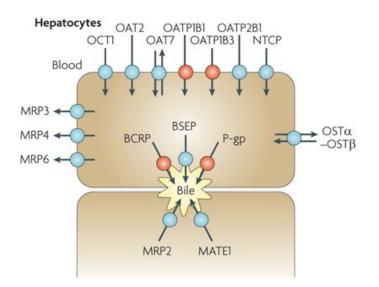
Regulation of human hepatic drug transporters by environmental chemicals



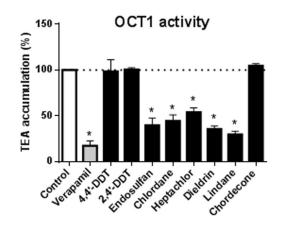
Olivier Fardel Rennes, France

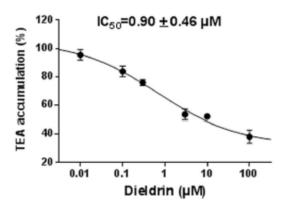
Hepatic drug transporters: Main actors of biliary drug secretion and pharmacokinetics

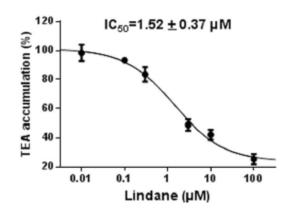
For drugs, interactions with hepatic drug transporters have been extensively studied and well-characterized

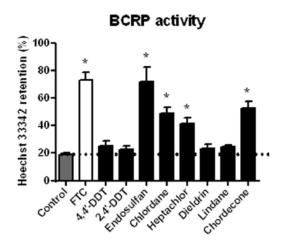
What about environmental chemicals, to which humans are largely exposed? Much less available data and studies than for drugs...

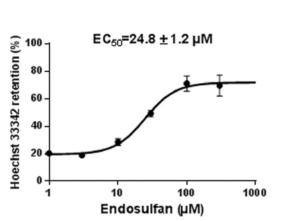
Aim of our studies: To characterize interactions of pollutants with hepatic drug transporters

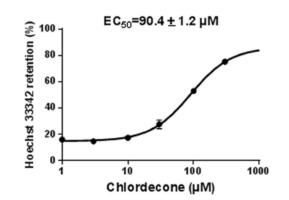

Regulation of drug transporter activity/expression by pesticides

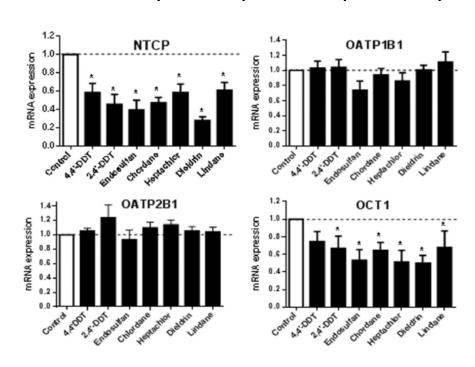

Pesticides belonging to various chemical classes can regulate hepatic drug transporter activity and/or expression


Organochlorine insecticides: Inhibition of in vitro hepatic transporter activity







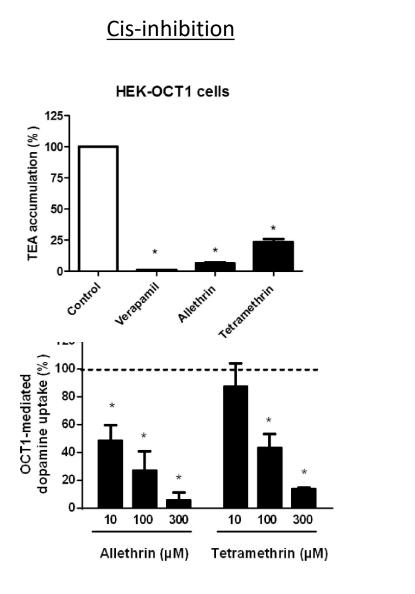



Organochlorine insecticides: Regulation of hepatic transporter expression

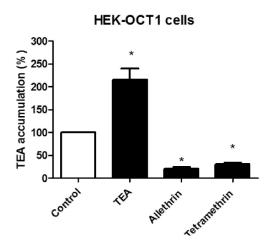
Differentiated human hepatoma HepaRG cells exposed to 10 μ M OC pesticides for 48 h

MRP2 mRNA expression mRN9 expression

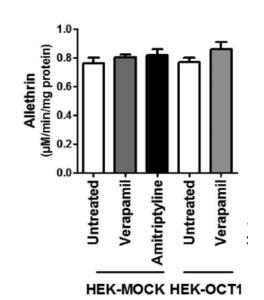
Organochlorine pesticides are agonists of drug-sensing receptors like PXR

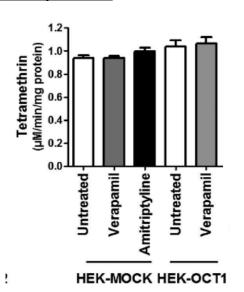

Up-regulation of MDR1 and MRP2 expression

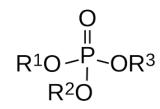
Pyrethroid insecticides: Inhibition of hepatic transporter activity

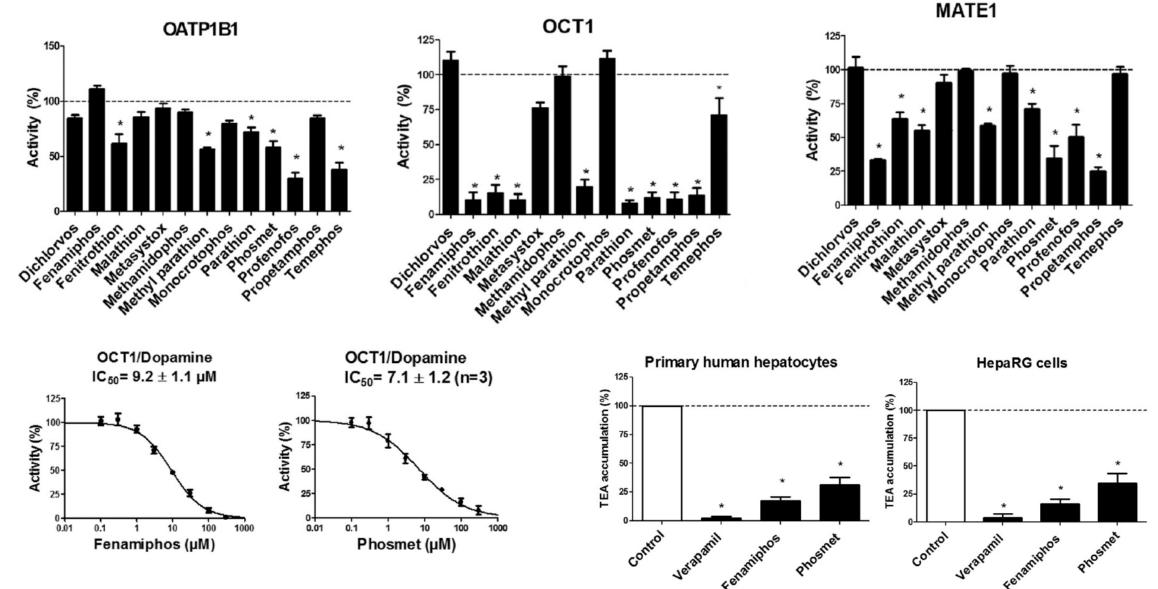

Table 3. Summary of allethrin and tetramethrin effects towards drug transporters.

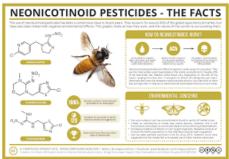
Drug trans	porter	Allethrin	Tetramethrin	
ABC transporter	P-gp	Inhibition (IC ₅₀ >100 μM)	Inhibition (IC ₅₀ >100 μM)	
	MRP2	Inhibition (IC ₅₀ = $48.2 \mu M$)	Inhibition (IC ₅₀ = 65.5 μ M)	
	BCRP	Inhibition (IC ₅₀ = 42.5 μ M)	Inhibition (IC ₅₀ = 72.5 μ M)	
SLC transporter	OATP1B1	Inhibition (IC ₅₀ = 16.5 μ M)	Inhibition (IC ₅₀ = $5.7 \mu M$)	
	OATP1B3	No effect (up to 100 µM)	No effect (up to 100 μM)	
	OATP2B1	Stimulation (EC ₅₀ = 37.8 μ M)	Stimulation (EC ₅₀ = 10.1 µM)	
	OAT1	No effect (up to 100 µM)	No effect (up to 100 μM)	
	OAT3	Inhibition (IC ₅₀ = 69.4 μ M)	Inhibition (IC ₅₀ = 77.6 μ M)	
	MATE1	Inhibition (IC ₅₀ = 50.2 μ M)	Inhibition (IC ₅₀ = 47.5 μ M)	
	MATE2-K	No effect (up to 100 µM)	No effect (up to 100 µM)	
	OCT1	Inhibition (IC ₅₀ = 2.6 μ M)	Inhibition (IC ₅₀ = $4.9 \mu M$)	
	OCT2	Inhibition (IC ₅₀ = 42.6 μ M)	Inhibition (IC ₅₀ = 11.2 μ M)	


Allethrin and tetramethrin are potent inhibitors of OCT1, but are not substrates






Lack of transport by OCT1



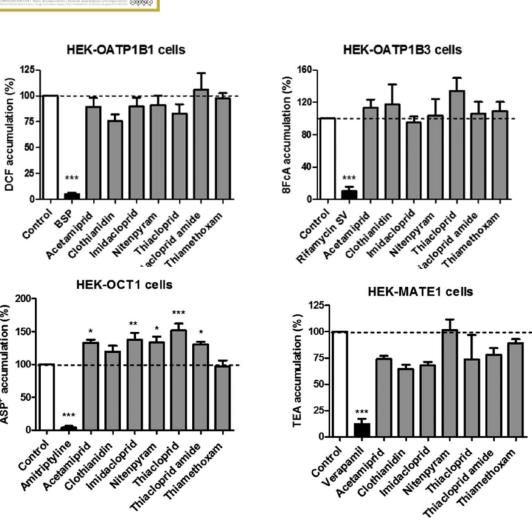
Chedik at al, 2019

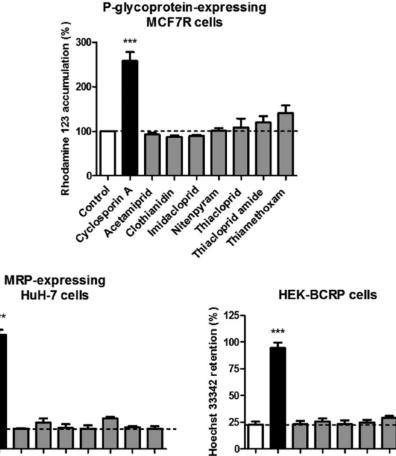
Neonicotinoid insecticides: No or poor inhibition of hepatic transporter activity

100

Probenecid

Acetamiprid Clothianidin


Imidacloprid


Witerloy Fam

This doprid arride Thiadoprid

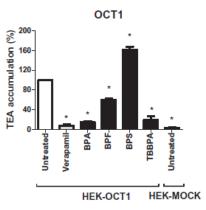
CDCF retention (%)

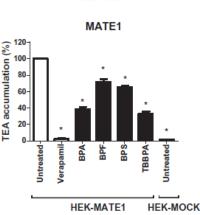
Le Vée et al, 2019

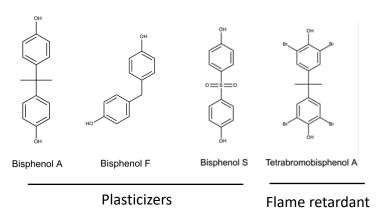
Imidacloprid

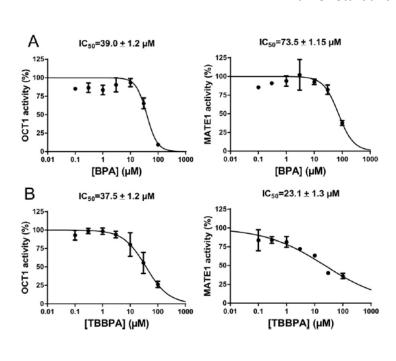
Witerloy Fam

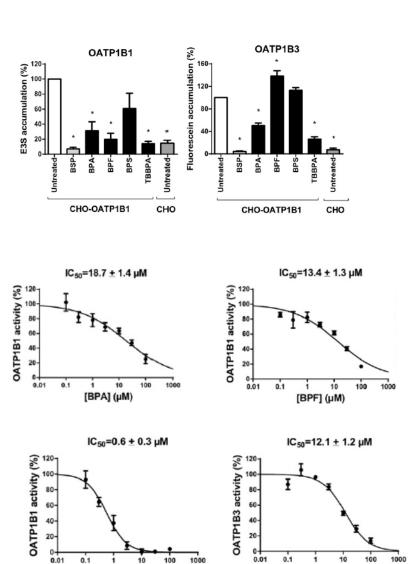
This doprid arride Thiadoprid


Acetemiprid

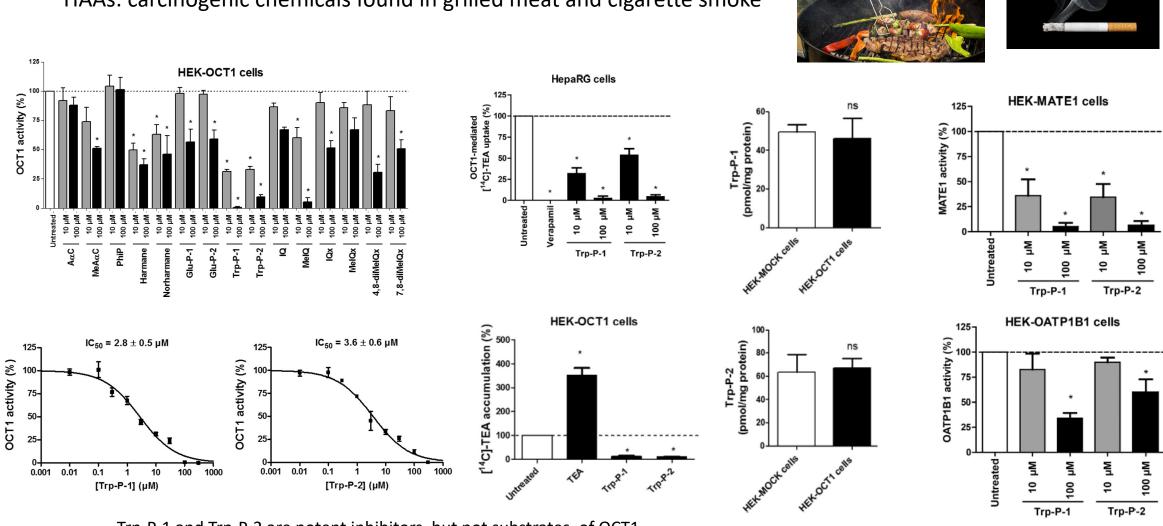

Clothiandin


Not all pesticides block hepatic transporter activities....


Regulation of hepatic drug transporter activity by bisphenols



Bruyere at al, 2017



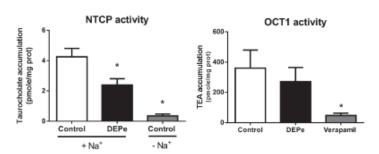
[TBBPA] (µM)

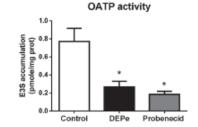
[TBBPA] (µM)

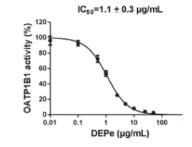
Regulation of hepatic drug transporter activity by heterocyclic aromatic amines (HAAs)

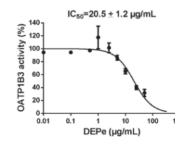
HAAs: carcinogenic chemicals found in grilled meat and cigarette smoke

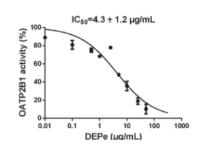
Trp-P-1 and Trp-P-2 are potent inhibitors, but not substrates, of OCT1

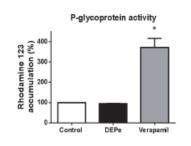

Regulation of hepatic drug transporters by complex pollutant mixtures

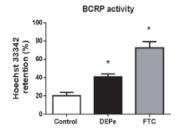

Diesel exhaust particles: Inhibition of *in vitro* hepatic transporter activity

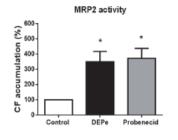


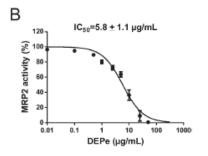

Diesel exhaust particle: Hundreds of chemicals


SLC transporter activities

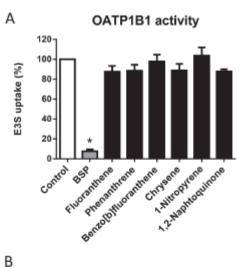


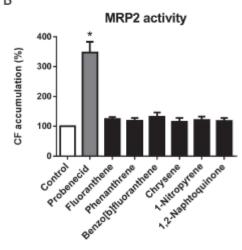




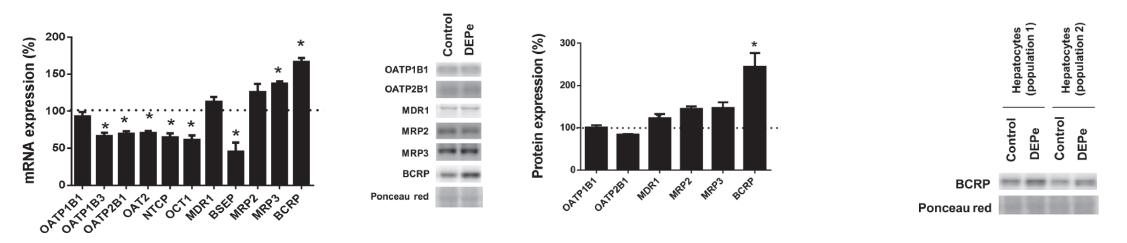


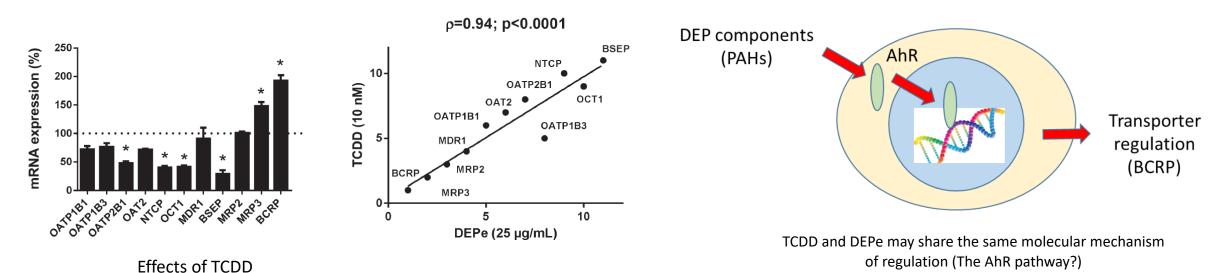
ABC transporter activities





Single DEP components



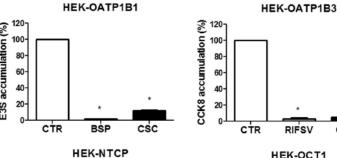

Le Vée et al, 2015

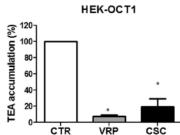
HepaRG cells were exposed to 25 μg/mL DEPe for 48 h

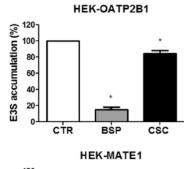
Human hepatocytes were exposed to 25 μg/mL DEPe for 48 h

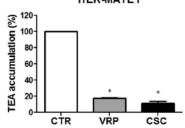
Effects of DEPe and TCDD on hepatic transporters are strongly correlated

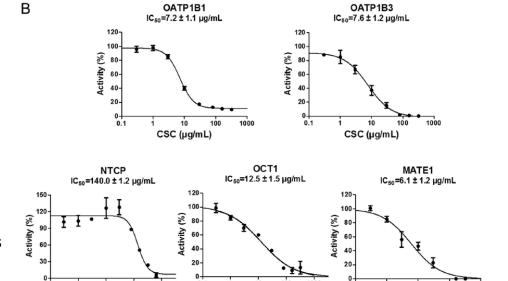
Regulation of hepatic drug transporters by complex pollutant mixtures

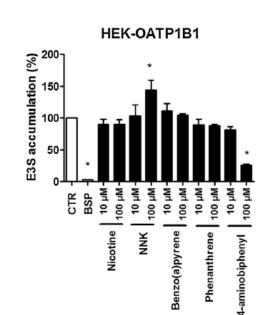

Cigarette smoke: Inhibition of *in vitro* hepatic transporter activity

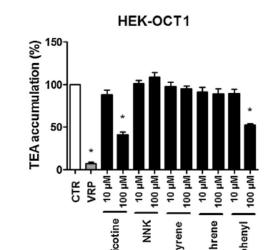

cśc




60-40Cigarette smoke condensate (CSC): Hundreds of chemicals


Hepatic SLC transporter activities

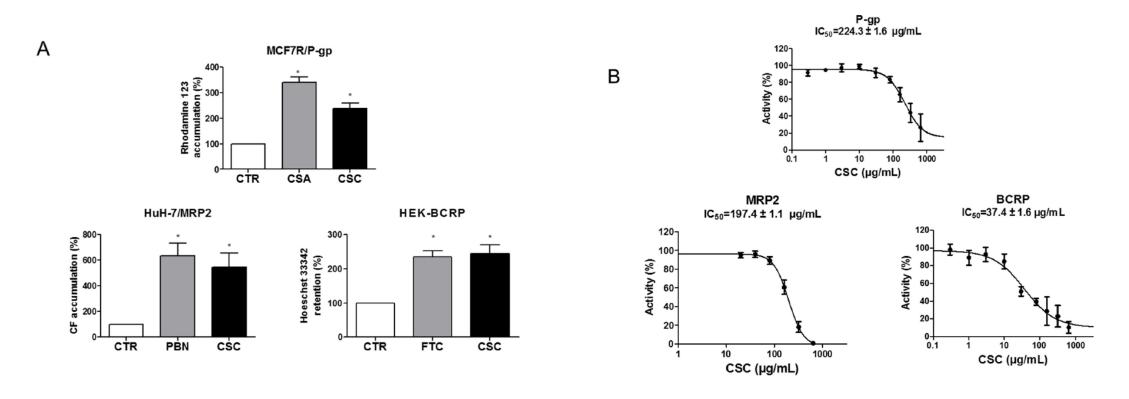




CSC components

CSC (µg/mL)

CSC (µg/mL)

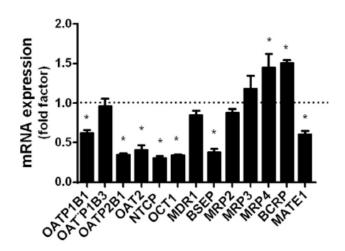


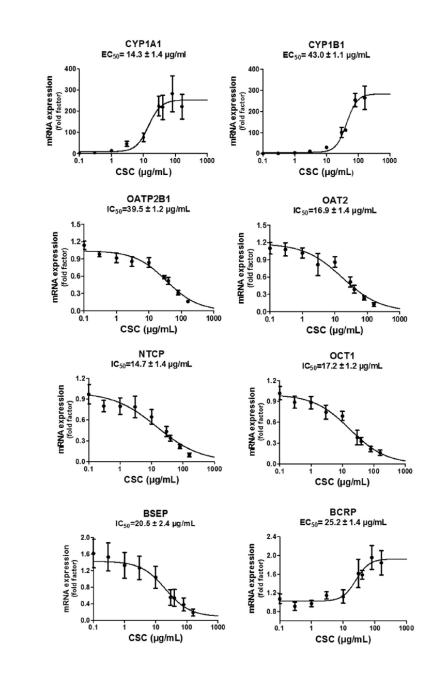
CSC (µg/mL)

CTR/-Na* CSC/+Na*

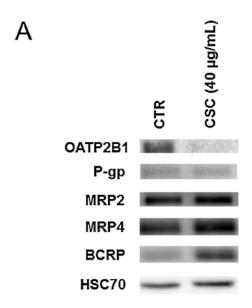
Cigarette smoke: Inhibition of *in vitro* hepatic transporter activity

Hepatic canalicular ABC transporter activities

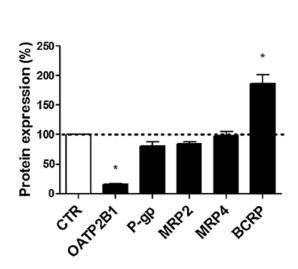


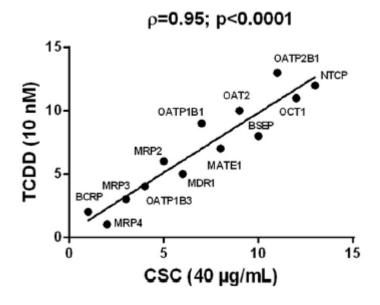

 IC_{50} values for ABC transporters > IC_{50} values for SLC transporters

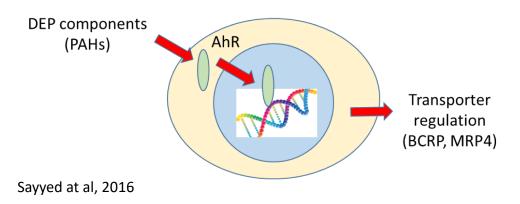
Cigarette smoke: Regulation of hepatic transporter expresssion

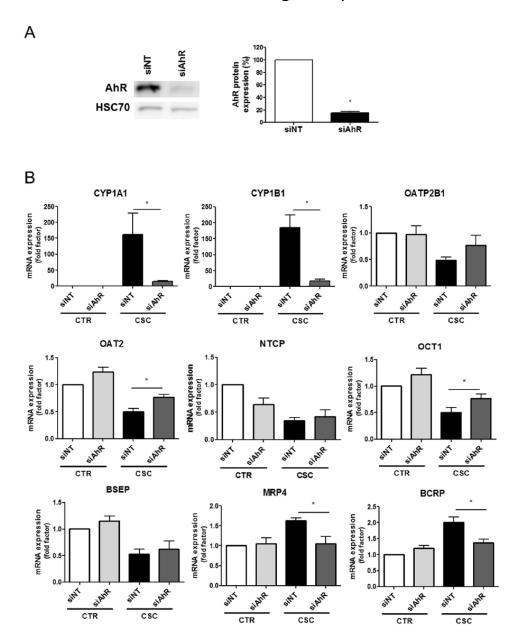

HepaRG cells were exposed to 40 μg/mL CSC for 48 h

Transporter mRNA regulation






В


Cigarette smoke effects: Implication of the AhR pathway

CSC and TCDD effects are highly correlated

Effects of AhR silencing in HepaRG cells

Various environmental chemicals can regulate hepatic drug transporter activity and/or expression in in vitro system, bringing the proof of the concept of pollutants-hepatic transporter interactions

What about in vivo clinical relevance of such interactions with hepatic transporters?

• For a **single chemical**, regulation of hepatic drug transporter activities and/or expression usually requires chemical concentrations in the μM range, much higher than those occurring in response to environmental exposure (in the pM or nM range): No expected *in vi*vo relevance for most of single pollutants ?

Prediction of potential drug-drug interactions (DDI) for BPA-mediated inhibitions of SLC drug transporters according to FDA criteria for plasma inhibitor concentration.^a

SLC transporter	Effect of BPA on transporter activity	Ratio [I _{BPA}]/BPA IC ₅₀		Prediction of potential DDI according to FDA criteria
		$[I_{BPA}] = 6.5 \text{ nM}^{b}$	$[I_{BPA}] = 44 \text{ nM}^{c}$	
OCT1	Inhibition (IC ₅₀ = 39.0 μ M)	0.00017	0.00111	No DDI
OCT2	No effect	ND^d	ND	No DDI
MATE1	Inhibition (IC ₅₀ = $73.5 \mu\text{M}$)	0.00009	0.00060	No DDI
MATE2-K	No effect	ND	ND	No DDI
OATP1B1	Inhibition (IC ₅₀ = 18.7 μ M)	0.00035	0.00216	No DDI
OATP1B3	In hibition e	ND	ND	No DDI
OAT1	Stimulation	ND	ND	No DDI
OAT3	Inhibition (IC ₅₀ = $9.2 \mu\text{M}$)	0.00071	0.00478	No DDI

- For **complex environmental mixtures (DEP, cigarette smoke)**, concentrations active *in vitro* may be reached *in vivo*: Contribution of drug transporters to well-established alterations of pharmacokinetics in smokers?
- For **single chemicals, mixtures** have also to be considered because (1) humans are commonly coexposed to various chemicals and (2) inhibitory effects towards transporters may be synergistic.

Table 2. Combination index (CI) values for OCT2 inhibition by combined treatment with fenamiphos and phosmet.

% Inhibition OCT2 activity	Cl ^a	Mixture concentration (μM) ^b	Nature of effect ^c
10	0.43	0.38	Synergistic
20	0.51	1.00	Synergistic
30	0.58	1.90	Synergistic
40	0.64	3.21	Synergistic
50	0.71	5.19	Synergistic
60	0.79	8.40	Synergistic
70	0.90	14.18	Additive
80	1.05	26.85	Additive
90	1.34	70.22	Antagonistic

^aCI values were calculated using CompuSyn software.

Chedik at al, 2019

^bThe ratio [Fenamiphos]:[Phosmet] is 1:1.

^cSynergistic effect: CI <0.8; additive effect: 0.8 \le CI \le 1.2; antagonistic effect: CI >1.2.

For both single and mixtures of chemicals, humans are commonly chronically exposed and potential time-dependent inhibition of transporter activities have therefore to be taken into account

Interactions of pollutants with (hepatic) drug transporters remain nevertheless rather poorly characterized

More than 1000 pesticides are used in the world and only few have been studied for interactions with transporters

Table 3. Inhibitory effects of pesticides toward drug transporter activities according to organic pesticide classes.

	Percentage of inhibitory pesticides ^a (n = total number of tested pesticides)					
Transporter	Organophosphorus pesticides	Organochlorine pesticides	Pyrethroids	Carbamates	Chloroacetanilides	
P-gp	76.9% (n = 13) [17,19]	30.8% (n = 13) [12,17]	0.0% (n = 14) [18]	0.0% (n = 6) [17]	57.1% (n = 7) [28]	
MRP1/MRP2	No data	50.0% (n = 8) [12]	14.3% (n = 14) [18]	No data	0.0% (n = 7) [28]	
BCRP	66.7% (n = 3) [53]	50.0% (n = 8) [12]	14.3% (n = 14) [18]	100% (n = 2) [53]	0.0% (n = 7) [28]	
OCT1	61.5% (n = 13) [59]	62.5% (n = 8) [12]	23.5% (n = 17) [18]	No data	No data	
OCT2	61.5% (n = 13) [59]	No data	23.5% (n = 17) [18]	No data	No data	
MATE1	23.1% (n = 13) [59]	No data	14.3% (n = 14) [18]	No data	No data	
MATE2-K	0.0% (n = 13) [59]	No data	0.0% (n = 14) [18]	No data	No data	
OATPs	15.4% (OATP1B1) 0.0%	0.0% (Total OATP activity)	14.3% (OATP1B1),	No data	No data	
	(OATP2B1)	(n = 8) [12]	0.0% (OATP1B3)			
	(n = 13) [59]		(n = 14) [18]			
OAT1	0.0% (n = 13) [59]	No data	0.0% (n = 17) [18]	No data	No data	
OAT3	23.1% (n = 13) [59]	No data	23.5% (n = 17) [18]	No data	No data	

^aPesticide concentrations are usually set at 100-250 μM

Chedik at al, 2018

Thanks

Drug transporter group (Dr O. Fardel)

- Dr Arnaud Bruyere
- Dr Simon Bucher
- Dr Lisa Chedik
- Dr Marc Le Vée
- Elodie Jouan
- Dr Katia Sayyed

IRSET, Rennes

• Dr Bruno Stieger

- Dr Amélie Moreau
- Dr Claire Denizot
- Dr Yannick Parmentier

• Dr Anne Nies

• Dr Ziad Abdel-Razzak

Sponsors

Thank you very much for your attention

olivier.fardel@univ-rennes1.fr

https://www.irset.org/en