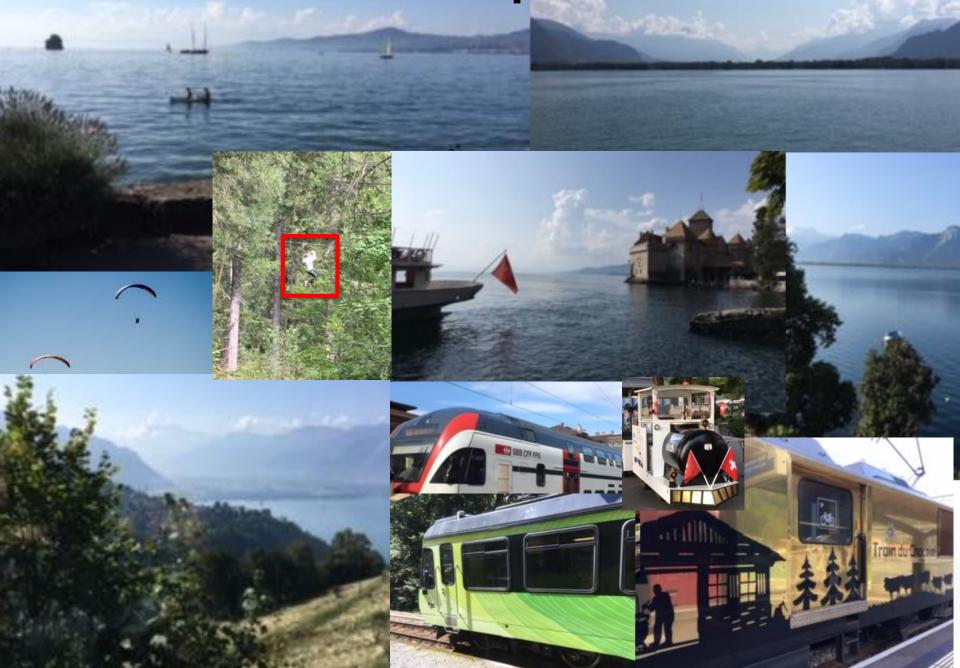
Hepatic Transporters and Liver Disease

Kim L. R. Brouwer, PharmD, PhD


William R. Kenan Jr., Distinguished Professor Associate Dean for Research & Graduate Education

The University of North Carolina at Chapel Hill

Mechanisms of Transport in Switzerland

Conflict of Interest Disclosure

- Commercial Financial Interest: Co-inventor of the sandwich-cultured hepatocyte technology for quantification of biliary excretion (B-CLEAR®) and related technologies, which have been licensed exclusively to Qualyst Transporter Solutions, LLC, recently acquired by BioIVT
- Scientific Consulting: Merck Research Laboratories;
 Nuvelution Pharma, Inc.; Indalo Therapeutics, Inc.
- Grants/Research Support: National Institute of General Medical Sciences of the National Institutes of Health (R35 GM122576); Intercept Pharmaceuticals; Otsuka Pharmaceutical Development & Commercialization, Inc.; Gilead Sciences, Inc.

Outline

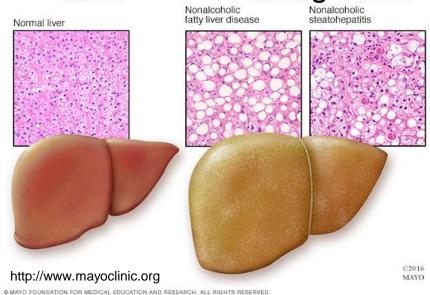
- Hepatic Transporter Expression in Patients with Nonalcoholic Steatohepatitis (NASH)
- Clinical Probes to Assess Transporter Function in NASH
 - 99mTc-Mebrofenin (MRP2 probe)
 - Morphine/Morphine Glucuronides (MRP3 probe)
- Bile Acid Concentrations in NASH
- OSTα/β Induction in Liver Tissue of Patients with NASH
- Are Patients with NASH More Susceptible to Bile Acid-Mediated Drug-Induced Liver Injury (DILI)?

Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH)

Worldwide prevalence of NAFLD is 25% and increasing

with highest prevalence in:

32% Middle Ea


31% South America

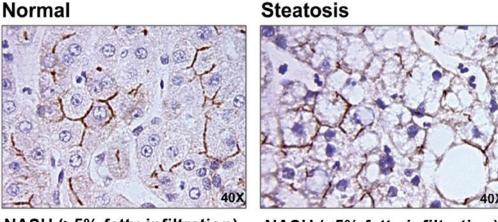
– 27% Asia

- 24% USA

23% Europe

14% Africa

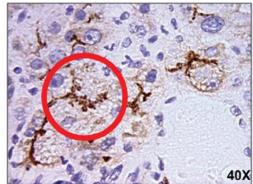
- ~10-20% of patients with NAFLD present with the more progressive form, NASH
 - characterized by hepatocyte ballooning, steatosis, and inflammation


Altered Hepatic Transport Proteins in Liver Tissue from Patients with NASH

Transporter	Protein Level (Western Blot)
OATP1B1	Increased
OATP1B3	Decreased
OATP2B1	No Change
MRP3	Increased
MRP4	Increased
P-gp	Increased
BCRP	Increased
MRP2	Increased (glycosylated & unglycosylated)

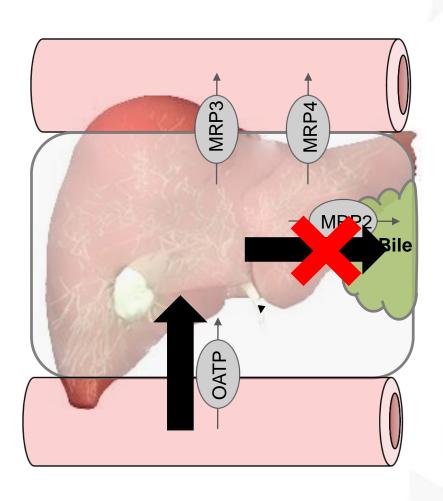
Hardwick et al., *Drug Metab Dispos*, **39**:2395, 2011;

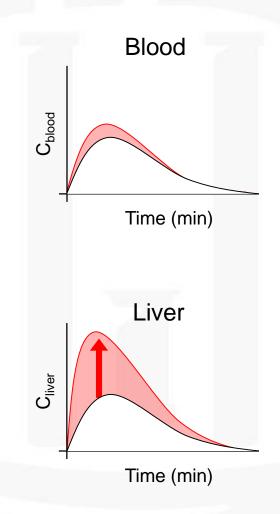

Clarke et al., J Hepatol, **61**:139, 2014; Clarke et al., Liver Int, **37**:1074, 2017


Immunohistochemical Staining of MRP2

NASH (>5% fatty infiltration)

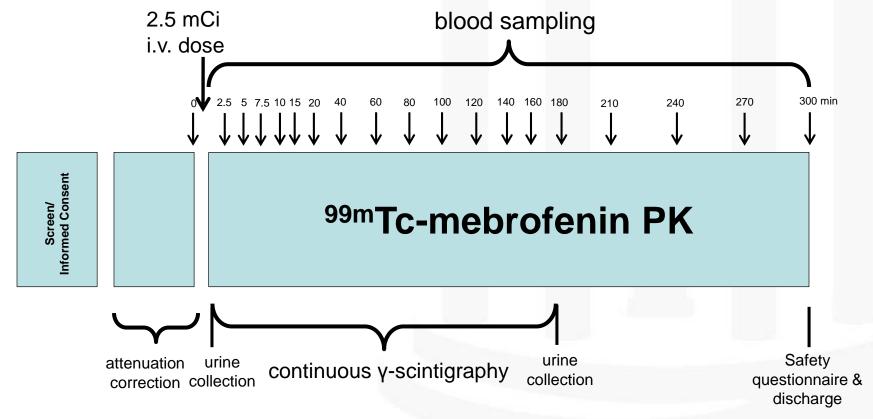
NASH (<5% fatty infiltration)

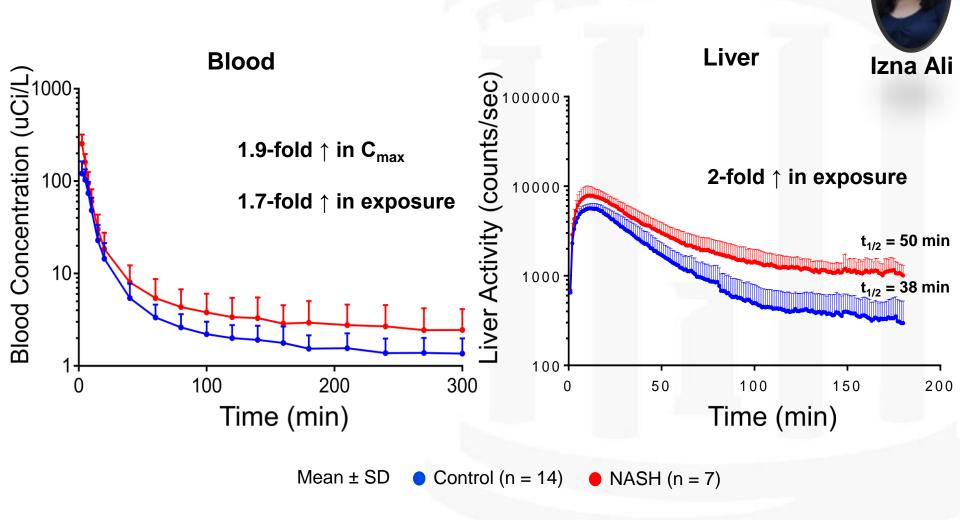

Hardwick et al., Drug Metab Dispos, 39:2395, 2011


99mTc-Mebrofenin (Choletec®): Probe for Transporter-Mediated Hepatobiliary Excretion

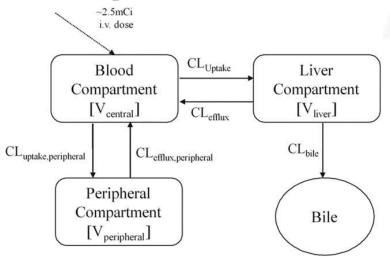
- Used clinically as a hepatobiliary imaging agent
- Liver uptake ~98%; negligible metabolism
- Urinary excretion <2% of dose
- Transporter-mediated hepatobiliary disposition
 - Hepatic uptake via OATP1B1 and OATP1B3
 - Biliary excretion via MRP2
 - Basolateral excretion via MRP3

Simulations Predict Increased Hepatic Exposure to MRP2 Substrates in NASH Patients

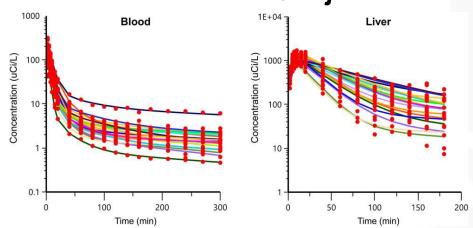



Clinical Study Design: 99mTc-Mebrofenin

- Healthy subjects (n=14) and biopsy-confirmed NASH patients [n=7; NAFLD activity score (NAS)≥4] admitted on morning of study after overnight fast
- Attenuation correction obtained with a cobalt-57 flood source
- Subjects positioned supine under gamma camera


Subjects discharged following exit exam

Hepatic 99mTc-Mebrofenin Exposure was Increased in Patients with NASH

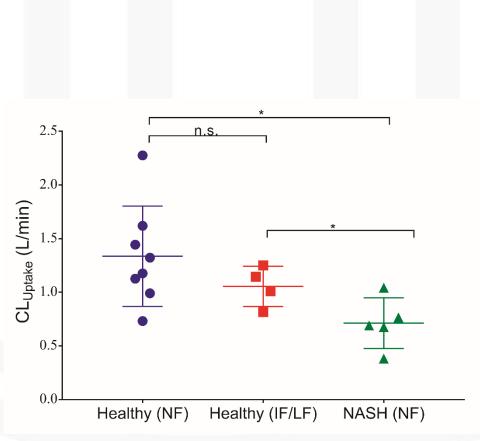


Ali...Brouwer, Clin Pharmacol Ther, 104:749, 2018

Model Scheme Describing 99mTc-Mebrofenin Disposition and Parameter Estimates

Observed Data and Model Predictions for Individual Subjects

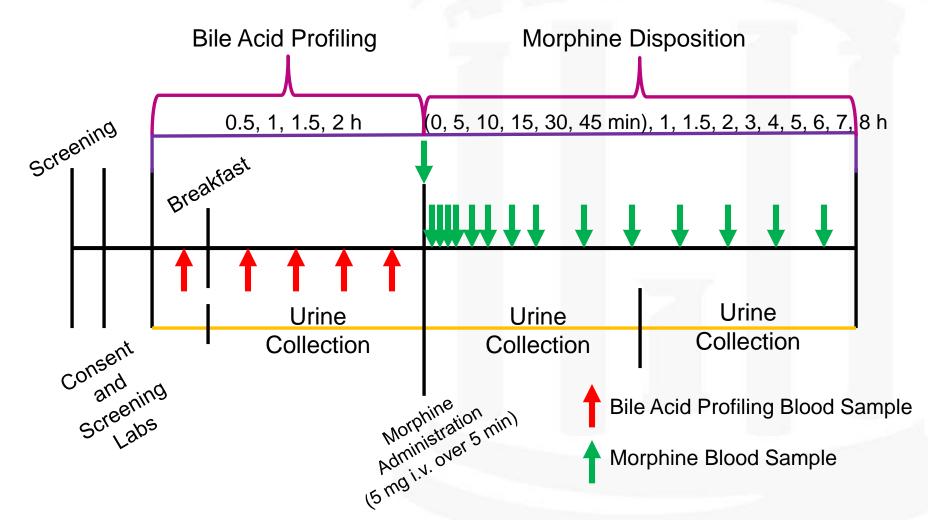
Parameters	Healthy	NASH
	(n=14)	(n=7)
CL _{uptake}	1.14	0.731 **
(L/min)	(0.73-2.27)	(0.382-1.04)
CL _{efflux}	0.00800	0.00579
	(0.00481-	(0.00475-
(L/min)	0.0139)	0.00903)
CL _{bile}	0.0354	0.0171 **
(L/min)	(0.0157-0.0728)	(0.0110-0.0207)
V _{central}	11.1	6.32 **
(L)	(9.55-12.5)	(5.69-9.69)
V _{liver}	0.958	0.891
(L)	(0.527-1.39)	(0.648-1.43)


Median (range); **p<0.001

Ali...Brouwer, Clin Pharmacol Ther, 104:749, 2018

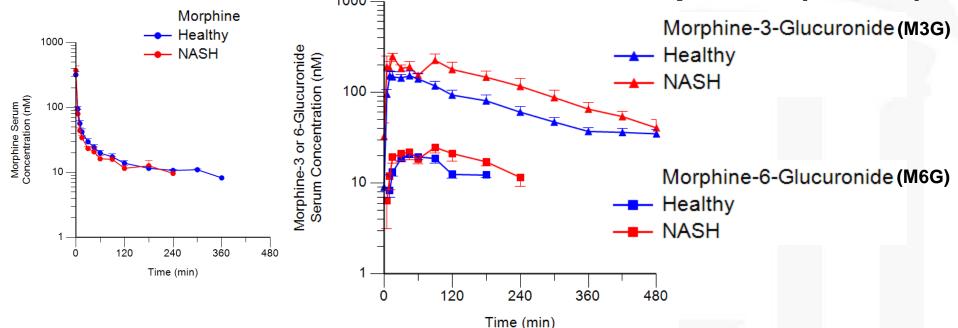
99mTc-Mebrofenin Hepatic Uptake Clearance was Lower in NASH Patients even with "Normal Function" *SLCO1B1* Genotype

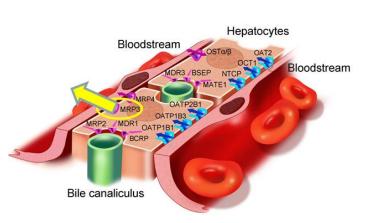
SLCO1B1 Genotype	Healthy (# of subjects)	NASH (# of subjects)	Function	
*15/*15	1		Low (LF)	
*1A/*15	3		Intermediate (IF)	
*1A/*14		1		
*14/*14	1			
*1A/*1A	2	3	Normal (NE)	
*1B/*1B	2		Normal (NF)	
*1B/*14	1			
*1A/*1B	2	1		


Ali...Brouwer, Clin Pharmacol Ther, 104:749, 2018

Hepatic Disposition of Morphine and Metabolites Morphine

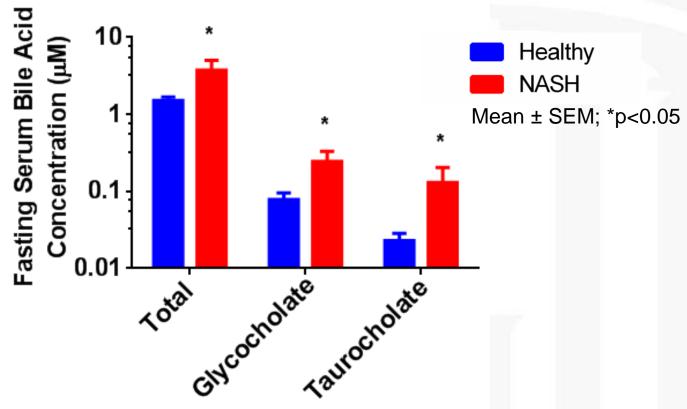
OCT1 **Brian Ferslew** (SLC22A1) blood flow Morphine **ATP** MRP2 UGT2B7 bile (ABCC2) Morphine-3- (M3G) and Morphine-6- (M6G) Glucuronide MRP3 blood flow (ABCC3) **Morphine Glucuronides**


Clinical Study Design: Morphine / Glucuronides


- Healthy subjects without insulin resistance: n=14
- Biopsy confirmed NASH patients [NAFLD activity score (NAS)≥4]: n=7

Ferslew...Brouwer, Clin Pharmacol Ther, 97:419, 2015

Increased M3G and M6G Serum Concentrations in Patients with Nonalcoholic Steatohepatitis (NASH)



MG Parameters	Healthy (n=14)	NASH (n=7)
C _{max} (nM)	225 (194-261)	343** (284-413)
AUC _{0-last}	37	59 **
(μM*min)	(32-44)	(42-83)
Half-life	187	146
(min)	(153-229)	(104-205)

Geometric mean (95% CI); ** p<0.01 t-test on log transformed data

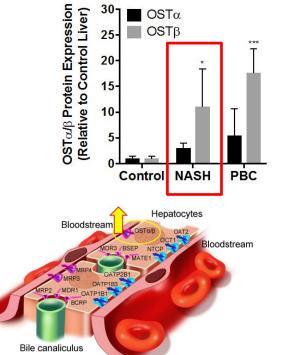
Ferslew...Brouwer, Clin Pharmacol Ther, 97:419, 2015

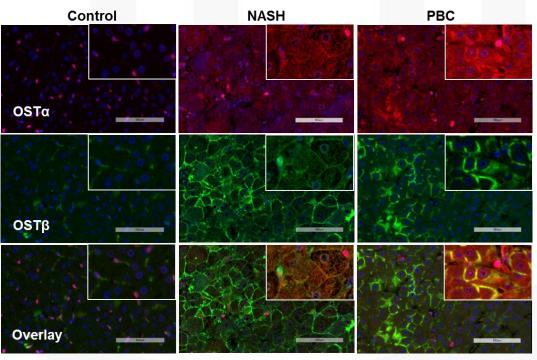
Increased Conjugated Bile Acids in Serum of Patients with NASH

	Total Bile Acids		Glycocholate		Taurocholate	
Parameter	β	P-value	β	P-value	β	P-value
NAS+Fibrosis	0.43 (0.10)	0.004	0.03 (0.01)	0.001	0.02 (0.01)	0.006

β: regression parameter estimate (SE)

Melina


Malinen


Organic Solute Transporter (OSTα/β) SLC51A/B is Upregulated in Patients with Liver Disease

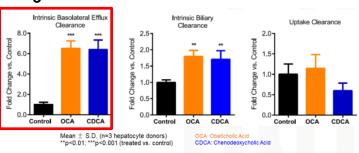
Is OSTα/β an Overlooked "Safety Valve" for Hepatocellular Efflux of Bile Acids?

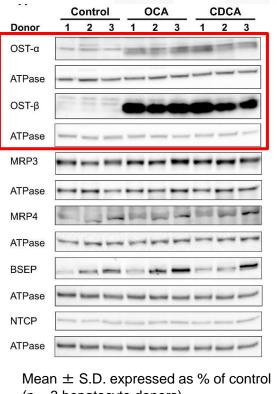
Patients with Nonalcoholic Steatohepatitis (NASH) and Primary Biliary Cirrhosis (PBC)

Malinen...Brouwer, Am J Physiol, 314:G597, 2018

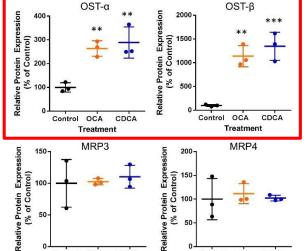
Cen Guo

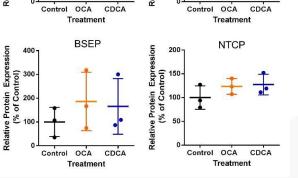
Chenodeoxycholic Acid (CDCA) and Obeticholic Acid (OCA) **Treatment of Sandwich-Cultured Human Hepatocytes** Increased OSTα/β and BSEP mRNA, Protein and Function


(100 μ M treatment x 72 hr; n=3)

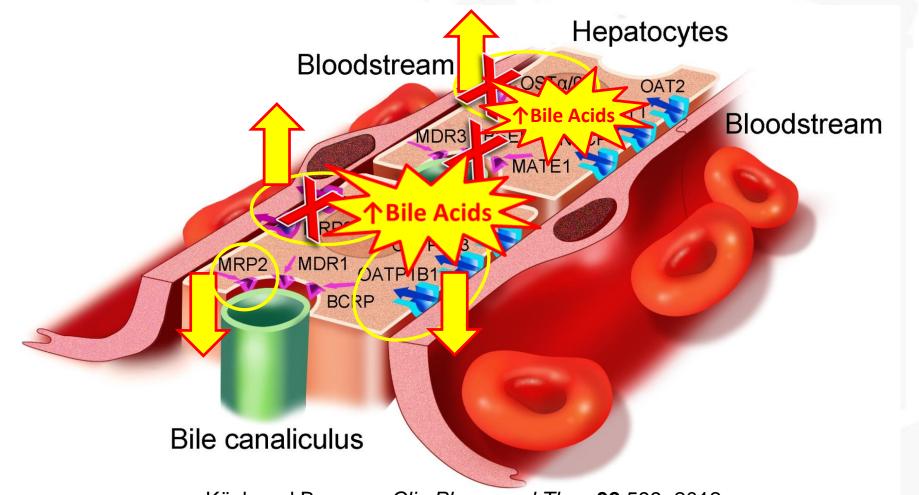

CDCA Treatment

Transporter	mRNA (fold increase)	Protein (fold increase)	
OSTα	3-7	>3	
OSTβ	21-187	13	
BSEP	2-8	2	


Data expressed as relative fold change


Fold Change in d₈-Taurocholate Clearance

(n = 3 hepatocyte donors)**p<0.01;***p<0.001 (treated vs. control)



OCA: Obeticholic Acid CDCA: Chenodeoxycholic Acid

Guo...Brouwer, J Pharmacol Exp Ther, 365:413, 2018; Jackson et al., Appl In Vitro Toxicol, 2:207, 2016

Altered Hepatic Transporter Function in NASH Patients May Increase Hepatic and/or Systemic Exposure to Drugs and Susceptibility to Drug-Induced Liver Injury

Köck and Brouwer, Clin Pharmacol Ther, **92**:599, 2012 (Adapted from Ho and Kim, Clin Pharmacol Ther, **78**:260, 2005)

Graduate Students/ Postdoctoral

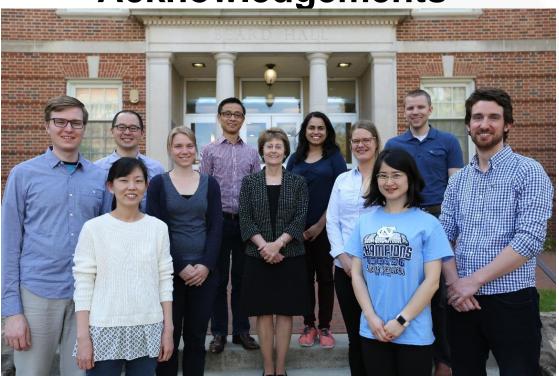
Fellows/ Visiting Scholars

- Izna Ali
- Jacqueline Bezençon
- Brian Ferslew
- Dong Fu
- Giulia Ghibellini
- Cen Guo
- Katsuaki Ito
- Curtis Johnston
- Josh Kaullen
- Kathleen Köck
- Melina Malinen
- Jason Slizgi
- Eleftheria Tsakalozou

Collaborators

Sid Barritt Arlene Bridges

Marija Ivanovic Wei Jai


Mikko Niemi
Mary Paine

Paul Stewart Paul Watkins

UNC Hospitals

- Nuclear Medicine & Radiology Staff
- Clinical & Translational Research Center

Acknowledgements

Funding Sources

- National Institutes of Health Grants
 R01 GM41935, R35 GM122576, T32GM86330
 (NIGMS); UL1 TR001111 (NCATS)
- Intercept Pharmaceuticals
- Finnish Cultural Foundation, Orion Research Foundation, Erasmus+ Programme
- > IQVIA Clinical PK/PD Fellowship

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

