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What's the most impressive accomplishment
of Al to date (in your view)?

* Please enter into our Shared Google Doc- do check for redundancy
with what others are typing!

* 3 minutes
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Can Al be creative?
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Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Progressive growing of GANs




Google DeepMind £63 AlphaGo
Challenge Match

8 - 15 March 2016
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Herbert Simon (joint work with W.G. Chase, 1973)



HUMAN EXPERTISE= INTELLIGENT BEHAVIOR IN A CONTEXT= PATTERN RECOGNITION !
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OLD Al: EXECUTES RULES

NEW Al

: LEARNS PATTERNS FROM DATA






Pattern recognition &
application

Learning to recognize and apply patterns is the
heart of intelligence

That’s what Machine Learning does

Lots of data + processing power makes it easier
to recognize (even complex) patterns

A pattern=a “function” — which associates
inputs to unique outputs.

Pattern recognition in humans = function
approximation in algorithms




Machine learning ¢ artificial intelligence

ARTIFICIAL INTELLIGENCE

Design an intelligent agent that perceives its environment and makes decisions to maximize chances of achieving its goal.
Subfields: vision, robotics, machine learing, natural language processing, planning, ...

MACHINE LEARNING

Gives "computers the ability to learn without being explicitly programmed"” (Arthur Samuel, 1959)

UNSUPERVISED
LEARNING

Clustering, dimensionality
reduction, recommendation

SUPERVISED
LEARNING

Classification, regression

REINFORCEMENT
LEARNING

Reward maximization

Machine Learning for Humans LY. )




A STORY OF DOGS AND CATS
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Supervised & Unsupervised Learning
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ML algorithms work through pattern
recognition & completion

(Unsupervised) Pattern Recognition & (Reinforcement)
Completion
(i.e. function estimation .
Feedback
Do X1 2> F1
(Supervised) Do X2 - F3
A B ? Do X4 >F4
\_ Y, N
Prediction

X1-- Y1

X2--Y2
XN--




Patterns =2 Predictions = Decisions

 All decisions require prediction

* Decisions can be “standalone” vs. “embedded”



Al ~ ML~ Pattern Detection: Standard use
cases today

eTransaction features ---- Fraud

@
Customer attributes---- Churn likelihood

Inkdots ---- Words



Al ~ ML~ Pattern Detection: Standard use
cases today

Pixel ----- Image

<» Sound ------ Words in speech

https://www.youtube.com/watch?v=D5VN56jQMWM&t=127s

Cx® State of play ----- Optimal next move in
game

https://www.eff.org/ai/metrics#Abstract-Strategy-Games



https://www.youtube.com/watch?v=D5VN56jQMWM&t=127s

Al ~ ML™ Pattern Detection : Emerging Use
Cases

H

E Employee attributes----Exit likelihood

l;f CV attributes ---- Good hire
4

Q Project characteristics ---- Good investment




Al ~ ML™ Pattern Detection : Emerging Use
Cases

Text and word use ----- Cultural values

o]
Njo|D
n

Eﬂ Company characteristics----- Strategic moves
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Hans Moravec’s landscape, in Tegmark (2018)



Dominance or Co-existence?
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HOW TO KEEP UPTODATE ON WHAT Al IS DOING (WELL)

https://www.eff.org/ai/metrics



https://www.eff.org/ai/metrics

Levels of sophistication in using Data in Business

PROTOTYPING

PREDICTION




Data
Continuous
Outcome




PERCEPTION vs. PREDICTION

e Does this association
exist in the data?

* We have a hunch (hypothesis)
about an explanation

* Null Hypothesis Significant
Testing tells us the probability
(across many samplings) of
observing the association we see
merely by chance, even if the
true association in the
population is zero.

e p-value

 \WWhat associations

exist in the data?

We have no or minimal hunches,
we “let the data speak” to make
a prediction

Data mining involves algorithms
that hunt for useful associations
in the data that can be
summarized in a model.

Predictive accuracy



 Tree induction

e Random forest

What’s going to happen?

™ EX

* OLS

e LASSO * Logistic
e Deep learning

e Use past data to predict

* future outcomes



How can more advanced ML algorithms
improve on what we just did?



Past Data
Continuous
Outcome

Key issue: build models
that fit current data well
but also predict future
data well




Overfitting + Generalization

* Solutions:
* Every sample is 1. Penalizing predictive accuracy for model
truth + error. The complexity
model may learn 1. Regularization (constraint on parameters)

too much about
the error in a
particular sample

by adding too 3. Both!
many parameters.

2. Partition training data into training and test data
1. K-fold validation



Models with more predictive power are often more opaque.

Linear f‘f
regression

Interpretability
Decision
tee | 5B
Random &
forest

Support-
vector /\*ﬁ

machines a0

Neural @
network
Predictive performance

McKinsey
& Company



Components of a prediction machine

Data Algorithms Predictions

1.Representative 1. Produces highest

2.Captures structure predictive accuracy
3. Stable 2. At least sacrifice of That have high value-
4.Free of social biases interpretability accuracy slope

https://knowledge.insead.edu/blog/insead-blog/where-ai-can-help-your-business-and-where-it-cant-13136



https://knowledge.insead.edu/blog/insead-blog/where-ai-can-help-your-business-and-where-it-cant-13136

Performance

Type “A” tasks Type “B” tasks

Division of Labour + Integration of Effort

Human

_ Human + Algorithm

Algorithm




Performance

Type “A” tasks

Type “B” tasks

Division of Labour

+ Integration of Effort

Type “C” tasks

Wisdom through Aggregation

Human

Human + Algorithm

Algorithm



