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Quantum computer introduction - The Stern-Gerlach experiment

- Beam of silver atoms inside a vertical non-uniform magnetic field
- We observe the final position of the atoms on the glass plate



Quantum computer introduction - The Stern-Gerlach experiment

- the trajectory depends on the orientation of the 
magnet

- with random orientation, the distribution 
obtained will be continuous and uniform



Quantum computer introduction - The Stern-Gerlach experiment

- Let’s try the experiment with electrons (more 
exactly with silver atoms)

- we could expect a uniform distribution since the 
orientation of the atoms are random



Quantum computer introduction - the quantum superposition

- We will note the spin of the electron as being able to take and note these 
two states ∣↑⟩ , ∣↓⟩ (bra-ket notation).

- Before its measurement, we say that the state        of an electron is the 
superposition of these two states      and     . Mathematically, this means 
that       is a linear combination of the states∣↑⟩ and ∣↓⟩ :

- where    and    are complex numbers called probability amplitudes such 
that: 



Quantum computer introduction - the quantum superposition

- When measure the value of , we get either ∣↑⟩ or ∣↓⟩  

- We don’t know the value of     and    , but the theory tells us that:

- we can compute those value experimentally !



Quantum computer introduction - from the spin to the qubit

- instead of ∣↑⟩ and ∣↓⟩ we will use the kets ∣0⟩ and 
∣1⟩ as possible measures for our qubits

- The state of a qubit is thus described as this linear 
combination:



Quantum computer introduction - more about the bra-ket notation

- a bra can be seen as a row vector and a ket as a column vector:

- remark:     



Quantum computer introduction - more about the bra-ket notation

- The qubits will often be represented in the following canonical basis:

- In some cases it is interesting to use several different bases:
=> BB84 protocol / Quantum key distribution



Quantum computer introduction - The Bloch sphere

- We often represent qubits on a the Bloch sphere:



Quantum computer introduction - the tensor product

- We will need to use the tensor product to represent the state of multiple qubits:



Quantum computer introduction - the tensor product

- if {∣0⟩ , ∣1⟩} is the canonical basis of       ,                             is the canonical 
basis of       :



Quantum computer introduction - Entanglement

- let ∣a⟩ and ∣b⟩ be two qubits:

- By using the tensor product, we can represent a system of multiple qubits with 
one state:



Quantum computer introduction - Entanglement

- by choosing    : 

- where      and  



Quantum computer introduction - Entanglement

- Now let’s represent the state of our system without imposing      :

  

- We can no longer represent this state is two qubits ∣a⟩  and ∣b⟩ if              .
- This situation is called quantum entanglement.

- You cannot factorize the state of two entangled qubits as ∣a⟩    ∣b⟩ = ∣ab⟩  



Quantum computer introduction - Entanglement : example

- Alice and Bob have two qubits entangled in the following state:

- where           is the basis of Alice and    the basis of Bob



Quantum computer introduction - Entanglement : example

- what happens to the qubit of bob if Alice measures a 0 (  ) ?

- The new state of the system will be:

- And if Alice measures a 1 (  ) ?

- Bob will have a 100% chance of measuring 0 (        ) !

=> The measure of Alice affects the measure of Bob !



Quantum computer introduction - Quantum gates: the CNOT gate

- takes 2 qubits as input

- in matrix notation:

- useful to entangle qubits:
-                     and     => 



Quantum computer introduction - Quantum gates: Hadamard gate

- takes 1 qubits as input
- in matrix notation:

- useful to create a quantum superposition:



Quantum computer introduction - Quantum gates: more gates

- All the gates are unitary matrices                          
of size            where n is the number of input 
qubits

=> All the gates and all the quantum circuits 
are reversible

- Non cloning theorem:
- we cannot create a copy gate



Quantum computer introduction - Quantum circuits / bruteforce

- We have a circuit who encrypts a constant plaintext into a cipher with an 
input key of n bits

- we have possible keys 
- we will put an hadamard gate in front of each input. The initial state will 

be:

- We will get a random key and a random cipher at each iteration
- Can we increase the amplitude of the solution ?



Quantum computer introduction - Groover algorithm

- main idea:
- we build an oracle that reverse the amplitude of the solution
- A new transformation will then amplify the negative amplitudes and reduce the positive 

amplitudes
- And then the amplitude of the solution is reversed again



Quantum computer introduction - Groover algorithm

- The optimal value in reached in exactly steps 
-           if there is M solutions
- brute force complexity is with a quantum computer ! 

- with our brute force problem:
- we can find the key in 

=> we need to double the size of the key if we want the same complexity



Quantum computer introduction - Why cryptography will break

● Symmetric : Grover’s algorithm
○ Search in  a function of domain size N and M solutions
○ O(N/M) ⇒ O(sqrt(N/M))

● Asymmetric : Shor’s algorithm
○ Factorization of a number N ~ 10d

○ O(ed^(1/3)) ⇒ O(d3)



Quantum computer introduction - Shor’s algorithm

Space Complexity : ~2 log2(N) + 2 qubits

21024 ⇒ 2050 qubits

24096 ⇒ 8196 qubits

Shor’s algorithm

(Quantum computer)

General number field sieve

(Classical computer)

N

21024 ~ 6 * 106 ~ 6 * 1025

24096 ~ 133 * 106 ~ 3 * 1046



Quantum computer introduction - Shor’s algorithm

● Pick a random number 1 < g < N
● We want to find the period p being the smallest integer such as

● Then we can find N factors by computing the gcd of N and                 with euclid’s 
algorithm

● The following conditions must be verified otherwise we pick a new random g
○ p needs to be even otherwise solution are not integer
○           should not be a multiple of N



Quantum computer introduction - Shor’s algorithm

314191 = ? * ?

We take a random guess                           ,  g = 127 

g isn’t a solution

We want                 , so we have to find  p such as 127p = m * 314191 + 1

We collapse the output and find r = 686. So the quantum states left are 

 

 We use the Quantum Fourier Transform

We repeat this operation multiple times to find 1/p and so p. Here p = 17388 (it’s even !)

we get 

FInally gcd(314191, 1278694 + 1) = 829, gcd(314191, 1278694 - 1) = 379, indeed 314191 = 829 * 379



Quantum computer introduction - Post-Quantum Cryptography Standardization

● Post-Quantum Cryptography 
Standardization by Nist

○ 1994: First workshop on quantum 
computing (by NIST)

○ April 2016: NIST published report about 
RSA being insecure by 2030

○ December 2016:  Announcement at 
PQCrypto

○ 2017: Deadline for submissions.
○ 2019: Round 2
○ 2020: Round 3 
○ ?: Round 4
○ 2024: First standardization documents

1976: Quantum information theory
1980: First description of quantum mechanical 
model of a computer
1984: BB84 (Quantum key distribution scheme)
1985: Description of Universal quantum computer (~ 
Universal Turing Machine)
1988: Proposition of a physical realization : photons 
to transmit qubits and atoms to perform two-qubit 
operations
1994: Shor's algorithm
1996: Grover's algorithm
2001: Factorization of 15 using Shor's algorithm
2018: 72-qubit quantum chip
2019: 53 qubits computer by IBM
2019: Google's quantum computer achieves 
quantum supremacy
2019: Factorization of 1,099,551,473,989 using 
quantum annealing



Quantum computer introduction - Post-Quantum Cryptography Standardization

Type

● Lattice
○ Find the closest points in fields defined with a good and bad base
○ Find added errors in an over-determined system of equation

● Code-based
○ good error-correcting is secret a bad is generated from the good 

and is the public key (ex: Goppa, reed-salomon)
● Hash-based

○ Uses a merkle tree for One-time signature schemes
● Multivariate

○ Solve systems of multivariate equations
● Braid group

○ See knot theory
● Supersingular elliptic curve isogeny

○ Combine isogeny generated from private elliptic curves
● …



Quantum computer introduction - BB84

● Quantum key distribution
○ BB84

Communication over an authenticated public channel.

No cloning theorem



Quantum computer introduction - BB84

1. Alice chooses a random sequence of 
bits encoded in random basis.

2. Bob chooses random basis for the 
reception.

3. Eve has to guess the original basis to 
retransmit.

4. Bob shares his configuration
5. Alice answers where they matched
6. Alice and Bob disclose a part of their 

key for comparison.

Eve has 75% chance to have retrieved 
each bit. If the disclosed sequences are 
identical they keep the rest to create a 
key, otherwise around 25% should differ 
because of the attacker



Thanks for listening
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