

Al for Decision Making

Phanish Puranam, INSEAD

Phanish Puranam

The Roland Berger Chaired Professor of Strategy and Organisation Design

- PhD in Management from the Wharton School of the University of Pennsylvania
- Served as the Academic Director for the PhD Program at both London Business School and INSEAD
- Expertise: Organization Design & Strategy
- Current research: Organizations & Algorithms, Remote Collaboration

What does it take to master AI?

Copyright © 2014 by Steven Geringer Raleigh, NC. Permission is granted to use, distribute, or modify this image, provided that this copyright notice remains intact

What's the <u>most</u> impressive accomplishment of AI to date (in *your* view)?

- Please enter into our Shared Google Doc- do check for redundancy with what others are typing!
- 3 minutes

What's the <u>most</u> impressive accomplishment of AI to date (in *your* view)?

Natural Language Processing

Can AI be creative?

Figure 5: 1024×1024 images generated using the CELEBA-HQ dataset. See Appendix F for a larger set of results, and the accompanying video for latent space interpolations.

Herbert Simon (joint work with W.G. Chase, 1973)

HUMAN EXPERTISE= INTELLIGENT BEHAVIOR IN A CONTEXT= PATTERN RECOGNITION!

OLD AI: EXECUTES RULES

NEW AI: LEARNS PATTERNS FROM DATA

Name:	
PROFFING	

Complete the Pattern

Look at each pattern below and then use the box on the right to complete the pattern.

$\otimes \otimes \otimes \otimes$	
20020	
\$\D\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

Pattern recognition & application

- Learning to recognize and apply patterns is the heart of intelligence
- That's what Machine Learning does
- Lots of data + processing power makes it easier to recognize (even complex) patterns
- A pattern= a "function" which associates inputs to *unique* outputs.
- Pattern recognition in humans = function approximation in algorithms

Machine learning ⊆ artificial intelligence

ARTIFICIAL INTELLIGENCE

Design an intelligent agent that perceives its environment and makes decisions to maximize chances of achieving its goal.

Subfields: vision, robotics, machine learning, natural language processing, planning, ...

MACHINE LEARNING

Gives "computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)

SUPERVISED LEARNING

Classification, regression

UNSUPERVISED LEARNING

Clustering, dimensionality reduction, recommendation

REINFORCEMENT LEARNING

Reward maximization

A STORY OF DOGS AND CATS

Classical Conditioning

Figure 18.2 Thorndike's puzzle box

Reinforcement Learning

ML algorithms work through pattern recognition & completion

Patterns -> Predictions -> Decisions

• All decisions require prediction

• Decisions can be "standalone" vs. "embedded"

Al ~ ML~ Pattern Detection: Standard use cases today

Customer attributes---- Churn likelihood

Al ~ ML~ Pattern Detection: Standard use cases today

Pixel ---- Image

Sound ----- Words in speech

https://www.youtube.com/watch?v=D5VN56jQMWM&t=127s

State of play ---- Optimal next move in game

https://www.eff.org/ai/metrics#Abstract-Strategy-Games

Al ~ ML~ Pattern Detection : Emerging Use cases

Employee attributes----Exit likelihood

CV attributes ---- Good hire

Project characteristics ---- Good investment

Al ~ ML~ Pattern Detection : Emerging Use cases

Company characteristics----- Strategic moves

Dominance or Co-existence?

HOW TO KEEP UPTODATE ON WHAT AI IS DOING (WELL)

https://www.eff.org/ai/metrics

Levels of sophistication in using Data in Business

Data Continuous Outcome

PERCEPTION vs. PREDICTION

- Perception through Hypothesis testing:
- Does this association exist in the data?
 - We have a hunch (hypothesis) about an explanation
 - Null Hypothesis Significant
 Testing tells us the probability
 (across many samplings) of
 observing the association we see
 merely by chance, even if the
 true association in the
 population is zero.
 - p-value

- Prediction through Data mining:
- What associations exist in the data?
- We have no or minimal hunches, we "let the data speak" to make a prediction
- **Data mining** involves algorithms that hunt for useful associations in the data that can be summarized in a model.
- Predictive accuracy

Prediction What's going to happen?

- Different algorithms
 - Tree induction
 - LASSO
 - Random forest

- OLS
- Logistic
- Deep learning

- Common to all:
- Use past data to predict
- future outcomes

How can more advanced ML algorithms improve on what we just did?

Past Data Continuous Outcome

Key issue: build models that fit current data well but also predict future data well

Overfitting + Generalization

- Problem:
- Every sample is truth + error. The model may learn too much about the error in a particular sample by adding too many parameters.

Solutions:

- 1. Penalizing predictive accuracy for model complexity
 - 1. Regularization (constraint on parameters)
- 2. Partition training data into training and test data
 - 1. K-fold validation
- 3. Both!

Models with more predictive power are often more opaque.

Predictive performance

McKinsey & Company

Components of a prediction machine

https://knowledge.insead.edu/blog/insead-blog/where-ai-can-help-your-business-and-where-it-cant-13136

