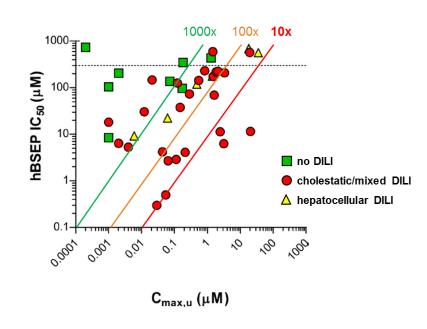

Evaluation of hepatic drug partitioning (Kp_{uu}) and drug-induced cholestasis risk

Birk Poller – Novartis, PK Sciences Hepatocyte Transporter Network 2019 September 22, 2019

Background

- Drug induced cholestasis (DIC) is a major causative mechanism resulting in Druginduced liver injury (DILI)
- DIC may be the consequence of reduced bile flow rate due to the inhibition of canalicular BSEP resulting in the accumulation of corrosive bile salts within the hepatocytes
- Early risk assessments for DIC use the in vitro BSEP inhibition potential (IC₅₀) and the (predicted) human exposure.

Kenna et al., 2018, Clin Pharmcol Ther;5:916-932

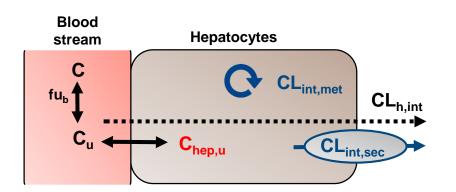


Prediction of drug-induced cholestasis

- DIC/DILI risk poorly correlates with measurements of systemic unbound drug concentrations (C_{max.u})
- Hypothesis: risk assessments may improve when unbound portal vein (C_{inlet,u}) or intrahepatic (C_{hep,u}) conc. are used

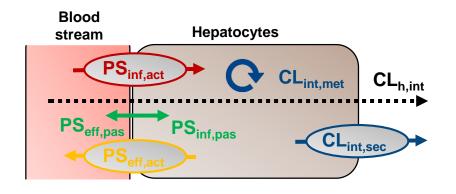
Goals:

- Conduct risk assessment for DIC using unbound intrahepatic drug concentrations, estimated using in vitro Kp_{uu} values
- Comparison of *in vitro* methods to estimate Kp_{uu}



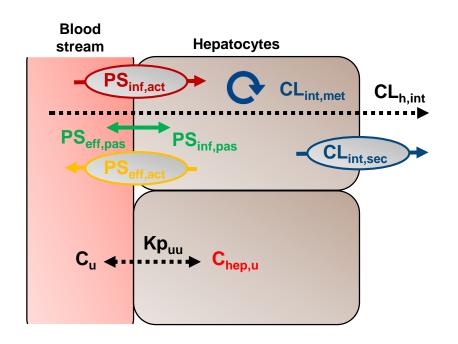
Dawson et al., 2012, Drug Metab Dispos;40:130-138

Hepatic drug disposition


Traditional approach to estimate C_{hep,u}: *Free-drug hypothesis*

Hepatic drug disposition

Recent approach to estimate C_{hep,u}: Extended Clearance Model (ECM)



$$CL_{h,int} = \frac{PS_{inf,act} + PS_{inf,pas}}{PS_{eff,act} + PS_{eff,pas} + CL_{int}} \times CL_{int}$$

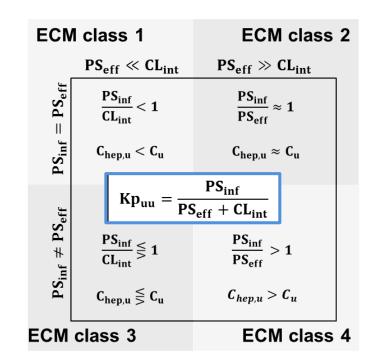
→ hepatic clearance processes can be measured in vitro

Hepatic drug disposition

Recent approach to estimate $C_{hep,u}$: Extended Clearance Model (ECM)

$$CL_{h,int} = \frac{PS_{inf,act} + PS_{inf,pas}}{PS_{eff,act} + PS_{eff,pas} + CL_{int}} \times CL_{int}$$

→ hepatic clearance processes can be measured in vitro

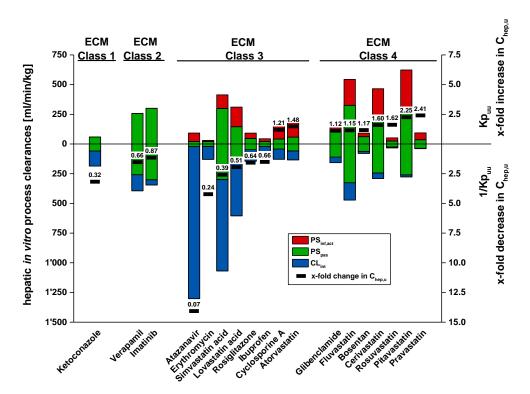

$$C_{hep,u} = Kp_{uu} \times C_{u}$$

$$Kp_{uu} = \frac{PS_{inf,act} + PS_{inf,pas}}{PS_{eff,act} + PS_{eff,pas} + CL_{int}}$$

Kp.,.. in vitro - Extended Clearance Model

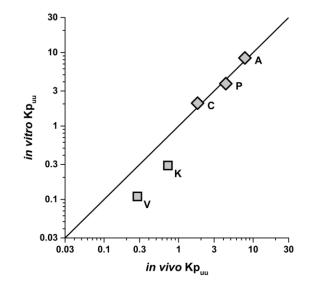
Hepatic clearance determines Kp_{uu}

Interplay of uptake and clearance determines Kp,,,,



 $Kp_{uu} \sim 1$

Hepatic uptake determines Kp_{uu}


Kp.... in vitro - Extended Clearance Model

$$Kp_{uu} = \frac{PS_{inf,act} + PS_{pas}}{PS_{pas} + CL_{int}}$$

Kp_{uu} in vitro-in vivo correlation in rat

- Kp_{uu} in vitro was determined based on the ECM method
- Kp_{uu} in vivo was obtained from Kp liver and fu_{hep} data
- Good IVIVC of Kp_{uu} for drugs with predominant uptake (A, P) or metabolism (V, K)

A: atorvastatin K: ketoconazole C: cyclosporine A

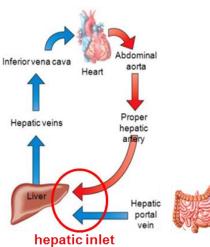
V: verapamil

P: pravastatin

Riede et al, 2017, Drug Metab Dispos;45:523-531.

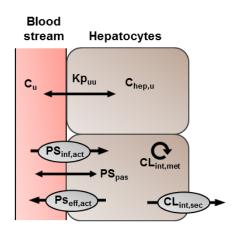
Reference conc. for DIC risk assessments

unbound systemic


free-drug hypothesis

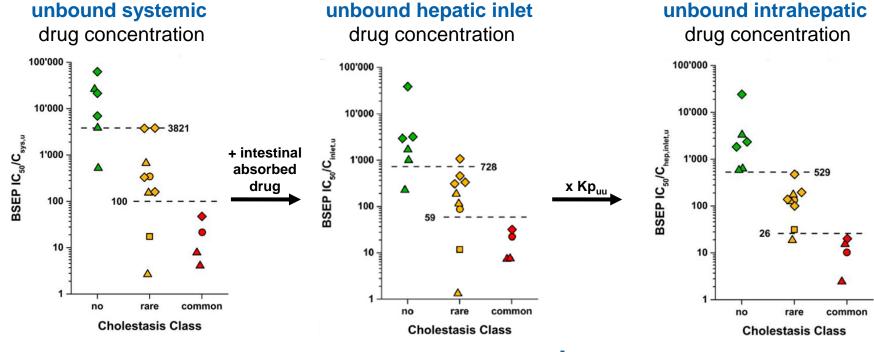
 $C_{sys,u}$

unbound hepatic inlet


free-drug hypothesis

$$C_{inlet,u} = C_{sys,u} + \frac{fu_b \cdot k_a \cdot F_a \cdot F_g \cdot D}{Q_h}$$

unbound intrahepatic


Extended Clearance Model

$$C_{hep,u} = C_{sys,u} \times Kp_{uu}$$

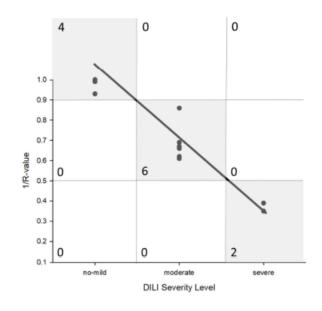
Improved DIC risk assessment using unbound liver concentrations

Alternative in vitro Kp_{uu} liver methods

- Extended Clearance Model Riede et al., 2017
- Temperature method Shitara et al., 2013
- Homogenization method Mateus et al., 2013
- logD_{7.4} method
 Yabe et al., 2011

$$Kp_{uu} = \frac{PS_{inf,act} + PS_{inf,pas}}{PS_{eff} + CL_{met} + CL_{sec}}$$

$$Kp_{uu} = Kp \times fu_{hep}$$



Outlook – Beyond BSEP inhibition

- Besides BSEP inhibition of other bile acid transporters and enzymes are discussed to contribute to DIC
- New model established incorporating inhibition of BSEP, MRP2, OATP1B1,OATP1B3, NTCP, UGT1A1, CYP3A4 TDI
- 1/R values are calculated based on the ECM and drug plasma concentrations

$$\frac{CL_{int,all,i}}{CL_{int,all}} = \frac{\left(\frac{1}{1 + \sum \frac{[I]}{K_{l,upt}}} + 1\right) \cdot \left[\left(\frac{1}{1 + \sum \frac{[I]}{K_{l,sec}}}\right) + \left(\frac{1}{1 + \sum \frac{[I]}{K_{l,met}}}\right) \cdot \left(\frac{1}{1 + \sum \frac{k_{inact} \cdot [I]}{k_{deg} \cdot (K_{l,met} + [I])}}\right)\right]}{2 + \left(\frac{1}{1 + \sum \frac{[I]}{K_{l,sec}}}\right) + \left(\frac{1}{1 + \sum \frac{[I]}{K_{l,met}}}\right) \cdot \left(\frac{1}{1 + \sum \frac{k_{inact} \cdot [I]}{k_{deg} \cdot (K_{l,met} + [I])}}\right)} = \frac{1}{R}$$

Analysis for 13 NVS compounds

Outlook – Beyond BSEP inhibition

- Analysis of 408 marketed drugs reveals that inhibition of multiple pathways increases the DILI severity
- In vitro DDI data were only partially available
- To identify and validate risk factors for DIC/DILI and to support in silico models and machine learning, large in vitro datasets are required
- Sharing knowledge and databases via industry/academic consortia would enhance this development

Analysis for 408 marketed drugs

Conclusions

- The extended clearance model (ECM) allows the determination of hepatic Kp_{uu} from in vitro clearance data
- The frequency of DIC events was well estimated using BSEP IC₅₀ data and unbound intrahepatic concentrations estimated from unbound hepatic inlet concentrations and Kp_{uu}
- Several in vitro methods are available to estimate Kp_{uu}
 - The estimation of fu_{hep} is strongly influenced by the *in vitro* measurement method and the physicochemical properties of test compounds
 - The "temperature method" provides comparable Kp_{uu} estimates as the "ECM method" for compounds w/o predominant CL_{int}
- More complex models, including additional targets in addition to BSEP will need to be identified to further improve the DIC and DILI risk predictions

Acknowledgments

- Gian Camenisch
- Julia Riede
- Kenichi Umehara
- Patrick Schweigler
- Imad Hanna
- Bernard Faller

Thank you for your attention

