
2

Multi-Signal Approaches for Repeated Sampling
Schemes in Inertial Sensor Calibration

Gaetan Bakalli, Davide A. Cucci, Ahmed Radi, Naser El-Sheimy, Roberto Molinari, Olivier Scaillet
and Stéphane Guerrier

Abstract—Inertial sensor calibration plays a progressively
important role in many areas of research among which navigation
engineering. By performing this task accurately, it is possible
to significantly increase general navigation performance by cor-
rectly filtering out the deterministic and stochastic measurement
errors that characterize such devices. While different techniques
are available to model and remove the deterministic errors, there
has been considerable research over the past years with respect
to modelling the stochastic errors which have complex structures.
In order to do the latter, different replicates of these error signals
are collected and a model is identified and estimated based on one
of these replicates. While this procedure has allowed to improve
navigation performance, it has not yet taken advantage of the
information coming from all the other replicates collected on the
same sensor. However, it has been observed that there is often
a change of error behaviour between replicates which can also
be explained by different (constant) external conditions under
which each replicate was taken. Whatever the reason for the
difference between replicates, it appears that the model structure
remains the same between replicates but the parameter values
vary. Assuming the model structure has been identified, in this
work we therefore consider and study the properties of different
approaches that allow to combine the information from all
replicates considering this phenomenon, confirming their validity
both in simulation settings and also when applied to real inertial
sensor error signals. By taking into account parameter variation
between replicates, this work highlights how these approaches
can improve the average navigation precision as well as obtain
reliable estimates of the uncertainty of the navigation solution.

Index Terms—Generalized Method of Wavelet Moments, In-
ertial Sensor Calibration, Stochastic Error, Extended Kalman
Filter, Navigation

I. INTRODUCTION

INERTIAL sensors are ubiquitous in modern navigation
systems, with applications ranging from space missions,

aviation and drones, to personal navigation in smartphones.
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They provide high-frequency and short-term precise informa-
tion on the orientation and velocity change of the platform they
are placed on. Inertial measurements are typically integrated
with other sources to obtain estimates of the platform position
and orientation in space. Examples are Global Navigation
Satellite Systems within strap-down inertial navigation [1] and
cameras for visual-inertial systems [2].

Inertial sensors, like any other sensor, have errors that are
both deterministic and stochastic. Deterministic errors such as
the stable parts of biases, scale factors and non-orthogonality
of the axes can be pre-calibrated and removed from the mea-
surements directly. The additive stochastic part of error can
only be taken into account “on-flight” within the estimation
process to serve two main purposes: i) estimation of the time-
correlated part of those stochastic errors (to remove them from
the measurements and improve navigation accuracy [3]) and,
ii) estimation of uncertainty associated with the navigation
states, such as position and orientation. This requires proper
modeling of the stochastic errors of the sensors, often referred
to as “stochastic calibration”. This task is generally performed
in a black-box fashion on a device-per-device basis, acquiring
long series of static measurements which are composed by the
stochastic error itself, plus constant terms such as gravity and
the Earth rotation rate which can be easily removed. Stochastic
calibration of inertial sensors has been widely studied in the
last decades and has been mainly focused on identifying the
model structure (that we denote as F ) as well as the parameters
(that we denote as ✓) that characterize these models. While
identifying the model structure F is not necessarily a major
challenge since various visual tools and selection criteria are
available (see [4]–[7]) as used for example in our case study
in Sec. V, the focus has been on identifying (estimating) the
parameter vector ✓ 2 ⇥ ⇢ IRp which is indeed the focus
of this work. More specifically, we assume that the general
model structure F can be found within the class of composite
models given by

Xt =
LX

l=1

Nt,l, (1)

where (Xt) represents the stochastic measurement error in-
dexed over time by t and (Nt,l) represents the lth component
to this error generated by a model such as a white noise, a
first-order autoregressive process (Gauss-Markov process), a
moving-average process, a random walk or other models such
as those discussed in [8] or [9] for example. Having identified
the components (and hence F ) through the previously men-
tioned tools, various methods are available to identify/estimate
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FIG. 1: Empirical WV (plain doted line) coming from 8 replicates of Bosch Sensortec BMI085 MEMS IMU accelerometer (left plot) and

gyroscope (right plot), with their respective 95% confidence intervals (shaded areas).

the parameter ✓ that characterize them, going from power
spectral density analysis [10], [11] to the correlation of filtered
sensor outputs [12]. The majority of these methods aim
at decomposing these stochastic signals and/or performing
system identification procedures to model them [13], [14].
The most commonly employed techniques are, for example,
those based on Maximum-Likelihood Estimation [15], [16]
(hereinafter MLE) or methods related to the likelihood setting
such as Bayesian-type approaches [5], [17] (where model
and parameter identification is performed jointly) as well
as the Allan variance [18], [19] (hereinafter AV). Having
been initially conceived for the characterization of phase and
frequency instability of precision oscillators, the AV approach
consists in multiple separate regressions on the linear segments
of the AV plots in order to recover the underlying parameters
of interest for the stochastic error signal and represents the
de-facto standard for inertial sensor stochastic modeling [4],
[11]. However, the AV plot is a graphical device that requires
a manual inspection and is consequently sensitive to the user’s
proficiency as well as being burdened with many theoretical
limitations including significant (asymptotic) bias in the esti-
mated parameters of the postulated stochastic model [8], [20].
The alternative likelihood-based techniques, on the other hand,
suffer from important computational and numerical issues due
to the need to estimate the underlying states using a (Extended)
Kalman-Filter and then to evaluate the likelihood which can
be computationally cumbersome (or intractable) for the size
of calibration signals [21].

To overcome the limitations of the AV as well as the
important computational limitations of MLE and likelihood-
type techniques, the Generalized Method of Wavelet Mo-
ments (GMWM) was proposed in [22] and makes use of
the quantity called Wavelet Variance (WV) that, in specific
settings, is equivalent to the AV up to a constant. As de-
scribed more formally in the next section, using a matching
technique, the WV is of reasonable dimensions even for large
signals and allows to easily recover the parameters ✓ of the
postulated/identified stochastic model F providing a statisti-

cally appropriate and computationally feasible technique for
stochastic calibration of inertial sensors. However, while the
GMWM has improved the task of stochastic calibration for
Inertial Measurement Units (IMUs), it still relies on the com-
mon approach to calibration which consists in modelling and
removing stochastic errors measured on a single experimental
run (replicate) of IMU measurements in static conditions.
Although this approach still remains valid, it is also common
for IMU calibration procedures to perform several independent
experimental runs on the same sensor from which the single
signal for calibration is chosen. The latter choice however
remains somewhat random aside from visually assessing the
behavior of the single replicates thereby exposing oneself to
the risk of picking a signal that would not generalize well.
More importantly, this approach does not consider the informa-
tion provided by the different replicates which can contribute
to improving the modelling process in terms of estimation (and
consequent navigation) accuracy. To address this need, [23]
and subsequently [24] underlined how the different replicates
are indeed important to perform a comprehensive and accurate
estimation procedure when assuming a fixed parameter ✓0 and
put forward some techniques for this purpose.

While delivering solutions for the above setting, [23] and
[24] nevertheless also underline that these replicates need to be
used with caution due to possible changes in behavior between
individual signal replicates. Using a WV representation of
these signals, Fig. 1 provides an example of this behavior on
eight independent recordings in static conditions coming from
a Bosch Sensortec BMI085 MEMS IMU accelerometer and
gyroscope. It can be seen how the shape of the WV remains
roughly the same between replicates (i.e., the underlying
model structure F remains constant) but their values differ
significantly, mainly over the first scales, since their confidence
intervals do not overlap thereby indicating difference beyond
simple probabilistic randomness of the WV estimator. The
latter conclusion was reached in various settings (as done
in Sec. V) also through a statistical test put forward in
[23] that checks the null hypothesis that all replicates come
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from a model with fixed parameter ✓0 (and hence that the
differences between the WV of each replicate are simply
due to sampling randomness). Building on this observation,
[24] defined this setting as “near-stationary” where, instead
of considering a stochastic model characterized by a fixed

parameter vector ✓0, they postulate that the parameters of
this model are independent random variables # that follow
a certain stationary probability distribution G. Aside from
requiring it to be stationary, [23] and [24] leave the distribution
G unspecified by choice since, while explaining possible
parameter variation due to internal sensor characteristics, it can
also represent the change in parameter values due to observed
and/or unobserved external factors during each calibration run,
often making the specification of the distribution G extremely
complicated.

The solutions proposed in [23] and [24] for the near-

stationary setting consider estimators that deliver a single
estimate (say ✓̂) which can be considered somehow “represen-
tative” of the random variable # and that can ideally improve
the average navigation accuracy. Indeed, these solutions are
appropriate also in the case where all replicates come from
a model F with fixed parameter ✓0 (i.e. the common setting
where G is a point-mass distribution). However these solutions
have not been formally studied in this new framework and do
not include an additional solution that is put forward in this
work. Indeed, assuming the model structure F is identified,
this work intends to clearly define the statistical properties of
these solutions in the near-stationary framework to compare
them and identify exactly what theoretical values they target
and consequently understand if and how they can improve
navigation accuracy compared to a the standard calibration
process based on a single replicate.

To present and discuss the proposed approaches and results,
this paper is organized as follows. Sec. III formally defines the
near-stationary framework and discusses the properties of the
different approaches considered for multi-signal calibration.
These results are necessary to obtain reliable statistical esti-
mates for navigation purposes and are confirmed in Sec. IV
which studies the finite sample performance of the three
proposed approaches in a controlled simulation setting. Sec. V
presents a case study on real-world inertial sensor calibration
error signals which shows how the proposed approaches can
generally improve the navigation performance with respect to
the current setting where only one replicate is used to calibrate
the inertial sensors and feed the navigation filter. Finally, Sec.
VI concludes.

II. LIST OF ABBREVIATIONS

AGMWM Average Generalized Method of Wavelet
Moments

ANESS Average Normalised Estimation Error
Squared

AR1 Auto-Regressive Process of order 1
AV Allan Variance
AWV Average Wavelet Variance Estimator
EKF Extended Kalman Filter
GMWM Generalized Method of Wavelet Moments

IMU Inertial Measurement Unit
MLE Maximum Likelihood Estimator
MS-GMWM Multi-Signal Generalized Method of Wavelet

Moments
MODWT Maximum Overlap Discrete Wavelet

Transform
RW Random Walk
UAV Unmanned Aerial Vehicle
WN White Noise
WV Wavelet Variance

III. MULTI-SIGNAL CALIBRATION

In the following sections, we formally describe and study
the solutions, including those put forward in [23] and [24],
which are all a direct extension of the GMWM. As mentioned,
the latter is currently employed, among others, for sensor
calibration on a single stochastic error signal issued from an
inertial sensor calibration session (see, e.g., [22], [25]). Indeed,
in order to estimate the assumed fixed parameter vector ✓0

that characterizes the model underlying the stochastic error
the GMWM is defined as follows:

✓̃ := argmin
✓2⇥

k⌫̂ � ⌫(✓)k2
⌦, (2)

where, with Z 2 IRJ , we have that kZk
2
⌦ := Z

|
⌦Z. In

addition, ⌫̂ 2 IRJ
+ represents the unbiased Maximum Overlap

Discrete Wavelet Transform (MODWT) WV estimator pro-
posed in [26] estimated on the single error signal issued from
the calibration session and defined as

⌫̂j :=
1

Mj

MjX

t=1

W 2
j,t (3)

where (Wj,t) represents the wavelet coefficients for scale j
and Mj represents the number of coefficients issued from the
MODWT at this scale. Finally, ⌫(✓) 2 IRJ

+ represents the
theoretical WV implied by the parametric model F✓ and ⌦

is a positive definite weighting matrix chosen in a suitable
way, (see, e.g., [25] and following sections for more details).
This approach therefore takes advantage of the relationship
between the spectral density function and the WV [26] that
allows every model F✓ to have a (known) representation in
the form ⌫(✓) [27]. For example, the jth-level Haar WV for
a white noise process with parameter �2 is given by ⌫2

j (�2) =
�2/2j , highlighting how the WV is a linear function of the
parameter for this specific process. In this optic, the GMWM
aims to find the value of ✓ that makes ⌫(✓) as close as possible
(under the L2-metric) to the empirical WV ⌫̂ and, when the
theoretical WV is a linear function of the parameters, it has
an explicit solution as shown in [20].

A. Near-Stationary Framework

Compared to the setting where a single error signal is consid-
ered, we now consider the case of K > 1 replicates from the
same IMU in static conditions. Ideally, each signal, indexed by
i and with length Ti, is issued from the same stochastic error
model with the same fixed parameter values (i.e., ✓i = ✓0, 8i)
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which are specific to the sensor of interest. However, as
discussed in the introduction and following the example given
in Fig. 1, it would appear that the model structure F remains
constant while the parameters characterizing it change between
replicates. We therefore assume that there exists an indepen-
dent sequence of random variables #i (for i = 1, . . . , K), with
associated probability distribution G defined over a compact
set ⇥, which we refer to as an internal sensor model and we
define the processes generated by the sensor as near-stationary

processes.
Assuming that all deterministic calibration has removed the

corresponding errors (e.g. axis non-orthogonalities, etc.), let
us define the ith stochastic error signal as

(X(i)
t ) ⇠ F#i , t = 1, . . . , Ti

and
#i

iid
⇠ G, #i 2 ⇥ ⇢ IRp,

As in the GMWM setting, the model F#i therefore represents
the stochastic process governing the dependence structure over
time during the ith calibration session, where the distribution
of the innovation sequence is left unspecified. With this setting
in mind, we denote the MODWT estimator of WV as ⌫̂i 2 IRJ

+

where J is a fixed integer representing the chosen number
of WV scales such that p  J  mini Ji where Ji 2 N+

represents the number of WV scales for the ith signal. It must
be noticed that now the estimator ⌫̂i does not target a general
fixed WV ⌫(✓0) but aims to estimate the WV implied by the
random parameter vector that generated the ith replicate, i.e.,
⌫(#i).

Considering this new stochastic framework, it would be
unreasonable to use the parameter vector estimated on the ith

signal to predict the general measurement error of a future
signal. As a consequence, it would be more appropriate to
define a fixed parameter vector that adequately represents and
predicts the behaviour of all possible signals issued from
the stochastic framework. In order to do so, we adopt the
parameter notation from the standard setting and provide a
new definition of ✓0 as follows:

✓0 := argmin
✓2⇥

Q (✓) ,

where
Q (✓) := E

⇥
k⌫(#i) � ⌫(✓)k2

⌦

⇤
, (4)

with E[·] denoting the expectation under the distribution G,
⌫(✓) representing the theoretical WV implied by the stochastic
model evaluated at the fixed parameter vector ✓ and ⌦

denoting a positive definite weighting matrix. The criterion
in (4) is defined as an expectation under the distribution G
whose form however, as underlined earlier, does not need to
be specified if using the solutions considered in this work.
With respect to the weighting matrix, for example, one can
choose a fixed positive definite matrix for ⌦, that we denote
as ⌦0, which gives certain weights to how each scale of WV
contributes to the estimation process (e.g one possible choice
would be the identity matrix which gives equal weights to all
scales). If one does not have the value of the elements for the
chosen matrix, an estimator of the latter matrix (denoted as

b⌦) can be used. As long as this matrix is positive definite and
assuming identifiability of the function ⌫(·), the criterion in (4)
is always minimized in ✓0. In an estimation setting, the choice
of ⌦ is usually limited to minimizing the asymptotic variance
which is achieved by choosing ⌦0 := V

�1, where V is the
asymptotic covariance matrix of the estimated WV (see [22],
[25]), although a simple diagonal matrix (such as the identity)
can often be more than sufficient in practice. With this in mind,
the criterion (or loss/objective function) in (4) is an extension
of the GMWM objective function which takes into account
the internal sensor model G. Indeed, in the case of G being a
point-mass distribution, the criterion in (4) simply goes back
to representing the standard GMWM criterion in (2). The logic
behind choosing this criterion therefore consists in finding a
fixed parameter vector ✓0 that minimizes the expected squared-
loss between the WV implied by the latter parameter and the
WV implied by all possible values of the (parameter) random
variable #i.

B. Multi-Signal Approaches

Given that we cannot directly observe the criterion in
(4), we need to consider estimators for this quantity, among
which those put forward in [23] and [24] whose finite sample
performance was investigated through preliminary simulations
and applied studies. These solutions are potential estimators
for the quantity of interest ✓0 but, as shown further on, have
different properties and actually turn out to be the same under
specific or more general circumstances.

However, compared to the solutions put forward in [23] and
[24], we define a more general setting where we can assign
weights to the information coming from each replicate. More
specifically, we define the weights that characterize the studied
solutions as follows:

wi := di
TiPK

k=1 Tk

,

where di is a signal-specific constant defined by the user to
give more weight to certain signals based on prior knowledge
(one would however commonly choose di = 1 for all i).
Based on this definition, conditioned on the choice of di,
these weights are larger for longer signals therefore giving
more weight to those signals that carry more information. We
assume that the weights wi are such that

KX

i=1

wi = 1, wi � 0 and K
KX

i=1

w2
i ! c, (5)

where c is a positive constant. Moreover, we assume that
for K sufficiently large there exists a constant M such that
Kwi  M . These requirements on the weights are mild and
are satisfied for most reasonable choices of the constants di,
and lengths Ti. For example, in the simple situation where
wi = 1/K for all i these requirements are trivially satisfied.

Considering the multiple signal recording setting formalized
in the previous paragraphs, the goal of the methods studied in
this work is to combine the information from the different
signals in an optimal (weighted) manner. The first and most
straightforward way to do so would be to take a simple
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weighted average of the GMWM estimators issued from the
individual signals (we refer to this estimator as the Average
GMWM (AGMWM) which was suggested in [23]). More
formally, this estimator is defined as follows:

✓̂� :=
KX

i=1

wi#̃i, (6)

where
#̃i := argmin

#2⇥
k⌫̂i � ⌫(#)k2

⌦,

are the individual GMWM parameter estimates for each signal.
The second estimator is new and we call it the Average WV

(AWV) estimator which is defined as follows:

✓̂† := argmin
✓2⇥

bQ†(✓), (7)

where

bQ†(✓) := k

KX

i=1

wi⌫̂i � ⌫(✓)k2
⌦.

The idea behind this estimator is to replicate the structure of
the GMWM estimator and, instead of considering a single
estimate of the WV, we take the weighted average of the
individual estimated WV. The objective function defining this
estimator also resembles the criterion given in (4) and, as we
will see further on, indeed targets this criterion.

The final estimator we study is the weighted version of
the estimator defined in [23] and [24] and is given by the
solution to the objective function resulting from the weighted
average of the individual GMWM objective functions. More
specifically, this estimator, referred to as the Multi-Signal
GMWM (MS-GMWM), is defined as

✓̂ := argmin
✓2⇥

bQ(✓), (8)

where

bQ(✓) :=
KX

i=1

wik⌫̂i � ⌫(✓)k2
⌦ .

This estimator is therefore the result of the minimization of a
direct estimator of the criterion in (4). Indeed, the empirical
WV ⌫̂i is an estimator for the theoretical quantity ⌫(#i) while
the weighted sum over the K signals is aimed at estimating
the theoretical expectation E[·] under the internal sensor model
G.

C. Statistical Properties

Having formally defined the methods of interest for the
problem at hand, we now lay out a series of assumptions that
are necessary to define the asymptotic properties of these esti-
mators. For this reason, we also define H(✓) := A(✓)|⌦A(✓)
where

A(✓) :=
@

@#> ⌫(#)
���
#=✓

.

Moreover, we will use P
�! to denote convergence in proba-

bility and D
�! to denote convergence in distribution.

ASSUMPTION A (Parameter Space): ✓0 is an interior point of

the set ⇥ which is compact.

ASSUMPTION B (Theoretical WV): The theoretical WV is such

that:

• ⌫(✓) is continuously differentiable 8✓ 2 ⇥;

• ⌫(✓1) = ⌫(✓2) if and only if ✓1 = ✓2;

• H(✓0) exists and is non-singular.

ASSUMPTION C (Asymptotics):
p

Ti(⌫̂i � ⌫(#i))
D
�! N (0,V(#i)) ,

conditionally on #i, where V(#i) := limTi!1 Ti var (⌫̂i) is

continuous in #i. Moreover, if ⌦0 is estimated by b⌦, then we

have that

||b⌦ � ⌦0||S
P
�! 0,

where || · ||S denotes the matrix spectral norm, with the

Frobenius norm of ⌦0 being bounded.

Assumption A is a standard regularity condition that ensures
that certain quantities are bounded and to allow convergence
(however it can be partly relaxed depending on the model of
interest). Assumption B ensures that (i) ⌫(·) is differentiable
(in order to perform expansions); (ii) ⌫(·) is injective (in
order to have identifiability); and (iii) certain quantities from
these expansions exist in order to prove consistency and
asymptotic normality of the estimators. Finally, Assumption
C requires asymptotic normality of the WV estimator (which
was proven under different conditions, see e.g. [25] or [28]),
the consistency of b⌦ (if an estimator is actually chosen for
the weighting matrix ⌦) as well as the boundeness of ⌦0.

These assumptions are required to prove results on consis-
tency and asymptotic normality of the multi-signal approaches
described earlier which can provide insight to convergence
rates of these approaches as well as justify the use of time-
dependent bootstrap methods to deliver adequate uncertainty
quantification for each of them. Denoting T := mini Ti, we
can now study the first of the considered estimators, namely
the AGMWM.

THEOREM 1: Under Assumptions A to C and letting

K, T ! 1, we have that

✓̂� P
�! E[#i] 6= ✓0

Proof of Theorem 1 is given in Appendix A. From this
result, it can be noticed how the AGMWM targets the ex-
pected value of the internal sensor model G which does not
necessarily correspond to the desired value ✓0 defined in (4),
except in specific circumstances stated further on.

Considering that the AGMWM does not necessarily target
the quantity of interest ✓0, we now study the AWV estimator
whose objective function appears closer to the form of the
criterion in (4). Indeed, the AWV estimator targets the desired
quantity as stated in the following theorem.
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THEOREM 2: Under Assumptions A to C and letting

K, T ! 1, we have that

k✓̂†
� ✓0k

P
�! 0.

Proof of Theorem 2 is given in Appendix A. Theorem 2
therefore shows that the AWV targets the desired quantity
and is therefore preferable over the AGMWM if one aims
at minimizing the criterion in (4).

The third estimator that we would need to study is the MS-
GMWM. However, the following proposition underlines how
the two estimators (AWV and MS-GMWM) are actually the
same estimator.

PROPOSITION 1: Under Assumptions A and B, we have that

✓̂† = ✓̂ .

Proof of Proposition 1 is given in Appendix A. Given
Proposition 1, we do not need to study the properties of the
MS-GMWM since they will be the same as those of the AWV.
Considering this, having proved consistency of the AWV, let
us now deliver the final property of the AWV which consists
in its asymptotic distribution.

PROPOSITION 2: Under Assumptions A to C and letting

K, T ! 1, we have that

p

K(✓̂†
� ✓0)

D
�! N (0,⇤0) ,

where ⇤0 := H(✓0)�1
A(✓0)|⌦V̄⌦A(✓0)H(✓0)�1

is the

asymptotic covariance matrix, with V̄ := E[Vi].

As a consequence of Proposition 1 and 2, we can also state
the following corollary.

COROLLARY 1: Under Assumptions A to C and letting

K, T ! 1, we have that

p

K(✓̂ � ✓0)
D
�! N (0,⇤) .

We omit the proof of this corollary since it is a direct
consequence of Proposition 1. We conclude this section by
delivering one final result which states the case under which
the AGMWM actually targets the desired quantity ✓0. This
result is provided in the following proposition where W
denotes a non-singular matrix.

PROPOSITION 3: If the theoretical WV is such that ⌫(✓) =
W✓, we have that

✓̂� = ✓̂† = ✓̂ .

Proof of Proposition 3 is given in Appendix A. This last
result therefore states that, whenever the process underlying
the signals delivers a theoretical WV which is linear in the
parameters of interest, the parameter ✓0 can be estimated with
any of the three solutions considered in this work, including

the AGMWM. Examples of such processes are the white noise,
quantization noise, random walk and drift, or a combination
thereof. Algorithm 1 describes the procedure to perform multi-
signal calibration using the AWV.

Algorithm 1: Multi-Signal Calibration
Inputs : A model structure F as described in (1) and

identified via methods such as those in [4]–[7];
the stochastic error signals X(i)

t (i = 1, . . . , K);
weights wi that must satisfy (5); and ⌦

computed as in Sec. III-D.
Output: The estimated parameter ✓̂†

2 IRp.

Step 1: Compute the empirical WV with the MODWT
estimator as defined in (3) on all observed replicates
i = 1, . . . , K.

Step 2: Compute the average WV

⌫̄ :=
KX

i=1

wi⌫̂i

over all replicates where ⌫̂i is defined in Sec. III-A.

Step 3: Solve the following optimization problem:

✓̂† = argmin
✓2⇥

k⌫̄ � ⌫(✓)k2
⌦,

where ⌫(✓) denotes the WV implied by the model
structure F .

D. Discussion

The choice of the matrix ⌦ may not be completely obvious
in the stochastic framework considered in this work. If one
chooses an estimator b⌦ then, in the standard single replicate
setting, one can choose the inverse of the estimated covariance
matrix of the empirical WV, or a diagonal matrix proportional
to the latter. Since the matrix ⌦ only affects the asymptotic
efficiency of the resulting estimator and does not affect the
consistency as long as it is positive definite, then one could
choose the following matrix:

b⌦K :=
KX

i=1

w2
i
b⌦i,

where b⌦i represents the estimator for ⌦0 for the ith replicate.
The weighted average of the matrices that would be used on
the individual replicates is indeed a valid choice and, for this
reason, is what is going to be used in the next applied sections.

IV. SIMULATION STUDIES

In this section we provide further support to the results
presented in Sec. III by studying the finite sample performance
of the suggested approaches. To do so we mimic the standard
scenario where the inertial sensors have been calibrated in
a static setting and all deterministic components of their
error signals have been removed leaving only the stochastic
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FIG. 2: Left: Marginal densities of the internal sensor model G for the parameters �2
i , �i and ⌘2

i considered in the Simulation I setting (WN

+ AR1) with horizontal colored lines representing four randomly selected values from each density. Right: WV plots and 95% confidence

intervals for the empirical WV of the signals generated by the parameter values selected from the respective densities in the top part (each

color in the top part corresponds to the color of the WV in the bottom part). Units on axes are not provided given that the WV plot is based

on simulated data.

component (Xt). Therefore in this section we only study the
performance of the considered methods (including the AWV
represented in Algorithm 1) for parameter estimation of the
stochastic model F , whereas their impact on navigation will be
studied in Sec. V. More specifically, based on the previous re-
sults we only compare two of the considered solutions, namely
the AGMWM and AWV (since the MS-GMWM is equivalent
to the latter). To do so we perform simulation studies based
on composite stochastic processes that often characterize the
stochastic signals from inertial sensor measurements. The first
is a relatively common example consisting in the sum of a
White Noise (WN) process with a first-order AutoRegressive
(AR1) process (the latter consisting in a re-parametrization of a
Gauss-Markov process), while the second consists in a sum of
these two processes with the addition of a Random Walk (RW).
In this second simulation setting, we therefore also consider
the presence of non-stationary processes in the error signals
also commonly found in stochastic signal calibration.

In order to generate settings that closely resemble the WV
plots that are observed in stochastic calibration sessions, we
choose to represent the internal sensor model G through
independent and rescaled Beta distributions (i.e., each element
of the parameter vector #i comes from a separate rescaled Beta
distribution). In addition, we choose to study the estimators
in a setting where we observe K = 6 replicates which
reasonably mimics a realistic calibration process with different
runs. All replicates have the same length, i.e., Ti = T = 106

(for all i), which allows us to choose J = 13 scales of
WV issued from the MODWT. Moreover, we choose ⌦ by
taking the average of the individual matrices for each replicate
as discussed at the end of Sec. III. We repeat this setting
B = 500 times to investigate the empirical distribution of
the estimators studied. Finally, to be able to understand if
the estimators are targeting the correct values, we compute
the value ✓0 via numerical simulations by minimizing Q(✓)
given in (4) based on 103 values of #i randomly generated
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FIG. 3: Empirical distributions of the AGMWM (left boxplot) and

AWV (right boxplot) for the parameters of the stochastic error model

(WN + AR1) of Simulation I (K = 6 and T = 106). The red dashed

line represents the parameter value ✓�
, while the full green line

represents ✓0.

from the chosen internal sensor model G (this allows us to well
approximate the true value of ✓0), while ✓� is computed for
each element of #i based on its corresponding distribution. In
our simulation settings and in the case study in the subsequent
section, we consider combinations of the following processes
(components) for the model F :

• White Noise (WN): N (i)
t ⇠ F(0, �2

i ),
• First Order Auto-Regressive process (AR1): N (i)

t =
�iN

(i)
t�1 + "(i)

t where "(i)
t ⇠ F(0, ⌘2

i ),
• Random Walk (RW): N (i)

t = N (i)
t�1 + ◆(i)t where ◆(i)t ⇠

F(0, �2
i ).

In the above cases, we let F represent any stationary proba-
bility distribution (e.g. Gaussian) with null expectation and an
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FIG. 4: Left: Marginal densities of the internal sensor model G for the parameters �2
i , �i, ⌘

2
i and �2

i considered in the Simulation II setting

(WN + AR1 + RW) with horizontal colored lines representing four randomly selected values from each density. Right: WV plots and 95%

confidence intervals for the empirical WV of the signals generated by the parameter values selected from the respective densities in the top

part (each color in the top part corresponds to the color of the WV in the bottom part). Units on axes are not provided given that the WV

plot is based on simulated data.

unspecified variance parameter.

A. Simulation I

For the first simulation, the parameter vector for the ith

replicate is defined as follows #i := [�2
i , �i, ⌘2

i ], where
�2
i represents the WN parameter, �i is the autoregressive

parameter of the AR1, and ⌘2
i is the innovation variance

parameter of the AR1. In the near-stationary setting, we
therefore have that #i ⇠ G, and, as discussed earlier, for
these simulations we choose G to be a Beta distribution with
different parameter values since this distribution lies within
finite bounds (i.e. [0, 1] support) and can take on different
asymmetric forms depending on its parameters (see e.g. left
plot in Fig. 4). Moreover, we scale each distribution for it to be
consistent with the realistic range of values that the parameters
of each process can take. Hence #i is composed by

• �2
i = 4 · 10�5 + Y (1)

i (7 · 10w�5 � 4 · 10�5), where
Y (1)
i ⇠ Beta (8, 5),

• �i = 9.99 ·10�1+Y (2)
i (9.999 ·10�1

�9.99 ·10�1), where
Y (2)
i ⇠ Beta(7, 2) ,

• ⌘2
i = 6 · 10�10 + Y (3)

i (8 · 10�10
� 6 · 10�10), where

Y (3)
i ⇠ Beta(3, 5).

with Y (j)
i , j = 1, 2, 3 therefore representing a variable from a

Beta distribution used to mimic the random nature of the pa-
rameter values as postulated by the near-stationary framework,
which is then multiplied by a scaling constant that projects
its range onto realistic values for the process parameters. An
insight into the described simulation setting is given in Fig.
2 where in the left part we can observe the rescaled Beta
density functions (grey surfaces) from which we generate the
respective parameter values that compose #i. Hence, the inter-
nal sensor model G is the multivariate distribution composed
of independent variables �2

i , �i and ⌘2
i . The vertical colored

lines represent randomly sampled values for the parameters

following their respective distributions where common colors
indicate those values that were generated jointly to deliver four
different values of #i. These colors are then used to represent
the empirical WV computed on signals generated from each
value of #i which can be seen in the right part of Fig. 2. We
can notice how the different WVs are extremely close at the
first scales and then differ at the larger scales. This plot is
very similar to those seen in many applied settings as shown
in Sec. V.

Having described how the data are generated, we now apply
the procedure of Algorithm 1 to compute the AWV estimator
and use (6) to compute the AGMWM estimator. When apply-
ing the estimators to the setting described above, we observe
the results shown in Fig. 3. The red dashed line represents
the true value of ✓� and the full green line represents the
(approximated) value of interest ✓0. The boxplots represent
the empirical distribution of the estimated parameter values
for the AGMWM (left boxplot) and AWV (right boxplot)
respectively. While all boxplots appear to support the results
on asymptotic normality of the estimators derived in Sec. III,
it can be observed that the corresponding elements of ✓� and
✓0 appear to differ (especially for the AR1 process which is
non-linear in the WV). As a result of these differences, it is
also obvious to detect how the two estimators target these
different quantities since the AGMWM is centered around the
red dashed line (✓�) and the AWV around the full green line
(✓0). This therefore supports the consistency results in Sec. III
which indeed state that these estimators target these respective
quantities.

B. Simulation II

As mentioned at the start of this section, we perform a second
simulation study in a similar way to the first one but, in this
case, we add a RW process to the other two. This implies
that the generated signals are non-stationary which is in fact
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the case for many stochastic error signals issued from inertial
calibration sessions. For this simulation, we have that #i :=
[�2

i , �i, ⌘2
i , �2

i ] where, in addition to the parameters specified
in the previous simulation, �2

i represents the parameter of the
RW process. The internal sensor model is composed of the
following random parameter distributions:

• �2
i = 2 · 10�6 + Y (1)

i (4 · 10�6
� 2 · 10�6), where Y (1)

i ⇠

Beta(8, 5),
• �i = 9.98 ·10�1 +Y (2)

i (9.99 ·10�1
�9.98 ·10�1), where

Y (2)
i ⇠ Beta(7, 4),

• ⌘2
i = 1 · 10�10 + Y (3)

i (1.5 · 10�10
� 1 · 10�10), where

Y (3)
i ⇠ Beta(3, 5);

• �2 = 0.5 · 10�12 + Y (4)
i (1 · 10�12

� 0.5 · 10�12), where
Y (4)
i ⇠ Beta(4, 8);
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FIG. 5: Empirical distributions of the AGMWM (left boxplot) and

AWV (right boxplot) for the parameters of the stochastic error model

(WN + AR1 + RW) of Simulation II (K = 6 and T = 106). The red

dashed line represents the parameter value ✓�
, while the full green

line represents ✓0.

Again, to give a visual support to the setting of this simu-
lation, we provide an example of the parameter distributions
(grey areas) along with four randomly sampled values for #i

represented by the four different colors in Fig. 4 left panels.
Also in this case, it is possible to notice how the empirical
WV generated from these different parameter values differ
across the scales and, it can also be seen how some can
be significantly different from the others at the first scales
as highlighted by the non-overlapping confidence intervals
of the respective WVs (shaded areas in the WV plot). In
a similar manner to the first simulation we represent the
results when applying the two considered estimators to this
near-stationary setting. These results, represented in Fig. 5,
confirm the conclusions made in the first simulation where
both estimators appear normally distributed and both target
their respective values of reference, i.e., ✓� for the AGMWM
and ✓0 for the AWV. Having given empirical support to
the conclusions made in Sec. III, we now study how these
conclusions deliver advantages in applied cases. In the next
section, we therefore study the results in terms of navigation
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FIG. 6: Empirical WV (blue doted line) for the first training sequence

of accelerometer and gyroscope of a Bosch Sensortec BMI085 6-

Axis IMU and their respective 95% confidence intervals (blue shaded

area). Red dotted lines represent the implied WV from the individual

solution of the GMWM on this first sequence, while orange dotted

lines represent the WV implied by the MS-GMWM computed trough

the AWV.

performance when using the AWV estimator which targets the
value of interest ✓0.

V. CASE STUDY - IMPACT ON NAVIGATION

The purpose of this section is to compare how navigation
performances change when estimating stochastic models for
the inertial sensors using a single replicate of the calibration
data (as it is currently done), based on the GMWM, or using
all replicates jointly based on the AWV estimator put forward
in this work.

We collect static measurements from a Bosch Sensortec
BMI085 6-Axis IMU 1, a low-cost MEMs IMU (< 5 USD per
unit, when purchased in volumes) for navigation applications,
e.g., in UAVs. Such an inertial module combines a 3-axis
gyroscope and a 3-axis accelerometer. We collect K = 16
replicates X(i)

t (i = 1, . . . , K) of sensor data in static condi-
tions at 20 �C in a temperature controlled chamber, each one
lasting 12 hours. Since the sensor is static, the acquired data
consists of samples of the noise processes only. The sensor
runs at a frequency of 200 Hz, thus each error signal contains
approximately 8.5 million sample points. Such long signals
are of increasing interest even for low-cost MEMs IMUs since
these devices are now employed in navigation and mapping,
e.g. in UAVs, for longer and longer time frames [29] and the
proper characterization of their stochastic properties is critical
to determine an accurate orientation solution even when GPS

1The Bosch Sensortec BMI085: https://www.bosch-sensortec.com/
products/motion-sensors/imus/bmi085/
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observations are available [30]. In the following paragraphs,
we focus on the error signals from the X-axis gyroscope and
accelerometer.

To identify the error process we visually analyse the em-
pirical WV of eight sequences that we consider for training
purposes (i.e., used to estimate the model parameters), while
leaving the remaining eight for validation, as discussed later
on. The empirical WV of the training sequences are shown
in Fig. 1. We observe that the considered devices are char-
acterized by a non-negligible bias-instability, as it can be
seen from the relatively flat part of the WV at the larger
scales. This behaviour is common in low-cost inertial sensors
and it is typically modeled with a sum of first order auto-
regressive processes (AR1), or equivalently, first order Gauss-
Markov processes, as suggested for example in [11], [16].
We find that three AR1 processes are well suited to model
each training sequence for the gyroscopes, and four for the
accelerometers, respectively. We note that in both cases one
of such AR1 processes always has a very short correlation
time, far smaller than 1 s. This process models the intrinsic
bandwidth limitation of the sensor (visible in the elbow at the
first two scales of the WV) and is typically replaced with a
white noise (an Angular/Velocity Random Walk) in practice.
We estimate one model separately on each sequence in the
training set, obtaining models Mi, with i 2 [1, ..., 8]. Next,
we apply the AWV method proposed in this work employing
all eight training sequences together, obtaining the model
denoted as MMS. The estimated training models Mi appear
to adequately fit the empirical WV of their respective training
sequence, thus supporting the choice of the general model (an
example consisting in the first training sequence is provided
in Fig. 6). The fits for each sequence are given in Appendix B
Fig. B.1 and B.2.
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FIG. 7: Procedure for evaluating navigation performances. An EKF

estimates the trajectory of an UAV in 250 Monte-Carlo runs (a few

of them are represented through the thin dark lines). The GNSS

position and velocity information are no longer available after the

marked point (GPS outage). The position and orientation error and

the coverage of the uncertainty of the navigation states (blue circle),

as estimated with by the EKF, are assessed based on the ground truth

trajectory (red line) during the last 15s of the GNSS outage period.

Each fitted model lies within the confidence intervals of the
empirical WV. Considering these representations, it is straight-
forward to detect differences in the models fit to the signals
via the individual and joint approaches. Given this, in order
to confirm whether to use a single replicate or a multi-signal
approach we perform the near-stationarity test put forward in
[23], with its respective null and alternative hypotheses being
H0 : #i = ✓0, 8 i and Ha : H0 is false. To perform this test
we simulate 100 bootstrap replicates under the estimated F✓̂†

which, keeping in mind the discrete nature of the bootstrapped
test statistic, gives us a zero p-value thereby allowing us to
reject the null hypothesis that all replicates are issued from the
same data-generating process with #i = ✓0 for all i (i.e. G is
a Dirac point mass distribution). The estimated parameters of
the models Mi are included in Appendix C, Fig. C.1 and C.2.
We note that a substantial variability can be observed within
the latter fits and that, as expected, the parameters obtained
with the AWV method do not correspond to their mean.

We investigate the navigation performance on the 8 + 1
different models. The estimated stochastic models are used to
configure an Extended Kalman Filter (EKF) for INS/GNSS
navigation [1]. This filter fuses inertial and GNSS readings,
leveraging on the provided stochastic models, to estimate the
vehicle navigation states (position, velocity and orientation).
It allows us to compare the performance of the different
models available for the inertial sensor in terms of position
and orientation errors as well as consistency of the confidence
intervals for the navigation states within a realistic navigation
scenario. We consider a ground-truth trajectory typical of a
small fixed-wing Unmanned Aerial Vehicle (UAV) performing
an aerial mapping mission. A 30s GNSS outage period is
considered after 9.5 minutes. All the true kinematic properties
of the sensors are known (position, velocity, etc.) from the
reference trajectory and they are used to generate synthetic,
noise-free sensor readings for both the inertial and the GNSS
sensors. Realistic noisy readings are then generated for the
inertial sensors by adding samples from the noise replicates
collected during static acquisitions to the synthetic noise-
free readings. Here, we employ the remaining eight static
data sequences we collected and that were never used in the
previously described stochastic calibration step. As for the
GNSS readings, the added noise is WN with standard deviation
2.5 cm, which corresponds to the assumed uncertainty carrier-
phase differential of GNSS typically employed in mapping
missions. While following the common emulation approach
adopted in the inertial sensor calibration literature this far,
this simulation set-up may not entirely reflect the real-world
setting where sensor measurement errors should ideally be
observed under varying external conditions (e.g. dynamics).
Nevertheless, given the many current theoretical and practical
challenges of measuring and modelling these errors in the
latter context, the methods put forward in this work aim to
better approximate the more realistic (dynamic) context and
therefore to reduce the potential navigation errors due to the
stochastic measurement errors.

With the above in mind, a forward navigation solution
is computed using an EKF from the noisy sensor readings.
We consider 9 ⇥ 8 = 72 different cases in which the EKF
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errors achieved by using each estimated model to predict the error on all replicates, Mi represents the model estimated on replicate i and

MMS represents the model estimated via the multi-signal AWV. The results are expressed in percentage with respect the best performing

model on one specific static acquisition.

is configured to use one of the 8 + 1 = 9 model sets
fitted on the static acquisition replicates, while the noise
data corrupting inertial readings comes from one of the eight
different static acquisition sequences kept for validation, each
time considering a different, continuous chunk of data.

The 250 solutions for each case are aggregated and com-
pared in terms of relative position and orientation error and
consistency of the confidence intervals computed by the EKF:
we compute 50% confidence intervals (approximately corre-
sponding to the common choice of ±� intervals) from the
navigation state covariance matrix estimated by the EKF and
we count how many times the true navigation states (from the
reference trajectory) fall within such confidence intervals. Note
that it is equivalent to check whether the Average Normalised
Estimation Error Squared (ANEES), as defined for example
in [31, Chapter 3.7.4], falls within its expected bounds, and it
allows to quantify whether the employed stochastic models for
the inertial errors lead to a over- or under-confident estimation
of the navigation state uncertainty. The position and orientation
error and the coverage metrics are evaluated each 0.5s in the
last 15s of the GNSS outage period to better highlight their
evolution when the navigation filter works in standalone mode,
e.g., relying only on inertial data (represented in Fig. 7). The
results are presented in Fig. 8.

It is possible to see that the differences in position and
orientation error, computed in percentage with respect to
the best performing model, vary up to 5 % depending on
which stochastic model is selected for the inertial sensor.
If using a rough reference level for improvement achieved
through deterministic calibration, in [32] they report gains
up to roughly 37 % although these quantities are not abso-
lutely comparable since additional procedures were performed
in the latter study to improve navigation performance (in
addition to other comparative problems). As a consequence
these differences in improvement may seem small but, among
many practitioners, attitude quality improvement is deemed
proportional to the square (or even the cube) of the IMU size

and weight (as well as cost). In addition to navigation accuracy,
the importance in stochastic calibration consists mainly in
uncertainty quantification which can be seen through the
differences in coverage which are much more significant: when
computing a confidence interval for position and orientation
with level ↵ = 0.5 (50%), we find that the empirical coverage
of certain models fit on a single sequence, e.g., M4 and M8,
is as low as 10 % or as high as 90 % in some cases. This
implies that, when configured with such models, the EKF
is largely over- or under-confident in the estimation of the
uncertainty of the navigation states. Even though the actual
errors in such states remain relatively small, the quantification
of their uncertainty is substantially unreliable which pre-
vents, for example, proper decision making in safety-critical
navigation applications, or consistent information fusion in
more complex scenarios such as simultaneous localisation
and mapping, where further sensor information (e.g., from
cameras) need to be taken into account. On the other hand,
the model estimated with one of the methods put forward
and studied in this work, MMS, achieves extremely similar
position and orientation performances with respect to the
best individual model, while at the same time providing a
reliable and correct uncertainty quantification of the position
and orientation estimates. We remark that by chance one single
sequence may lead to the estimation of a stochastic model
which performs well in practice, but at the same time the
opposite may hold, for example if training sequences 3, 4, or
8 were to be selected. These results indicate that the AWV
(or a multi-signal method) can deliver a more robust (stable)
estimation of the stochastic models that underlie inertial sensor
measurement errors, compensating for the intrinsic variability
of the single realizations of calibration data.

VI. CONCLUSIONS

In this work, we studied methods and delivered further
evidence for the need of a multi-signal approach when dealing
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with inertial sensor calibration. Indeed, in many practical set-
tings, one can observe a near-stationary behavior of replicate
IMU stochastic error signals which needs to be taken into
account when performing estimation for model selection and
construction of accurate navigation filters. Having compared
different existing and new approaches to address this problem,
we determined their asymptotic properties and their common
features which were empirically supported in controlled sim-
ulation settings as well as in applied case study scenarios. In
the latter case, this work also highlighted how the use of a
single replicate to perform stochastic calibration may not be
a suitable choice and confirmed that a multi-signal solution
is the most appropriate in such settings. As a result of this
work, it is now possible to select the most appropriate multi-
signal calibration approach according to the goal of interest
and consequently achieve improved navigation performance
both in terms of accuracy as well as in terms of uncertainty
quantification during navigation. Finally, this study can extend
to all approaches based on moment-matching (e.g. Generalized
Methods of Moments) beyond the WV and IMU calibration.
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