CHANGES IN ACTIVITY OF HEPATIC TRANSPORTERS IN PATIENTS WITH RENAL IMPAIRMENT

Hepatocyte Transporter Network, Les Diablerets, Switzerland

Dr. Raymond Evers

Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ, USA.

E-mail: Raymond_Evers@merck.com

Ph. 908-740-0427

Outline

Evers R, et al. Clin Pharmacol Ther. 2018;104:900-915.
Disease-Associated Changes in Drug
Transporters May Impact the Pharmacokinetics
and/or Toxicity of Drugs: A White Paper From the
International Transporter Consortium

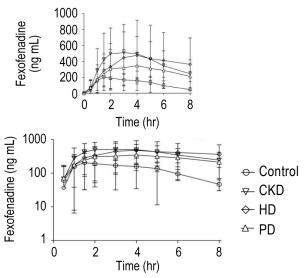

Raymond Evers¹, Micheline Piquette-Miller², Joseph W. Polli³, Frans G.M. Russel⁴, Jason A. Sprowl⁵, Kimio Tohyama⁶, Joseph A. Ware⁷, Saskia N. de Wildt⁸, Wen Xie⁹, Kim L.R. Brouwer¹⁰ on behalf of the International Transporter Consortium

Focus for presentation today

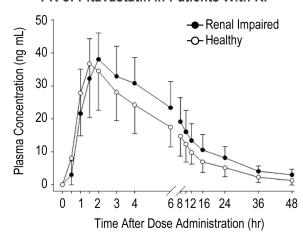
- What is known about the effect of kidney disease on liver transporters?
- Microdose cocktail results
 - Effect of renal impairment (RI) on liver/intestine transporter substrates
 - Effects on endogenous biomarkers for liver transporters
- Conclusions

Impact of Chronic Kidney Disease (CKD) on Hepatic Enzymes and Transporters

	Clinical Impact
CYP3A4/5	No consistent impact
CYP2D6, CYP2C8	↓ clearance
CYP1A2, CYP2C9, CYP2C19	Minimal and variable
OATP1B	↓ uptake/clearance



Uremic Toxins
Inflammatory response
Changes in plasma protein binding
Changes in volume of distribution


Tan ML, et al. Clin Pharmacol Ther. 2019;105(3):719-729. Yoshida K, et al. Clin Pharmacol Ther. 2016;100(1):75-87.

Increased Exposure of Transporter Substrates Cleared Nonrenally in Patients with CKD

PK of Pitavastatin in Patients With RI

Disease State	Drug	Transporter/Enzyme	AUC _{0-last} Patients	AUC _{0-last} Healthy	AUC _{0-last} Mean Ratio	C _{max} Patients	C _{max} Healthy	C _{max} Mean Ratio
HD-CKD	Fexofenadine	P-gp, OATP1B3, OATP2B1	2.37 ng*h/mL	1.01 ng*h/mL	2.3	531 ng/mL	247 ng/mL	2.2
CKD Non-dialysis	Pitavastatin	OATP1B1, OATP1B3, BCRP, MRP2, UGT1A3, UGT2B7	164 ng*h/mL	126 ng*h/mL	1.3	74.3 ng/mL	63.1 ng/mL	1.2

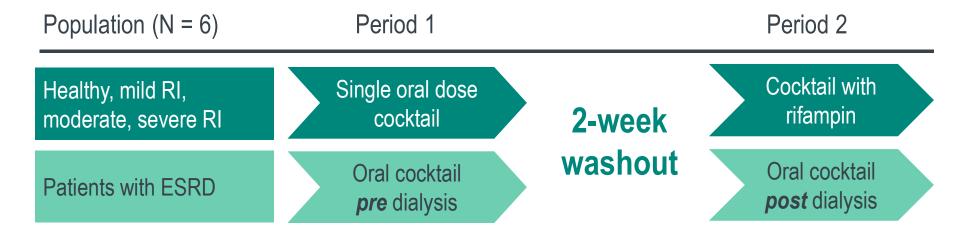
Microdose Study in Patients With Renal Impairment (RI)

- We conducted a study in patients with RI to examine the impact of RI on hepatic drug transporters
- We employed a microdose cocktail + endogenous biomarkers to
 - Assess the impact of RI on select drug transporter-mediated DDIs (focus on OATP1B as well as BCRP, P-gp)
 - Evaluate whether OATP1B endogenous biomarkers may serve as surrogates for DDI assessment in this population

Goal

Enhance our capability to *predict* drug PK and DDI risk for nonrenal elimination routes in patients with RI

Selection of Probe Drugs


Probes in Microdose Cocktail*	Enzyme/Transport Pathway		
10 μg pitavastatin	OATP1B (selective and sensitive)		
50 μg rosuvastatin	OATP1B1/OATP1B3/BCRP (liver and intestine)		
375 µg dabigatran etexilate	P-gp (prodrug only, intestine selective)		
100 μg atorvastatin	CYP3A/OATP1B/BCRP/P-gp (liver and intestine)		
10 μg midazolam	CYP3A4 (liver and intestine)		

Perpetrator: 600-mg single-dose rifampin

(OATP1B/BCRP/P-gp inhibitor)

^{*}Validated using rifampin, itraconazole, and clarithromycin as inhibitors (Prueksaritanont et al., CPT, 2016)

Study Population and Design

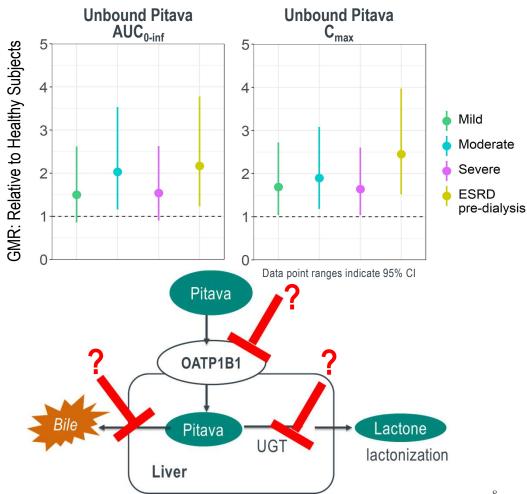
Measurements

- Plasma and urine PK for cocktail, with protein binding
- Endogenous biomarkers of OATP1B uptake (bilirubin, plasma coproporphyrin I and III, and sulfated bile acids)
- Uremic toxins (potential in vitro OATP1B inhibitors) were also measured

RI Increases Plasma Exposure of Pitavastatin, a Selective

OATP1B Probe

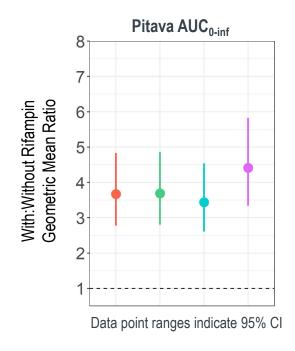
Pitavastatin PK

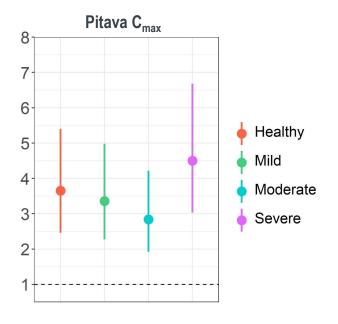

- High oral absorption (FaFg ~1)
- No known role of intestinal efflux
- Cleared by hepatic uptake, glucuronidation, and biliary excretion

RI increased pitavastatin PK without a clear trend with severity

 Consistent with recommended lower doses in mild to moderate groups in drug label

The causes for increased pitavastatin PK with RI are unknown, but could include

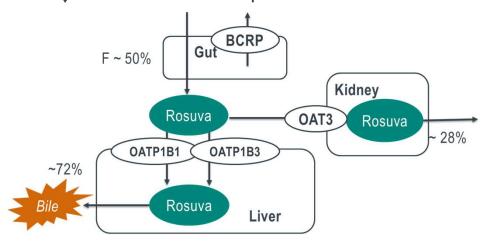

- ↓ hepatic OATP1B uptake
- UGT activity and/or biliary excretion



RI Does Not Alter Rifampin DDI With Pitavastatin

Rifampin caused \sim 4X increase in pitavastatin AUC and C_{max} across renal RI groups

- No apparent impact of RI on the extent of rifampin DDI
 - DDI results not consistent with a reduction in OATP activity with RI
- Results confirm pitavastatin as a sensitive OATP1B substrate

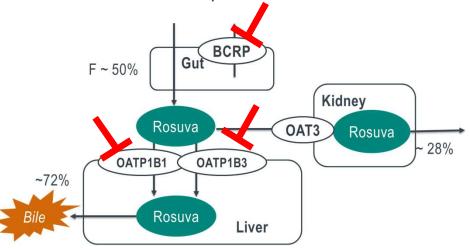

RI Did Not Significantly Alter Rosuvastatin Pharmacokinetics

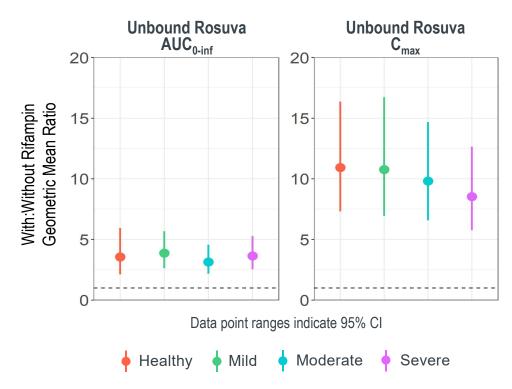
Rosuvastatin PK

- Substrate of OATP1B1/1B3 and BCRP
- Excreted in bile and urine (OAT3)

Results: Pharmacokinetics were highly variable without a clear trend with RI

↓ renal clearance up to 89% in severe RI


RI Did Not Alter Rifampin DDI With Rosuvastatin


Rifampin caused ~3.5X \uparrow AUC and ~10X \uparrow C_{max}

- No trend with RI for AUC
- Possible slight trend for C_{max}

Unlike pitavastatin – C_{max} DDI > AUC

 Potential role of inhibiting BCRP on rate but not extent of absorption

Endogenous Biomarkers

- Evaluated endogenous biomarkers of OATP1B uptake
- Data can guide selection of biomarkers for deployment in drug development

Published Results: Impact of Rifampin on Endogenous Biomarkers in Healthy Subjects

Biomarkers	Literature Data	References
Coproporphyrin I and III (CPI/CPIII)	↑ 5.4-6.5 AUC	Shen, et al. 2016; Lai, et al. 2016 ^{1,2}
Conjugated/unconjugated bilirubin	↑ 2-fold AUC	Chu, et al. 2015; Prueksaritanont, et al. 2014 ^{3,4}
Sulfated bile salts (GDCA-S, GCDCA-S, DCA-S, TCDC-S, TCDA-S)	↑ 10-fold AUC	Takehara, et al. <i>Pharm. Res.</i> 2018 ⁵

^{1.} Shen H, et al. J Pharmacol Exp Ther. 2016 May;357(2):382-93. 2. Lai Y, et al. J Pharmacol Exp Ther. 2016 Sep;358(3):397-404.

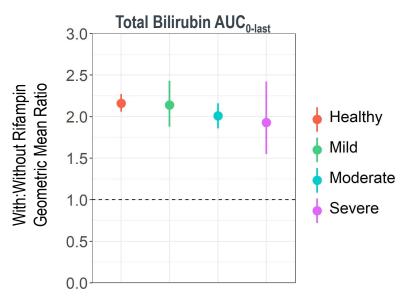
^{3.} Chu X, et al. Drug Metab Dispos. 2015. 4. Prueksaritanont T, et al. Br J Clin Pharmacol. 2014 Sep;78(3):587-98.

^{5.} Takehara I, et al. Pharm Res. 2018 May 10;35(7):138.

Coproporphyrins and Bilirubin Markedly Increased by Rifampin

CPI and CPIII: formed in liver, eliminated via hepatobiliary and renal excretion, with minimal metabolism

Bilirubin: complex hepatic disposition involving multiple transporters and enzymes


All are substrates for OATP1B1/3

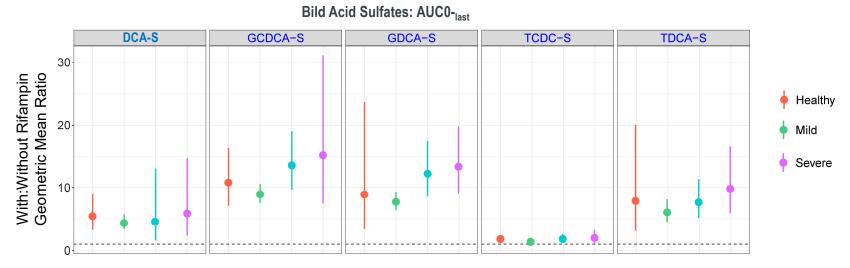
Copro I and III AUC_{0-last} 10.0 Group Healthy With: Without Rifampin Geometric Mean Ratio 7.5 Mild Moderate 5.0 Severe Analyte 2.5 Copro I Copro III 0.0

Rifampin ↑ AUC: ~2X for total bilirubin, 4X-6X for CPI, and 3X-5X for CPIII

Possible trend with severity noted for CPI/CPIII

 Coproporphyrin I – more sensitive OATP1B biomarker in all groups

Data point ranges indicate 90% CI of with:without rifampin GMR.


Sulfated Bile Acids Increased in Presence of Rifampin

Sulfated bile acids: formed in the liver from cholesterol, excreted into the bile, and mostly reabsorbed in the intestine after deconjugation

Multiple transporters are involved (including OATP1B1/3)

Rifampin increased all sulfated bile acid AUCs

- GCDCA-S and GDCA-S appear more sensitive to rifampin
- Interaction appears to trend up with severity of RI for several analytes

Data point ranges indicate 90% CI of with:without rifampin GMR.

Conclusions

Impact of RI Severity on PK and Rifampin DDI

Probe	Pathway	RI vs HV PK	Rifampin DDI Trend With Increasing RI	Potential RI Impact on Transporters
Pitavastatin	OATP1B1	↑	\leftrightarrow	Unclear (DDI; not OATP1B?)
Rosuvastatin	OATP1B/BCRP	\leftrightarrow	\downarrow (C _{max})	↓ intestinal BCRP?
CPI/III, bile acid sulfate conjugates	OATP1B and other pathways	NA	↑	Other (not OATP1B, renal excretion?)

Mechanistic Insights

- Potential impact of RI on intestinal BCRP weak effect of rosuvastatin
 - Impact of RI on transporters in the gut, not liver
- Rifampin DDI data not supportive of downregulation of OATP1B with RI

Acknowledgments

MSD Team

Aubrey Stoch

Xiaoyan Chu

Tami Crumley

Patrick Larson

Michael Lassman

Andrew Latham

Kate Mostoller

Jianmei Pang

Erina Paul

Radha Railkar

Jonathan Robbins

Santosh Sutradhar

Daniel Tatosian

Donald Tweedie

Megan Wang

Anran Wang

Jianzhong Wen

Kelly Yee

Faye Zhang

Celerion Team

Siobhan Barr

Lynn Cadovius

Michelle Combs

Anne Gillespie

Anne Honstein

Theresa Horton

Carmen Ludwig

Ted Marenco

Nadia Cardillo Marricco

Marlene Mathes

Clinical Sites Pls

Kenneth Lasseter

Thomas Marbury

THANK YOU MERCK