Cosmology from combining GW events with optical surveys

Will Hartley (photo-z addict)
with DES-GW

Antonella Palmese (UCL, Fermilab)
Constantina Nicolaou (UCL)
Marcelle Soares-Santos (Brandeis)
Federica Tarsitano (ETH)
Pablo Lemos (UCL)
Ofer Lahav (UCL)
Chris Conselice (Nottingham)

https://arxiv.org/abs/1710.06748
https://arxiv.org/abs/1901.01540
The age of Gravitational Wave astronomy

O1 + O2

11 confident detections

GW170104
LVT151012
GW151226
GW170817
GW150914

DARK ENERGY SURVEY

LIGO/Virgo/NASA/Leo Singer
(Milky Way image: Axel Mellinger)
Multi-messenger astronomy: DES+LIGO/Virgo

- DECam on the Blanco is (currently) the premier instrument for rapid optical follow-up of Gravitational Wave events*.

- Achieve a depth of $i \approx 22.5$ in a 90s exposure, across a 3 deg2 field.

- Allows us to cover wide regions of sky in a single night – before short-lived transients fade.

- In preparation for the advanced-LIGO GW detector runs, we began a collaboration: DES-GW, involving DES, LIGO and external participants.
Early Binary Black Hole follow-up

Searches for optical counterparts from the first two events: GW150914, GW151226 → nothing (as expected)

Similarly for GW170814, though we were able to cover the whole localisation region.
GW170817 – the event of 2017

- Observations started: 10.53h post merger
- 70.4 deg2, 93.4% initial sky map, 80.7% new
- Visual inspection and comparison with Pan-STARRS: discovery of the KN in NGC 4993 (40 Mpc away)
- Independently discovered by 5 groups
- Candidate selection:
 1. At least 1 detection in i and z
 2. ML score >0.7 in all detections
 3. Significantly faded in the last observations
GW170817 – the event of 2017

- Observations started: 10.53h post merger
- 70.4 deg2, 93.4% initial sky map, 80.7% new
- **Visual inspection** and comparison with Pan-STARRS: discovery of the KN in NGC 4993 (40 Mpc away)
- Independently discovered by 5 groups
- **Candidate selection:**
 1. At least 1 detection in i and z
 2. ML score >0.7 in all detections
 3. Significantly faded in the last observations

- **Bluer bands:** fading below detection limit quickly
- **Redder bands:** slow decline 1.5 d+shoulder at 4d+decline
- KN models with 2 ejecta components are a good fit:
 - lanthanide poor (blue)+ lanthanide rich (red)
- Consistent with estimated r-process production from MW abundances.
What caused the GW170817 event?

- NGC 4993 appears to be a pretty normal early-type galaxy.
- Spectral (6dF) and photometric (DECam+VHS) SED fit:
 \[M^* = (3.8 \pm 0.20) \times 10^{10} \, M_\odot, \text{ Age} \sim 11 \, \text{Gyr} \]

→ No evidence for recent (last few Gyr) star-formation.
What caused the GW170817 event?

- From modelling binaries and chemical evolution arguments, BNS coalescence is expected to occur within ~ Gyr of formation.

- Expected observable events for BNS in LIGO O1+O2:
 - Early type galaxies: 0.04
 - All galaxies: ~0.5
What caused the GW170817 event?

- From modelling binaries and chemical evolution arguments, BNS coalescence is expect to occur within ~ Gyr of formation.

- Expected observable events for BNS in LIGO O1+O2:
 Early type galaxies: 0.04
 All galaxies: ~0.5

- Clear evidence of a recent galaxy merger.
 → Perhaps some dynamical process was responsible?
What caused the GW170817 event?

If the BNS formation was triggered by the galaxy merger, then delay time = $t_{\text{formation}} - t_{\text{coalescence}} < 200 \text{ Myr}$
Cosmology with GW events

- Emerging tension in the value of H_0 derived by different probes:

 Reiss et al. (2019) – 4.4σ tension between SNe (SHOES), Planck. As high as 6.1σ inferred through combining late-universe probes.
Cosmology with GW events

- Rate of change in GW frequency → system mass, separation
- GR then tells us the GW luminosity (signal amplitude).
 → “Standard Siren” analogous to type 1a SNe

\[d_L(z) = (1 + z) \int_0^z \frac{dz'}{H_0 E(z')} \]

\[[\ c z = H_0 d_L \] \]

- If we can obtain a redshift for the event
 → Direct measure of \(H_0 \)!
Cosmology with GW170817

\[D_L = 43.8 \pm 2.9, \pm 6.9 \text{ Mpc} \]
\[v_H = 3017 \pm 166 \text{ km s}^{-1} \]

Main uncertainties: Orbital inclination; peculiar velocity.

→ Can obtain a competitive measurement of \(H_0 \) with \(~20\) events
Constraining luminosity distance

- Expected GW strain depends on orbital inclination of the merging binary.
- Produces degeneracy between inclination and distance (hence H_0).
Constraining luminosity distance

Super-luminal radio jet emission from KN breaks degeneracy!

Uncertainty reduced by factor ~2.
Peculiar velocities being a nuisance
Peculiar velocities being a nuisance

- Parameterisation of peculiar velocity in Abbott et al. results in bias.
- Possible bias as large as difference between Planck and SH0ES.
Peculiar velocities being a nuisance

Smoothing scale input as a nuisance param.

Nicolaou et al. (subm.)
Howlett & Davis (subm.)
Current LIGO run (O3)

Current LIGO run (O3)

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Possible Source (Probability)</th>
<th>UTC</th>
<th>GCN</th>
<th>Location</th>
<th>FAR</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>S190915ak</td>
<td>BBH (99%), Terrestrial (39%)</td>
<td>Sept. 15, 2019 23:57:02 UTC</td>
<td>GCN Circulars</td>
<td>Notice</td>
<td>1 per 32.55 years</td>
<td></td>
</tr>
<tr>
<td>S190910h</td>
<td>BNS (61%), Terrestrial (39%)</td>
<td>Sept. 10, 2019 08:29:58 UTC</td>
<td>GCN Circulars</td>
<td>Notice</td>
<td>1.1312 per year</td>
<td></td>
</tr>
<tr>
<td>S190910d</td>
<td>NSBH (98%), Terrestrial (2%)</td>
<td>Sept. 10, 2019 01:26:19 UTC</td>
<td>GCN Circulars</td>
<td>Notice</td>
<td>1 per 8.5248 years</td>
<td></td>
</tr>
<tr>
<td>S190901ap</td>
<td>BNS (86%), Terrestrial (14%)</td>
<td>Sept. 1, 2019 23:31:01 UTC</td>
<td>GCN Circulars</td>
<td>Notice</td>
<td>1 per 4.5093 years</td>
<td></td>
</tr>
<tr>
<td>S190829u</td>
<td>MassGap (90%), Terrestrial (10%)</td>
<td>Aug. 29, 2019 21:05:56 UTC</td>
<td>GCN Circulars</td>
<td>Notice</td>
<td>1 per 6.1522 years</td>
<td>RETRACTED</td>
</tr>
</tbody>
</table>
Current LIGO run (O3)

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type</th>
<th>Date</th>
<th>Time UTC</th>
<th>GCN Circulars</th>
<th>Notices</th>
<th>VOF</th>
<th>Probability</th>
<th>Rate</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S190828i</td>
<td>BBH (>99%)</td>
<td>Aug. 28, 2019</td>
<td>06:55:09 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOF</td>
<td>1 per 684.54 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S190828j</td>
<td>BBH (>99%)</td>
<td>Aug. 28, 2019</td>
<td>06:34:05 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOF</td>
<td>1 per 3.7395e+13 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S190822c</td>
<td>BNS (>99%)</td>
<td>Aug. 22, 2019</td>
<td>01:29:59 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOF</td>
<td>1 per 5.1566e+09 years</td>
<td>RETRACTED</td>
<td></td>
</tr>
<tr>
<td>S190816j</td>
<td>NSBH (83%), Terrestrial (17%)</td>
<td>Aug. 16, 2019</td>
<td>13:04:31 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOF</td>
<td>1 per 2.2067 years</td>
<td>RETRACTED</td>
<td></td>
</tr>
<tr>
<td>S190814bv</td>
<td>NSBH (>99%)</td>
<td>Aug. 14, 2019</td>
<td>21:10:39 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOF</td>
<td>1 per 1.559e+25 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current LIGO run (O3)

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type</th>
<th>Observed Date</th>
<th>Observed Time</th>
<th>GCN Circulars</th>
<th>Notices</th>
<th>VOE</th>
<th>Periodicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>S190728q</td>
<td>BBH (95%), MassGap (5%)</td>
<td>July 28, 2019</td>
<td>06:45:10 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOE</td>
<td>1 per 1.2541e+15 years</td>
</tr>
<tr>
<td>S190727h</td>
<td>BBH (92%), Terrestrial (5%), MassGap (3%)</td>
<td>July 27, 2019</td>
<td>06:03:33 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOE</td>
<td>1 per 229.92 years</td>
</tr>
<tr>
<td>S190720a</td>
<td>BBH (99%), Terrestrial (1%)</td>
<td>July 20, 2019</td>
<td>00:08:36 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOE</td>
<td>1 per 8.3367 years</td>
</tr>
<tr>
<td>S190718y</td>
<td>Terrestrial (98%), BNS (2%)</td>
<td>July 18, 2019</td>
<td>14:35:12 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOE</td>
<td>1.1514 per year</td>
</tr>
<tr>
<td>S190707q</td>
<td>BBH (>99%)</td>
<td>July 7, 2019</td>
<td>09:33:26 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOE</td>
<td>1 per 6018.9 years</td>
</tr>
<tr>
<td>S190706ai</td>
<td>BBH (99%), Terrestrial (1%)</td>
<td>July 6, 2019</td>
<td>22:26:41 UTC</td>
<td>GCN Circulars</td>
<td>Notices</td>
<td>VOE</td>
<td>1 per 16.673 years</td>
</tr>
</tbody>
</table>
Current LIGO run (O3)
Cosmology with “Dark Sirens”
Cosmology with “Dark Sirens”
Cosmology with “Dark Sirens”

H₀ = 73
Cosmology with “Dark Sirens”
Cosmology with “Dark Sirens”
- GW170814: the first H0 measurement with a BBH

- Measurement is effectively density contrast along l.o.s., w.r.t. flat in volume (weighted by localisation prob.).
- Spectroscopic samples incomplete and not deep enough → photo-z
- Smears out structure, weakening signal.
Cosmology with “Dark Sirens”
- GW170814: the first H_0 measurement with a BBH

Soares-Santos, Palmeese, Hartley et al. (2019)

Very little signal in one event
Cosmology with “Dark Sirens”
- limiting factors

- Sky localisation area
 - Cosmic structure diluted on large scales

- LIGO/VIRGO distance estimate
 - Will improve in future with additional stations

- Redshift precision (+ accuracy)
 - Use spectroscopic redshifts where available
 → Main systematic error: photo-z
Cosmology with “Dark Sirens”

- Bayesian formalism to measure $P(H_0 \mid \text{data}_{GW}, \text{data}_{\text{DES}})$ (similar to Chen et al. 2017)
- Blinded analysis tested on realistic simulation data.