HTN Wokshop, Les Diablerets September 2019

Positron emission tomography (PET) with the radiolabeled conjugated bile acid [*N*-methyl-¹¹C]cholylsarcosine (¹¹C-CSar).

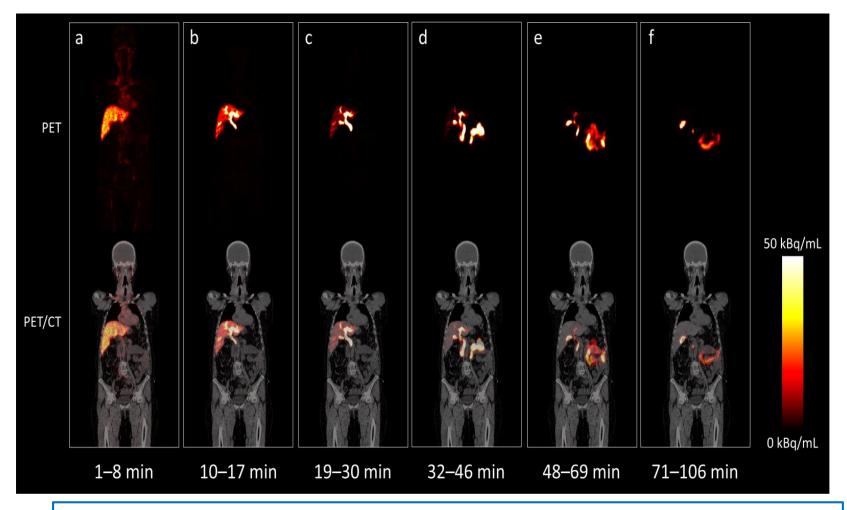
Susanne Keiding and Kim Frisch, Aarhus University, Denmark. susakeid@clin.au.dk.

• <u>PET</u> is a molecular imaging technique that yields 3-D images of radioactivity concentrations in tissue following administration of a radiolabeled tracer.

- 11C-CSar (as well as unlabeled cholylsarcosine)
- does not metabolize in vivo,
- exerts no pharmacological effects,
- uses same transporters as endogenous conjugated bile acids.
- ¹¹C-CSar therefore serves as a tracer for endogenous bile acids and is an ideal PET tracer for the study of bile acid kinetics in humans.

Les Diablerets September 2019

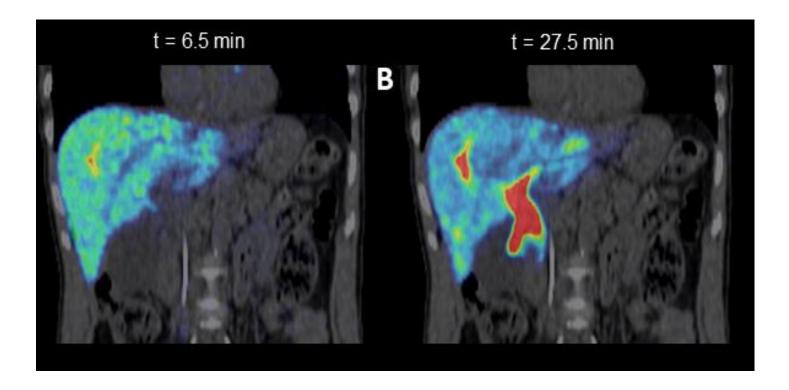
Biodistribution of ¹¹C-CSar in human


Hepatobiliary excretion of ¹¹C-CSar in human Methodology

Two clinical examples:

- i) Healthy vs. Cholestasis
- ii) Drug-induced cholestasis

Perspectives

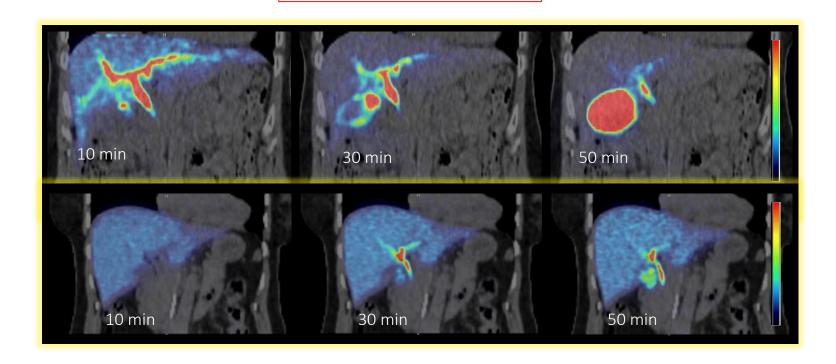

Biodistribution of ¹¹C-CSar

IV 11 C-CSar to a healthy human subject at time = 0.

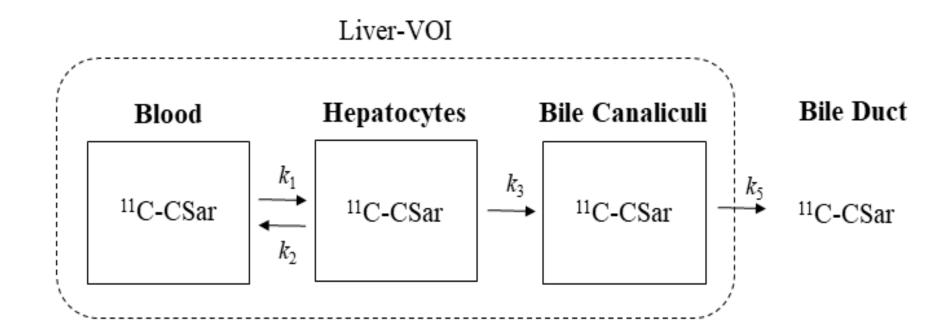
Frisch K, Kjærgaard K, Horsager J, Schacht AC, Munk OL. Nucl Med Biol. 2019;72-73:55-61.

Biodistribution of ¹¹C-CSar

Coronal PET/CT Images of ¹¹C-CSar Concentrations from Dynamic ¹¹C-CSar Scans in a Human Subject. Images of the upper abdomen (liver, bile ducts, and gallbladder) at time points as indicated after IV ¹¹C-CSar.

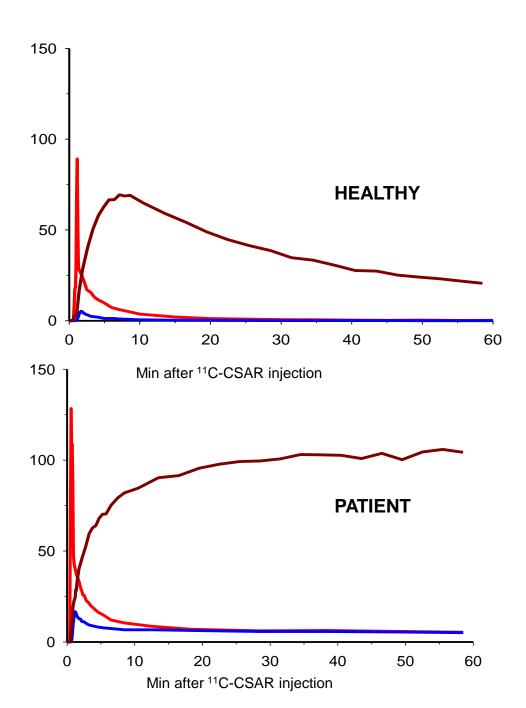

Frisch K, Kjærgaard K, Horsager J, Schacht AC, Munk OL. Nucl Med Biol. 2019;72-73:55-61.

In vivo quantification of separate hepatic membrane transport processes of bile acids with ¹¹C-CSar PET


PET with ¹¹C-CSAR

HEALTHY SUBJECT

PATIENT WITH CHOLE-STASIS


Hepatobiliary excretion of ¹¹C-Csar: Kinetic model

¹¹C-CSAR conc. kBq/mL:

Arterial blood Hepatic vein blood

Liver tissue (PET)

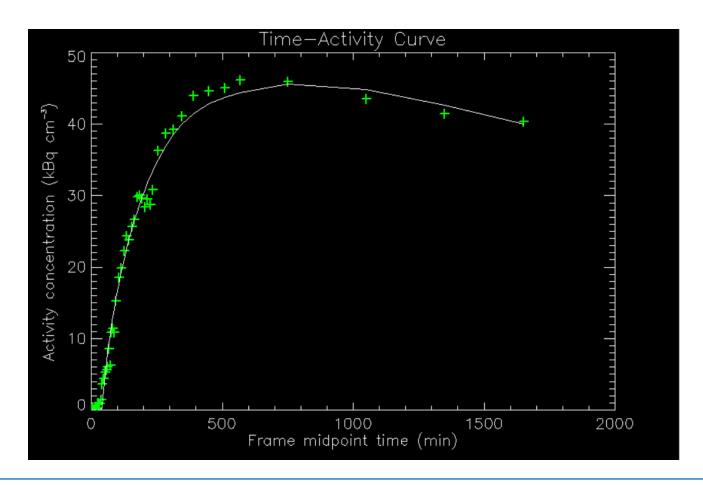
Estimation of kinetic rate constants

The ¹¹C-CSar tracer supply to the liver comes from the hepatic artery and the portal vein that mix completely at entry to the sinusoids.

Accordingly, the flow-weighed dual input to the liver of 11 C-CSar, $C_{\text{dual}}(t)$ is

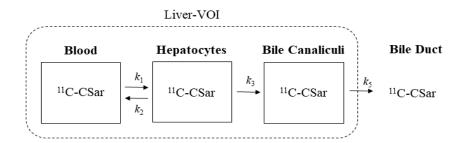
$$C_{\text{dual}}(t) = f_{\text{HA}}C_{\text{A}}(t) + (1-f_{\text{HA}})C_{\text{PV}}(t)$$
 Eq. (

 $C_A(t)$ is the time course of the measured concentration of ¹¹C-CSar in the arterial blood samples (kBq/mL blood/min),

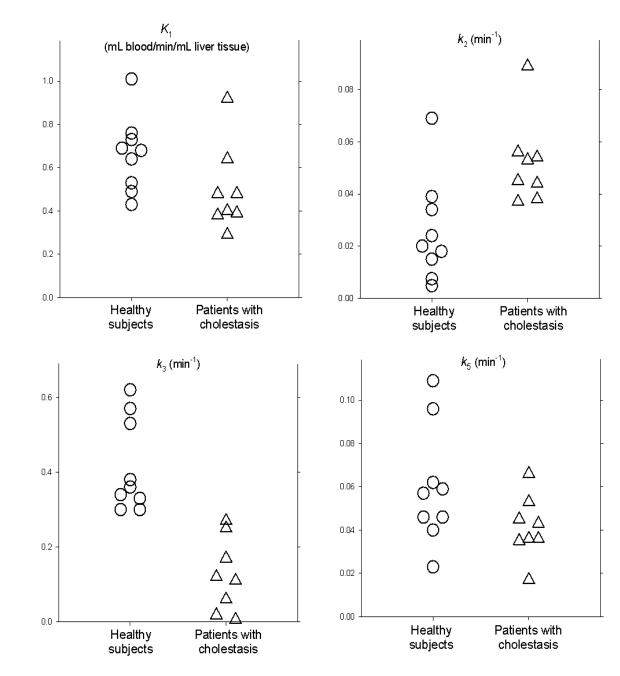

 $C_{\rm PV}(t)$ the calculated time course of the concentration of ¹¹C-CSar in the portal vein (kBq/mL blood/min), and $f_{\rm HA}$ is the hepatic arterial flow fraction, 0.25.

The rate constants k_1 , k_2 , k_3 , and k_5 are estimated by model-fits to the PET-measured $C_{liver}(t)$, using $C_{dual}(t)$ as input:

$$C_{\text{liver}}(t) = V_{\text{blood}} C_{\text{dual}}(t) + C_{\text{hep}}(t) + C_{\text{bile}}(t),$$
 Eq. 2a $dC_{\text{hep}}(t)/dt = k_1 C_{\text{dual}}(t) - (k_2 + k_3) C_{\text{hep}}(t)$ Eq. 2b $dC_{\text{bile}}(t)/dt = k_3 C_{\text{hep}}(t) - k_5 C_{\text{bile}}(t)$ Eq. 2c


 V_{blood} intrahepatic blood volume, C_{hep} hepatocellular conc. of ¹¹C-CSar, C_{bile} conc. of ¹¹C-CSar in bile canaliculi.

Sørensen M, Munk OL, Ørntoft NW, Frisch K, ..., Hofmann AF, Keiding S. J Nucl Med 2016 57:961-66.



Time course of ¹¹C-CSar concentrations in liver tissue after start of ¹¹C-CSar administration (Time-Activity-Curve) (+) and the fitted curve of the model (white curve)

S. Keiding data

Ørntoft NW, Munk OL, Frisch K, Ott P, Keiding S, Sørensen M. *J Hepatol* 2017;67:321-7.

During drug-induced cholestasis

After recovery

Ørntoft N, Frisch K, Ott P, Keiding S, Sørensen M. BBA - Molecular Basis of Disease; Special issue: Cholangiocytes. 2018;1864:1240-4.

Perspectives

- bile acid pathophysiology in patients with cholestasis
- effect of treatment of patients with cholestasis on hepatic bile acid kinetics
- prediction of cholestatic hepatotoxicity in humans during drug development
- effect of drugs, physiology, food intake

_

Original publications

Kjærgaard et al., AASLD 2019 Poster Frisch et al., NMB 2019 Ørntoft et al., J Hepatol 2017 Sørensen et al., JNM 2016 Frisch et al., NMB 2012

Reviews

Keiding et al., AmJNMMI 2018 Ørntoft et al., BBA 2018 Frisch et al., Falk Symp 2013