment responds strongly to the growth rate of the workforce if the economy is in a normal

or boom regime when the pandemic takes of. At AUpe2q “ ´0.000101 , the response during

a downturn is much weaker. Uncertainty about the regime implies that the actual response

of unemployment is determined by the average of these sensitivities, which is unambiguously

negative. A negative expected growth in the effective workforce therefore translates into an

expected increase in unemployment, and that response becomes stronger if regime probabil-

ities shift towards the normal and boom regimes as the pandemic unfolds. The efficiency of

work-at-home is estimated at a low ω “ 0.041201 , and the fraction of individuals working at

home is h “ 999786 . The efficiency loss associated with work-at-home can be attributed to

frictions in the organization of work, the transmission of information and the implementation

of decisions and processes. Last, the consumption discount factors of ill and laid-off individuals

are estimated at ai “ 0.999798 and al “ 0.999967 , respectively. Individuals stricken by the

pandemic shift their consumption basket towards medical goods and services, leading to a very

small reduction in overall expenditures. Laid-off individuals consume at nearly the same rate

during the pandemic due to government subsidies and related support schemes.

3.2.4. Model Performance: Targeted Variables

We now examine the performance of the BDRA-SSL model relative to variables that were

targeted in the estimation procedure, i.e., the number of new COVID-19 cases, the volatility

of the S&P 500, and the level of the S&P 500.

Figure 2 shows that the estimated model stays close to the observed number of cases in

the data and picks up the timing of changes in the propagation pattern. The most significant
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deviation occurs toward the end of the first wave of the outbreak, between days 130 and 150

counting from January 1, 2020. The match during the second wave, between days 160 and 220,

is very close.

Figure 3 demonstrates that the BDRA-SSL model is able to replicate the rapid increase

and decrease in volatility that took place during the first wave of the COVID-19 pandemic as

well as the magnitude and inverted V-shape of the effect recorded, i.e., the volatility spike.

In comparison the standard BDRA model without pandemic effect, called the base model

hereafter, only generates an increase in volatility with a significant delay, and of much smaller

amplitude; see Figure 7. It is also unable to reproduce the spike of the volatility event. The

reason for the discrepancy between the performances of the two models is because the base

model reacts only when the recession probability reaches a peak, whereas the pandemic model

reacts immediately following an increase in the number of COVID-19 cases. This discrepancy

is examined in more details in Section 3.2.5 below.

Figure 4 establishes that the BDRA-SSL model is able to reproduce the behavior of the

S&P 500 during the first two waves of the outbreak. The model generates the asymmetric

V-shape adjustment of the index and nearly matches the timing of the trough. It also matches

the steep decline of the index along with some of its temporary fluctuations, albeit with an

overshoot prior to the decline. Finally, it displays the progressive recovery found in the data,

but with more pronounced short term swings.

3.2.5. Regime Probabilities and Pandemic Model

To better understand the performance of BDRA-SSL, it is informative to focus on the dynamics

of the conditional regime probabilities. Figure 5 and 6 display their evolution for the model with

pandemic (BDRA-SSL) and the base model (BDRA). The shaded area corresponds to the brief

recession period February through April identified by NBER. The base model overestimates the

duration of the recession, and has a major reaction with a delay of two months. The volatility in

the base model, illustrated in Figure 7, increases with a delay exceeding two months and stays
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high for several months thereafter. It therefore completely misses the observed spike in volatility

during the first wave of the pandemic. In contrast, the conditional probabilities in BDRA-SSL

react sooner and with smaller magnitudes; see Figure 5. The increase in the recession probability

is confined to the NBER recession period, and it goes to zero immediately when this recession is

assessed to be over. Symmetrically, the normal regime probability decreases during the NBER-

declared recession, but rapidly goes to one thereafter. The volatility implied by BDRA-SSL

is directly impacted by the variations in the number of COVID cases through the pandemic

factor Fw
t , hence through changes in the expected drifts of consumption, unemployment and

dividends, and through associated changes in the regime probabilities. The model’s ability to

rapidly reflect short term variations tied to the epidemic not only generates a high level of

volatility at the onset of the crisis, but is also able to capture its rapid decrease as the number

of new cases decreases. The introduction of this pandemic channel in BDRA-SSL allows it to

correctly estimate the duration of the recession, perfectly time the spike in volatility, and match

the magnitude and profile of the volatility event.

Figure 3 shows there is a second volatility event in the data, very short-lived and of small

magnitude, between days 160 and 170 of the sample. This event is not picked up by BDRA-SSL

even though the pandemic flares again during the second wave, roughly between days 160 and

220 in the sample. As indicated above the recession (normal regime) probability is null (one)

during that period, implying the model becomes very responsive to pandemic shocks. The

reason why volatility does not spike in the model is because the pandemic factor Fw
t is close

to null, i.e., pew is nearly flat, during that period, implying the absence of a significant reaction

in the underlying factors and the regime probabilities (see Figure 8).

4. Comparison of Models

We now compare the performances of different models with BDRA-SSL. Contenders are the

nested alternatives, CRRA-SSL, BDRA and BDRA-SSL-C, and the non-nested BDRA-SIRD-

SL model. The model CRRA-SSL has constant parameters Rk “ R : k P K across regimes.
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In BDRA, the econonic model does not depend on the SSL component: AC “ AD “ AU “

ai “ al “ 0 and ω “ h “ 1 . BDRA-SSL-C has constraints ω ě 0.7, h ě 0.9 on efficiency and

work-at-home fraction. The non-nested BDRA-SIRD-SL model has SIRD pandemic dynamics

instead of SEIRD. In this specification, contaminated individuals transition directly from the

susceptible category to the infectious category. The remainder of the model, in particular the

policy components, SIP (S) and LIFT (L), remain the same. All models are estimated using

the sequential procedure described in previous sections. Parameter estimates are in Table 5.

As expected, estimates of pandemic parameters, which are jointly estimated, display small

variations across models, reflecting structural changes in models, including behavioral feedback

effects.

Parameters of the pandemic model are estimated using a quasi-log-likelihood ratio (QLR)

estimator. Let Fij denote time series Fi at sampling times tj : j “ 1, ...., N . BDRA-SSL-C,

CRRA-SSL, and BDRA, are all nested in BDRA-SSL. The QLR estimator minimizes the sum

of squared errors over multiple time series

(4.1) JN ” SSEpN,Qq “
N,Q
ÿ

i,j

`

F data
ij ´ Fmodel

ij

˘2

where N is the number of time points, and Q the number of time series involved. It can be

computed over targeted variables Q “ 3 or subsets thereof Q ă 3 , and measures the fit of the

model to the data. Table 6 provides test results based on number of cases, stock volatility, and

the stock price in the the sample and in the model. The BDRA-SIRD-SL model is not nested.

To assess its relative performance Bayesian and Akaike information criteria are calculated.

Table 6 shows that model specification tests reject the hypothesis that any of the nested al-

ternatives, BDRA-SSL-C, CRRA-SSL, and BDRA, dominates BRDRA-SSL. This is confirmed

by both BIC and AIC model selection criteria. The table also shows that the non-nested

BDRA-SIRD-SL model is dominated. Both the BIC and AIC model selection critera choose

BDRA-SSL as the best model among all alternative specifications, nested and non-nested,

despite it being least parsimonious.

28



Table 5: Estimated coeficients for BDRA-SSL, CRRA-SSL, BDRA and BDRA-SSL-C (con-

strained). Sample period is January 1, 2020 to August 7, 2020.

Economic Model Parameters
BDRA-SSL CRRA-SSL BDRA BDRA-SSL-C BDRA-SIRD-SL

AU psmt “ e1q -0.025679074 -0.026301739 0 -0.034872034 -0.028211856
AU psmt “ e2q -0.000101566 -2.32016E-05 0 -6.35201E-06 -9.18794E-05
AU psmt “ e3q -0.466881675 -1.87101006 0 -1.182054436 -0.469951409
ACpsmt q 0.000465526 0.009732189 0 0.000791184 0.002305647
ADpsmt q 0.001137158 0.002307249 0 0.004175592 0.004184565
ai 0.99979819 0.503403821 1 0.999095977 0.888101087
al 0.999967397 0.533484811 1 0.999963014 0.999874155
ω 0.04120106 0.994271792 1 0.700019856 0.083317095
h 0.999786164 0.751741125 1 0.900225101 0.371829701

Pandemic Model Parameters
βS 2.34542031 2.326128262 2.322575926 2.350291398 0.365428193
σ 0.063832594 0.067316419 0.076304487 0.064480039 0.090150029
γ 0.079741168 0.090294066 0.078438606 0.086906266 0.031253917
λ 0.018777052 0.007510959 0.021923334 0.018180779 0.087788844
λw 0.634122452 0.638395058 0.605927816 0.649034818 0.794464859
µi 0.0000222 0.0000222 0.0000222 0.0000222 0.0000222
νo 1.24892E-05 1.6264E-05 4.65216E-06 1.58571E-06 7.0138E-06
µ 0.0000056 0.0000056 0.0000056 0.0000056 0.0000056
κ0 (pre SIP) 3.625968997 3.885362327 3.981425808 3.904037459 4.329844876
q 0.08026484 0.08161096 0.079885292 0.079729612 0.071758914
q2 0.000620225 0.000739624 0.001005587 0.000600845 0.000311312
κ1 (during SIP) 22.88789899 22.78483687 23.19114615 22.87036267 19.47293397
κ2 (post SIP) 12.87719289 14.73788209 14.5132075 12.83753079 6.06472649
t1 61.03122276 60.46892173 61.17339848 61.17140188 66.10591591
t2 123.08807 123.7490243 119.9154812 123.047539 132.2162616
tm 64.07840632 61.80245683 66.83447283 62.86362967 66.83447283
τ0 (pre SIP) 12.28729912 17.25446367 21.4453125 15.10062809 5.024440623
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Table 6: Model Specification Tests and Model Selection Criteria. Models are nested and non-nested. Spec-

ification tests are based on the quasi-log-likelihood ratio statistic QLRN “ Np pJN ´ rJN q statistic where N

is the number of observations and pJN ( rJN ) is the constrained (unconstrained) quasi-log-likelihood function.

The model selection criteria are BIC “ NJN ´
1
2np lnN (Bayesian) resp. AIC “ NJN ´np (Akaike) where

JN is the quasi-log-likelihood function and np is the number of model parameters.

Model BDRA-SSL BDRA-SSL-C CRRA-SSL BDRA BDRA-SIRD-SL

# constr. param. (p) unconstrained 4 2 9 non-nested

Model Specifcation Tests

QLR-statistic 949.3035 8638.2120 37233981.4565

Critical value 5.9915 5.9915 16.9190

p-value 0.0000 0.0000 0.0000

Model Selection Criteria

BIC 2063.6955 3016.8492 10705.7577 37236062.4777 2099.1963

AIC 2107.1740 3058.4775 10747.3860 37236097.6305 2138.0494

The table also reveals that performance deteriorates substantially when the SSL pandemic

component does not feed back into the economic model, as for the stripped model (BDRA).

The main reason is because BDRA fails to capture the V-shaped pattern in the stock price

adjustment. It also shows that the SSL model as well as BDRA are essential ingredients for

good performance intra-pandemic. Figure 9 illustrates performance along one dimension, by

displaying the volatility fits of the candidate models.

5. Conclusion

In this paper we extended the BDRA model to accommodate unpredictable pandemic events

such as the onset of an outbreak and the discovery of a vaccine, as well as associated mitigating

policies such as SIP and LIFT. The BDRA-SEIRD-SIP-LIFT model, called BDRA-SSL, was

estimated using economic and disease data from the COVID-19 outbreak. The estimated

model was found to provide a close fit to the realized trajectories of variables targeted in the
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estimation, i.e., the number of new cases, the S&P 500 level and the index return volatility.

Model specification tests and model selection criteria show it dominates nested and non-nested

alternatives such as BDRA, CRRA-SSL and BDRA-SIRD-SL during the pandemic. At the

same time, it generated a close match to 25 unconditional moments of economic time series,

hence displayed consistency with long run statistical properties of economic and financial time

series. Beliefs-dependent risk aversion was found to be critical for explanations of phenomena

pre- and intra-COVID-19 outbreak.

While the model developed provides a comprehensive explanation for long term and short

term features of the data, it leaves room for further improvements. Among the phenomena that

are not explained are the level and behavior of the short rate and of the term structure of interest

rates, both in the long run and during the COVID-19 outbreak. In that regard, the average

interest rate and bond yields generated by the model are too high, and short term fluctuations

too large to properly capture the data. A critical ingredient for that purpose is likely to be

monetary policy. Actions by the Federal Reserve, e.g., pertaining to the federal funds rate,

have undoubtedly shaped the response of fixed income markets during the outbreak. More

generally, Quantitative Easing has had a profound effect on these markets since its inception

in 2008. Incorporating such monetary policies in the analysis is an avenue for future research.
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Figure 1: Estimation process diagram. Box colors are Yellow: parameters, Green: models,

Grey: data, Pink: model output - intermediary quantities, Blue: model output - target quan-

tities.
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Figure 2: Number of cases in the data (solid blue) and in the BDRA-SSL model (dash red).

The sample period is January 1st through August 7th. The x-axis displays the day number.
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Figure 3: Stock price volatility: 10 days rolling volatility of the S&P500 (solid blue) and in

the BDRA-SSL model (dash red). The sample period is January 1st through August 7th. The

x-axis displays the day number.
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Figure 4: Stock price level: S&P500 dividend not reinvested (solid blue) and in the BDRA-SSL

model (dash red). Prices are normalized at 100 on January 1st. The sample period is January

1st through August 7th. The x-axis displays the day number.
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Figure 5: Conditional regime probabilities for the BDRA-SSL model. Normal regime in blue,

Recession regime in red, Boom regime in yellow. The shaded area corresponds the NBER

recession period. The sample period is January 1st through August 7th. The x-axis displays

the day number.
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Figure 6: Conditional regime probabilities for the BDRA model without SSL. Normal regime

in blue, Recession regime in red, Boom regime in yellow. The shaded area corresponds to the

NBER recession period. The sample period is January 1st through August 7th. The x-axis

displays the day number.
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Figure 7: Volatility evolution in the data (solid blue) and the BDRA model without SSL (dash

green). The sample period is January 1st through August 7th. The x-axis displays the day

number.
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Figure 8: Evolution of pandemic factor Fw . The sample period is January 1st through August

7th. The x-axis displays the day number.
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Figure 9: Comparative volatility evolution in the data (solid blue), BDRA-SSL (dash red),

CRRA-SSL (dash black), and BDRA (dash green). The sample period is January 1st through

August 7th. The x-axis displays the day number.
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6. Appendix

6.1. Appendix A: the Stochastic SEIRD-SIP-LIFT Model

This appendix describes the SEIRD model under a SIP-LIFT policy, i,e,, a shelter-in-place

(SIP) policy followed by a lifting (LIFT) of the restriction. Combining these three elements

gives the SSL model. The SSL model developed here, extends Detemple (2022) by incorporating

the unpredictable nature of pandemics and vaccine discoveries, captured by the Markov chain

in Section 2.1. For generality we allow all the coefficients to be time-dependent.

In this model, populations in S, E , I transition to a sheltered stay-at-home state upon im-

plementation of SIP and stay put until the policy is lifted. Sheltered (quarantined) populations

are denoted with a superscript Q . Sheltered populations further split between work-at-home

and laid-off populations, according to the fractions h, l where h ` 1 “ 1 . Work-at-home

and laid-off populations are subscripted by h and l , respectively. All infectious populations,

sheltered and non-sheltered, split in three subgroups: asymptomatic, symptomatic mild, and

symptomatic severe. Figure 6.1 illustrates the propagation mechanism across populations under

SIP. Subgroups are not displayed.

We assume implementation of SIP takes time. The migration rate from S, E , I to the

corresponding sheltered categories takes place at the constant rate q . Likewise when SIP

is lifted, i.e., during LIFT, reverse migration from the sheltered categories to non-sheltered

ones occurs at the constant rate q2 . In both cases, delays in implementation occur for a

variety of reasons including the fact that policy recommendations are typically not uniformly

adopted across states and, even when they are uniformly adopted, implementation may not be

synchronous or instantaneous.

The evolution of populations in the SSL model is described by the following system of

differential equations with stochastic component due to the unpredictable vaccine event
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Figure 10: Flowchart for the SEIRD-SIP model.

(6.1)

dps “ pµtp1´ pd ´ p
Q
s,h ´ p

Q
s,l ´ psq ´ βtp

asy
i ps ´ pqt ` ν

o
t ` νt1Vtqpsqdt

dpQs,h “ pqthps ´ pν
o
t ` νt1Vtqp

Q
s,hqdt

dpQs,l “ pqtp1´ hqps ´ pν
o
t ` νt1Vtqp

Q
s,lqdt

dpe “ pβtp
asy
i ps ´ pqt ` µt ` σtqpeqdt

dpQe,h “ pqthpe ´ pµt ` σtqp
Q
e,hqdt

dpQe,l “ pqtp1´ hqpe ´ pµt ` σtqp
Q
e,lqdt

dpi “ pσtpe ´ pqt ` µt ` µit ` γtqpiqdt

dpQi,h “ pqthpi ` σtp
Q
e,h ´ pµt ` µit ` γtqp

Q
i,hqdt

dpQi,l “ pqtp1´ hqpi ` σtp
Q
e,l ´ pµt ` µit ` γtqp

Q
i,lqdt

dpr “ pγtppi ` p
Q
i,h ` p

Q
i,lq ´ µtpr ` pν

o
t ` νt1Vtqpps ` p

Q
s,h ` p

Q
s,lqqdt

dpd “ µitppi ` p
Q
i,h ` p

Q
i,lqdt
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Several additional aspects of the propagation model under SIP are worth highlighting. First,

all births are assigned to the susceptible classes. For sheltered susceptible SQ , as the birth rate

equals the death rate, natural growth is null. For non-sheltered susceptible S , natural growth

is determined by the excess of birth in the surviving population 1 ´ pd net of birth assigned

to the sheltered susceptible pQs over death in the non-sheltered susceptible ps . Aggregating

over sheltered and non-sheltered populations gives a flow of birth equal to p1´ pdqµ . Second,

populations in SQ remain isolated, until the policy is lifted or they transition to R due to

natural immunity or vaccination. Hence, they cannot be contaminated during that period.

Third, R includes all recovered, naturally immune and vaccinated populations. Such individ-

uals are immune to the disease, therefore apt to rejoin the workforce.9 Fourth, D includes

all the deceased from an infection: the fraction pd is the cumulative death toll as a fraction

of the initial population p0 “ 1 . Last, the transition from S to E does not depend on

sheltered individuals. Contamination, in fact, is entirely driven by non-sheltered asymptomatic

individuals.

As previously indicated, lifting SIP, i.e., applying LIFT, reverses the migrations from S, E , I

to SQ, EQ, IQ in the model above. The negative of the reverse compliance rate ´q2 replaces

q . Applying that rate to sheltered symptomatic infectious populations does not affect the

economic properties of the model, because such populations are not able to work by assumption.

6.2. Appendix B: Proofs

Proof of Proposition 2.1. The first order condition for population j P ts, e, i, ru is

(6.2)
K
ÿ

k“1

Pk

ˆ

ct
aj

˙´Rk

“
yξt
at
” Ht.

where y is a constant Lagrange multiplier, ξt is the stochastic discount factor and at “ e´βut

is the subjective discount factor. Optimal consumption is ct “ ajIpHtq where the function I ,

9The formulation abstracts from issues of incomplete information pertaining to the health status of popula-
tions, in particular asymptomatic infectious ones.
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by concavity and Inada conditions, is the unique solution of the equation
řK
k“1 PkI

´Rk “ H

and is independent of j .

Equilibrium in the consumption good market ensures
ř

jPts,e,i,ru pjajIpHtq “ Ct . Solving

gives IpHtq “ Ct{p
a
c with pac “

ř

jPts,e,i,ru pjaj. Hence, up to a constant, the stochastic discount

factor is

(6.3) ξt “
K
ÿ

k“1

e´βut
ˆ

Ct
pact

˙´Rk

Pkt.

The jump in the SDF at t “ τ0 is

(6.4)
∆ξt
ξt´

“

K
ÿ

k“1

e´βutC´Rk
t Pkt

řK
k“1 e

´βutC´Rk
t Pkt

´

ppactq
Rk ´ 1

¯

dN e
12,t

where pact “ 1 `∆ipλi ` λsai ´ 1q and ∆i is the jump in pit , and where we used pact´ “ 1 .

The coefficient λs “ p1 ´ λqp1 ´ λwq is the fraction of symptomatic mild in the infectious

population, λi “ p1 ´ λqλw is the fraction of asymptomatic. The jump in the SPD at t “ τ1

is null because pac is continuous at that point

Given the observed filtration, the SPD has dynamics,

dξt{ξt´ “ ´rt´dt´
ÿ

αPtC,G,Y u

θαt´dν
α
t ´ θ

e2
t´dÑ

e
12,t.

where r is the interest rate, θαt for α P tC,G, Y u is the market price of risk associated

with the innovations dναt “ dWα
t ´

ř3
k“1 µ

αpekqPktdt , dÑ e
ij,t “ dN e

ij,t ´ Λe
ijdt are the jump

innovations and θ
ej
t are the market prices of jump risks. Taking derivatives on both sides of

(6.3) and identifying drift, jump, and volatility coefficients for diffusion and jump risks yields

the formulas announced. In particular,

(6.5) θe2t´ “
K
ÿ

k“1

e´βutC´Rk
t Pkt

řK
k“1 e

´βutC´Rk
t Pkt

´

1´ ppactq
Rk

¯

and θe3t´ “ 0 . The interest rate has the jump premium component θe2t´Λ12 .
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Proposition 6.1. Define HB
kt ” e´βkt ppactq

Rk C´Rk
t , pHB

t q
1 “ rHB

1t, ¨ ¨ ¨ , H
B
Kts and the state

variable Zt “ pHB
t q
1{
`

HB
t

˘1
Pt . The price-dividend ratio is St{Dt “ Z 1tΥptqPt where the

K2 ˆK2 matrix Υptq is defined in (6.9).

Proof of Proposition 6.1. Define the stopping times τ1 “ inftt : set “ e2u and τ2 “ inftt : set “

e3u and note that on the interval t P p0, τ1q ” T1 , set “ e1 , on t P rτ1, τ2q ” T2 , set “ e2 ,

and on t P rτ2,8q ” T3 , set “ e3 . The time partition tT1, T2, Teu will be used to show that

Et rξvDv|τ1, τ2s “ Z 1tΥ
Spt, v, set , τ1, τ2qPt where Z is an observed state variable. The stock price

and price dividend ratio are then obtained by integrating over the densities of the switching

times. Note that on each sub-interval Tj , set “ ej and the population weights in the SSL

model are deterministic functions of time, switching times and their known initial values.

Using Dt “ Cκ
t Gt (see Appendix C), define Hkt ” e´βkt ppactq

Rk C´Rk
t Dt “ HB

ktDt “

e´βkt ppactq
Rk Cκ´Rk

t Gt and the vectors H 1
t “ rH1t, ¨ ¨ ¨ , HKts and pHB

t q
1 “ rHB

1t, ¨ ¨ ¨ , H
B
Kts .

The state price density is ξt “ yξut with ξut “
`

HB
t

˘1
Pt and y constant. Then define

the filtration augmented by the switching times G “ F
Ž

σpτ1, τ2q , the conditional expec-

tation Mt,v ” E rξuvDv|Gts for arbitrary v ą τ2 and conjecture Mt,v “ Nt,v where Nt,v ”

`

DtH
B
t

˘1
ΥSpt, v, set , τ1, τ2qPt for t ď v , with boundary condition Mv,v “ ξuvDv “

`

DvH
B
v

˘1
Pv ,

i.e., ΥSpv, v, ¨, ¨, ¨q “ IK , the K ˆK identity matrix. Next, note that all drift and diffusion

coefficients depend on set only through τ1, τ2 . It follows that ΥS is a function of t, v, τ1, τ2

only. If the conjecture is true, then Nt,v

`

DtH
B
t

˘1
ΥSpt, v, τ1, τ2qPt must be a G -martingale.

First, P is continuous, and H is continuous except at t “ τ1 where pac jumps. As

Pt “ Pt´ , Ht “ Ht´ for t ‰ τ1 and H 1
t “ H 1

t´diag
“

ppactq
Rk
‰

at t “ τ1 , we then obtain

∆Nt,v “pHt´q
1
´´

diag
”

pRk
ct

ı

ΥS
pt, v, τ1, τ2q ´ΥS

pt´, v, τ1, τ2q
¯

1t“τ1

¯

Pt´

` pHt´q
1
``

ΥS
pt, v, τ1, τ2q ´ΥS

pt´, v, τ1, τ2q
˘

1t“τ2
˘

Pt´

` pHt´q
1
``

ΥS
pt, v, τ1, τ2q ´ΥS

pt´, v, , τ1, τ2q
˘

1t‰τ1,t‰τ2
˘

Pt´.

Second, the martingale Mt,v can be decomposed into a continuous and discontinuous part:
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Mt,v “ M c
t,v `Md

t,v . The jumps in the discontinuous part Md
t,v only depend on the jumps in

the regime indicator set . However, as in G the jump times and therefore the increments ∆set

are known, it follows that ∆Mt,v “ 0 . If the conjecture holds, it must therefore be the case

that ∆Nt,v “ 0 , implying ΥSpt, v, τ1, τ2q is continuous for t P Tj and at the boundaries,

ΥS
pτ1´, v, τ1, τ2q “diag

”

`

pacτ1
˘Rk

ı

ΥS
pτ1, v, τ1, τ2q

ΥS
pt´, v, τ1, τ2q “ΥS

pt, v, τ1, τ2q for all t ‰ τ1.

Ito’s formula and the G -martingale property then imply

´pHtq
1 BΥ

S pt, v, τ1, τ2q

Bt
Pt “pHtq

1
´

`

µHt
˘1

ΥS
pt, v, τ1, τ2q `ΥS

pt, v, τ1, τ2qΛ
1
¯

Pt

` pHtq
1

¨

˝

ÿ

αPtC,Gu

´

σH,αt

¯1

ΥS
pt, v, τ1, τ2qσ

α,P
t

˛

‚Pt

where, with γk “ κ´Rk ,

σα,Pt “ diag

„

µαkt ´ pµαt
σα



, σH,Ct “ diag rγksσ
C , σH,Gt “ σGIK

µHt “ ´diag

„

βk ´ γkpµ
C
t ´RkF

a
t 1ttěτ1u ´

1

2
γkpγk ´ 1q

`

σC
˘2


` pµGt IK

pµαt “
K
ÿ

k“1

µαktPkt; pAαt “
K
ÿ

k“1

AαkPkt; µαkt “ µαok ` A
α
kF

w
t 1ttěτ1u α P tC,Gu

Fw
t “ Fw

pt, τ1, τ2q “
µ
pew
t

pewt
; µ

pew
t “ µp

e
wpt, τ1, τ2q; pewt “ pewpt, τ1, τ2q

F a
t “ F a

pt, τ1, τ2q “
µ
pac
t

pact
; µ

pac
t “ µp

a
c pt, τ1, τ2q; pact “ pacpt, τ1, τ2q

µαk pt, τ1, τ2q “ µαok ` A
α
kF

w
pt, τ1, τ2q1těτ1 .

Cancelling terms on the RHS in the first and second lines shows that if ΥS solves the ODE,

´
B

Bt
ΥS
pt, v, t1, t2q “diagrgkpt, t1, t2qsΥ

S
pt, v, t1, t2q `ΥS

pt, v, t1, t2qΛ
1
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` diagrγksΥ
S
pt, v, t1, t2q diagrµCk pt, t1, t2qs

`ΥS
pt, v, t1, t2q diagrµGk pt, t1, t2qs

with boundary conditions ΥSpv´, v, t1, t2q “ IK for t P rt1, vq , ΥSpt2´, v, t1, t2q “ ΥSpt2, v, t1, t2q

for t P rt1, t2q , and ΥSpt1´, v, t1, t2q “ diag
”

`

pact1
˘Rk

ı

ΥSpt1, v, t1, t2q for t P p0, t1q , where

gkpt, t1, t2q ” ´βk `
1

2
γkpγk ´ 1q

`

σC
˘2
`RkF

a
pt, t1, t2q1ttět1u,

then indeed Mt,v “
`

DtH
B
t

˘1
ΥSpt, v, τ1, τ2qPt for t ď v .

Integrating over v then gives with υpt, t1, t2q ”
ş8

t
ΥSpt, v, t1, t2qdv ,

´
B

Bt
υ pt, t1, t2q “IK2 ` diagrgkpt, t1, t2qsυ pt, t1, t2q ` υ pt, t1, t2q

`

Λ1 ` diagrµGk pt, t1, t2qs
˘

` diagrγksυ pt, t1, t2q diagrµCk pt, t1, t2qs

with boundary condition, rυp8, t1, t2qsij “
`

e1i b e
1
j

˘

”

´Υ
´1
ı

vecpIK2q for t P rt1,8q , and

υpt1´, t1, t2q “ diag
”

`

pact1
˘Rk

ı

υSpt1, t1, t2q for t P p0, t1q , where10

Υ ” IK2 b diagrgks `
`

Λ` diagrµGoks
˘

b IK2 ´ diagrµCoks b diagrγks(6.6)

gk ” ´βk `
1

2
γkpγk ´ 1q

`

σC
˘2
.(6.7)

Define Zt “ HB
t {

`

HB
t

˘1
Pt and assume the largest eigenvalue of ´Υ is negative. We then get

(6.8) St “
Et

”

ş8

t

`

HB
v

˘1
PvDvdv

ı

pHB
t q
1
Pt

“ DtZ
1
tΥptqPt

10The Kronecker product of matrices A and B , of dimensions K1 ˆ K2 and L1 ˆ L2 , is the matrix
AbB “ rAijBs of dimension pK1 ˆ L1q ˆ pK2 ˆ L2q where each element of A is multiplied by matrix B .

47



where

(6.9) Υptq “

$

’

’

’

’

&

’

’

’

’

%

υ pt, τ1, τ2q t ě τ2
ş8

t
υ pt, τ1, yqλ

e
23e

´λe23py´tqdy t P rτ1, τ2q
ş8

t

ş8

x
υ pt, x, yqλe12λ

e
23e

´λe12px´tq´λ
e
23py´xqdydx t P r0, τ1q

.

This completes the proof.

6.3. Appendix C: Orthogonalization

The state variables X 1
t ” rCt, Gt, Yts are orthogonalized state variables derived from macro

variables rXt ” rCT , Dt, Uts , where Ct is per capita consumption, Dt aggregate dividends,

and Ut unemployment. Macro state variables have covariance matrix Σ and dynamics

(6.10) d rXt “ diagr rXts

´´

µ
rXsmt `

rApsmt qF
w
t 1Et

¯

dt` ΣdWv

¯

where rA1psmt q “ rA
Cpsmt q, A

Dpsmt q, A
Upsmt qs , µ

rX is a 3ˆ3 matrix with rows given by expected

growth rates, Σ is the Choleski decomposition of the covariance matrix ΣΣ1 ,

µ
rX
“

»

—

—

—

—

–

µC1 µC2 µC3

µD1 µD2 µD3

µU1 µU2 µU3

fi

ffi

ffi

ffi

ffi

fl

, Σ ”

»

—

—

—

—

–

σC 0 0

ρCDσD
b

1´ pρCDq2σD 0

ρCUσU ρDUσU
b

1´ pρCUq2 ´ pρDUq2σU

fi

ffi

ffi

ffi

ffi

fl

,

and W 1
t “

“

WC ,WG,W Y
‰

is a 3 -dimensional vector of independent Brownian motions.

To find the orthogonalized state variables, define rxit “ log rXit and note that

drxt “

ˆ

µ
rXsmt ´

1

2
dg rΣΣ1s ` Apsmt qF

w
t 1Et

˙

dt` ΣdWt

where for a mˆm square matrix B , dgrBs is the mˆ 1 vector of diagonal elements of B .
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Then define pxt “ Krxt with K “ diagrdgrΣssΣ´1 and note that

dpxt “ K

ˆ

µ
rXsmt ´

1

2
dg rΣΣ1s ` rApsmt qF

w
t 1Et

˙

dt` diagrdgrΣssdWt.

Finally, set Xt “ exp ppxtq and note that

(6.11) dXt “ diagrXts
`

µXpt, smt , s
e
t qdt` diagrdgrΣssdWt

˘

(6.12) µXpt, smt , s
e
t q “ K

ˆ

µ
rXsmt´ ´

1

2
dg rΣΣ1s ` rApsmt qF

w
t 1Et

˙

`
1

2
dgrdgrΣsdgrΣs1s.

This establishes the one-to-one mapping between underlying and orthogonalized macro factors

in (2.8), (2.9), (2.10). With Apsmt q “ rA
Cpsmt q, A

Gpsmt q, A
Y psmt qs , the relations are Apsmt q “

K rApsmt q , µXo pstq “ K
´

µ
rXst´ ´

1
2
dg rΣΣ1s

¯

` 1
2
dgrdgrΣsdgrΣs1s and ΣX

ij “ 1ti“judgrΣsi . The

last relation shows σC “ σC , σG “ σD
b

1´ pρCDq2 and σY “ σU
b

1´ pρCUq2 ´ pρDUq2 .
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