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Networks are Everywhere

I Social and economic networks mediate many aspects of
individual choice and outcomes:

- Development: technology adoption, insurance.

- Peer Effects: learning, delinquency, consumption.

- IO: buyer-supplier networks, strategic interactions.

- Macro, Finance and Trade: contagion, gravity equations.

- Political Economy: yardstick competition.

- More examples: Jackson [2009], de Paula [forthcoming].
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But . . .

I Network information are not available in most datasets.

I When available, usually imperfect:
- Self-reported data (censoring, 6= econ int⇒6= ties);
- Postulated (e.g., classroom, zip code).

I Hence, empirical analysis of network effects may be
challenging.

I Existing models are conditioned on postulated network.

I Potential for misspecification.
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This Project

I We study identification of the unobserved networks and
parameters of interest in a social interactions model . . .
(spatial model with unobserved neighbourhood matrix)

I . . . under standard network “intransitivity” hypothesis . . .

I . . . and explore estimation strategies.
- N individuals⇒ O(N2) parameters to estimate.
- High-dimensional model techniques.
- Consistency and asymptotic distribution.
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The Model

I Many interdependent outcomes are mediated by
connections (“networks”).

I A popular representation follows the “linear-in-means”
specification suggested in Manski [1993]. For example,

yit = αt + ρ0
∑N

j=1 W0,ijyjt + β0xit + γ0
∑N

j=1 W0,ijxjt + εit

⇔
yt,N×1 = αt1N×1 + ρ0W0,N×Nyt,N×1 + β0xt,N×1 + γ0W0,N×Nxt,N×1 + εt,N×1

with E(εit |xt , αt ) = 0.

I Customary to assume W01 = 1 and |ρ0| < 1.

I Here we do not observe W0.
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A Motivating Example
I Besley and Case [AER, 1995]: “Incumbent Behavior:

Vote-Seeking, Tax-Setting, and Yardstick Competition”

“This paper develops a model of the political economy of tax-setting in a
multijurisdictional world, where voters’ choices and incumbent behavior are
determined simultaneously. Voters are assumed to make comparisons between
jurisdictions to overcome political agency problems.This forces incumbents in to
a (yardstick) competition in which they care about what other incumbents are
doing.”

I From data on state tax liabilities from 1962 until 1988, the
authors estimate (essentially):

∆τit = αt + ρ0

N∑
j=1

W0,ij∆τjt + β0xit + γ0

N∑
j=1

W0,ijxjt + εit

I Neighbouring states are geographically adjacent ones.
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I In other words...

I Could there be relevant, non-adjacent states? Do all
adjacent states matter?

Áureo de Paula Identifying Social Connections



(Some) Literature

1. Spatial Econometrics, conditional on W0.
I Kelejian and Prucha [1998, 1999], Lee [2004], Lee, Liu and

Lin [2010] and Anselin [2010].
2. Identification.

I . . . conditional on W0: Manski [1993], Bramoullé, Djebbari
and Fortin [2009], De Giorgi, Pellizzari and Redaelli [2010];

I . . . not conditional on W0: Rose [2015], see also Blume,
Brock, Durlauf and Jayaraman [2015].

3. Estimating W0.
I Lam and Souza [various].
I Manresa [2015], Rose [2015], Gautier and Rose [2016].
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Identification (Known W0)

I Manski [1993] and the “reflection problem.”
(W0,ij = (N − 1)−1 if i 6= j,W0,ii = 0)
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Identification (Known W0)

I Potential avenue: “exclusion restrictions” in W0.

If ρ0β0 + γ0 6= 0 and I,W0,W 2
0 are linearly independent,

(ρ0, β0, γ0) is point-identified. (Assuming αt = 0.)
(Bramoullé, Djebbari and Fortin [2009])

I Linear independence valid generally. In fact,∑N
j=1 W0,ij = 1 and I,W0,W 2

0 linearly dependent⇒W0
block diagonal with blocks of the same size and nonzero
entries are (Nl − 1)−1.
(Blume, Brock, Durlauf and Jayaraman [2015])
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Figure: High School Friendship Network
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What if W0 is unknown?

I “If researchers do not know how individuals form reference
groups and perceive reference-group outcomes, then it is
reasonable to ask whether observed behavior can be used
to infer these unknowns” (Manski [1993])
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Identification

I The model has reduced-form (assuming, for simplicity that
αt = 0)

yt = Π0xt + vt

where
Π0 = (I− ρ0W0)−1(β0I + γ0W0)

I If (ρ0, β0, γ0) were known, W0 would be identified:

W0 = (Π0 − β0I)(ρ0Π0 + γ0I)−1

I In practice, (ρ0, β0, γ0) is not known.
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Identification

I Further assumptions are necessary to identify
θ0 = (ρ0, β0, γ0,W0).

I Take, for example, θ0 and θ such that β0 = β = 1, ρ0 = 0.5,
ρ = 1.5, γ0 = 0.5, γ = −2.5,

W0 =


0 0.5 0 0 0.5

0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5

0.5 0 0 0.5 0

 W =


0 0 0.5 0.5 0
0 0 0 0.5 0.5

0.5 0 0 0 0.5
0.5 0.5 0 0 0
0 0.5 0.5 0 0

 .

I Then (I − ρ0W0)−1(β0I + ρ0W0) = (I − ρW )−1(βI + ρW ).

I (Notice that I,W0 and W 2
0 are LI and so are I,W and W 2!)
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But . . .

I If the spectral radius of ρ0W0 is less than one, then an
eigenvector of W0 is also an eigenvector of Π0.

Take the reduced-form parameter matrix:

Π0 = (I + ρ0W0 + ρ2
0W 2

0 + · · · )(β0I + γ0W0)

= β0I + (ρ0β0 + γ0)W0 + ρ0(ρ0β0 + γ0)W 2
0 + · · ·

Postmultiplying by vj , an eigenvector of W0,

Π0vj =
β0 + γ0λj,0

1− ρ0λj,0
vj

I If W0 is nonnegative and irreducible, e.g., only one
eigenvector can be chosen to have positive entries.
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Local Identification

I Can the model identify θ0 = (ρ0, β0, γ0,W0)?

I Assume:
(A1) (W0)ii = 0, i = 1, . . . ,N (no self-links);
(A2)

∑N
j=1 |(W0)ij | ≤ 1 for every i = 1, . . . ,N and |ρ0| < 1;

(A3) There is i such that
∑N

j=1(W0)ij = 1 (normalization);
(A4) There are l and k such that (W 2

0 )ll 6= (W 2
0 )kk (⇒ I,W0,W 2

0
LI as in Bramoullé, Djebbari and Fortin [2009]);

(A5) β0ρ0 + γ0 6= 0 (social effects do not cancel).

I Under (A1)-(A5) (ρ0, β0, γ0,W0) is locally identified.
(Application of Rothenberg [1971].)
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Global Identification

I Under (possibly strong) conditions it is straightforward to
obtain global identification.

I Under Assumptions (A1) and (A3), if ρ0 = 0, then
(γ0, β0,W0) is globally identified.
(As in, e.g., Manresa [2015].)

I Under Assumptions (A1)-(A3) and (A5), if γ0 = 0, then
(ρ0, β0,W0) is globally identified.
(γ0 = 0⇒ exclusion restrictions.)

Áureo de Paula Identifying Social Connections



Global Identification

I It is nevertheless possible to strengthen local identification
conclusions obtained previously.

I Assume (A1)-(A5). {θ : Π(θ) = Π(θ0)} is finite.
(This obtains as Π(θ) is a proper mapping.)

I Let Θ+ = {θ ∈ Θ : ρβ + γ > 0}. Then we can state that:

Assume (A1)-(A5), then for every θ ∈ Θ+ we have that
Π(θ) = Π(θ0)⇒ θ = θ0. That is, θ0 is globally identified with
respect to the set Θ+.
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Global Identification

I This uses the following result:
Suppose the function Π(·) is continuous, proper and locally
invertible with a connected image. Then the cardinality of
Π−1({Π}) is constant for any Π in the image of Π(·).
(see, e.g., Ambrosetti and Prodi [1995], p.46)

I We show that the mapping Π : Θ+ → RN×N is proper with
connected image, and non-singular Jacobian at any point.

I This implies that the cardinality of the pre-image of {Π(θ)}
is finite and constant.

I Take θ ∈ Θ+ such that γ = 0. The cardinality of
Π−1({Π(θ)}) is one for such θ and the result follows.
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Global Identification
I Since an analogous result holds for Θ− = {θ ∈ Θ such that
ρβ + γ < 0}, we can state that:
Assume (A1)-(A5). The identified set contains at most two
elements.

I Furthermore, if ρ0 > 0 and (W0)ij ≥ 0 one is able to sign
ρ0β0 + γ0 and obtain that:
Assume (A1)-(A5), ρ0 > 0 and (W0)ij ≥ 0. Then θ0 is
globally identified.

I Finally, if W0 is non-negative and irreducible, one is also
able to sign ρ0β0 + γ0!
Assume (A1)-(A5). (W0)ij ≥ 0 and W0 irreducible. Then θ0
is globally identified if W0 has at least two real eigenvalues
or |ρ0| ≤

√
2/2.
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A Few Remarks
I vj is an eigenvector of Π0 and W0: eigencentralities are

identified even when W0 is not.
I Row-sum normalization of W0 implies that row-sum of Π is

constant: testable hypothesis.
I We also allow for individual and time specific effects.
I Analysis extends to multivariate xi,t . The reduced-form

model is

yt =
k∑

s=1

Π0,sxt ,s + vt

where xt ,s refers to the s-th column of xt and

Π0,s = (I− ρ0W0)−1(β0,s + γ0,sW0).

Áureo de Paula Identifying Social Connections



Estimation Strategies

I Π has N2 parameters, and possibly NT � N2.

I Feasible if W or Π are sparse.
(e.g., Atalay et al. [2011] < 1%; Carvalho [2014] ≈ 3%; AddHealth
≈ 2%).

I Sparsity on W or Π?
- Explore the relation between structural- and reduced-form

sparsities (in paper).
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I Rewrite the model as

yi = x>i πi + vi

stacking all observations for individual i at t = 1, . . . ,T .

I Penalization in the reduced form (e.g., AdaLasso of
Kock and Callot [2015]:

π̃i = arg min
πi∈RN

1
T
‖yi − x>i πi‖2 + 2λT‖πi‖1

and

π̂i = arg min
πi∈RN

1
T
‖yi − x>i πi‖2 + 2λT

∑
π̃ij 6=0

∣∣∣∣πij

π̃ij

∣∣∣∣
with λT chosen by BIC).
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I Penalization in the structural form (e.g., Adaptive Elastic
Net GMM of Caner and Zhang [2014]:

- xt ⊥ εt ⇒ moment conditions.

θ̃ = (1 + λ2/T ) · arg min
θ∈Rp

g(θ)>MT g(θ) + λ1

n∑
i,j=1

|wi,j |+ λ2

n∑
i,j=1

|wi,j |2


and

θ̂ = (1+λ2/T )·arg min
θ∈Rp

g(θ)>MT g(θ) + λ∗1
∑

w̃i,j 6=0

|wi,j |
|w̃i,j |γ

+ λ2

n∑
i,j=1

|wi,j |2


where θ = (vec(W )>, ρ, β, γ)> and λ∗1, λ1 and λ2 chosen
by BIC.)
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Simulations

I Estimators: GMM Adaptive Elastic Net, Adaptive Lasso,
SCAD, OLS.

I ρ0 = 0.3, β0 = 0.4, γ0 = 0.5.
I 1,000 simulations.
I In the paper: N = 15,30,50. T = 50,100,150.

I Many versions in the paper: time and individual effects,
correlated effects, other network generating processes.

I Here: High School Friendship (Coleman [1964]),
N = 73,T = 50,100.
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Figure: High School Friendship Network
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Figure: High School Friendship Network Degree Distribution

Out-degree In-degree

0 2 4 6 8 10 12
0

5

10

15

20

25

30

Student Version of MATLAB

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

Student Version of MATLAB

Áureo de Paula Identifying Social Connections



Simulations: High School Friendships
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Figure: Sparsity pattern
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Yardstick Competition

I Besley and Case estimate

∆τit = αt + ρ0

N∑
j=1

W0,ij∆τjt + β0xit + γ0

N∑
j=1

W0,ijxjt + εit

using W0 as the geographically neighbouring states.

I We revisit the yardstick competition, estimating and
identifying neighbouring states W
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Yardstick Competition (B&C [1995])
I Yardstick competition applies to governors not facing term

limits.

I Compare main effects across two subsamples: governor
can run for reelection and cannot run for reelection.

I Endogeneity:

I Neighbours tax rates are endogenous.

I IVs: neighbour’s change of income per capita lagged and
neighbours’ change of unemployment rate lagged.

I Specification:

I Controls: neighbors’ tax change, state income per capita,
state unemployment rate, proportion of young and elderly.

I All specifications contain state fixed effects and time
effects.
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Empirical Application

I Sample extension:

I Continental US states, N = 48

I Original B&C sample: 1962-1988, T = 26 time periods.

I Extended sample: 1962-2015, T = 53 time periods.
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Empirical Application
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Empirical Application
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Empirical Application
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Empirical Application

Relative to BC network
Total number of edges 144
... new edges 65
... removed edges 135
Reciprocated edges 29.7%
Clustering 0.0259

green = new edges relative to B&C

blue = existing edges

red = removed edges

I Large discrepancies between estimated network and geo neighbours
I Fewer edges relative to Besley and Case
I Geographically dispersed US tax competition
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Empirical Application

Figure: Impulse Response Comparison
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Empirical Application
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Empirical Application
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Conclusion

I In this project, we study identification of social connections
under standard hypothesis in the literature on social
interactions.

I Sparsity inducing methods can be used for estimation
(though further research is welcome!).

I Empirical application (Besley and Case [1995]).
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Thank You!
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