
Graph-Based and Transition-Based

Dependency Parsing

Joakim Nivre

Uppsala University
Linguistics and Philology

Based on previous tutorials with Ryan McDonald

Graph-Based and Transition-Based Dependency Parsing 1(32)

Introduction

Overall Plan

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies

Graph-Based and Transition-Based Dependency Parsing 2(32)

Introduction

Plan for this Lecture

I Graph-based dependency parsing
I First-order model
I Learning and inference

I Transition-based dependency parsing
I Arc-eager transition system
I Learning and inference

I Contrastive error analysis [McDonald and Nivre 2007]

Graph-Based and Transition-Based Dependency Parsing 3(32)

Graph-Based Parsing

Graph-Based Parsing

I Basic idea:
I Define a space of candidate dependency graphs for a sentence.
I Learning: Induce a model for scoring an entire dependency

graph for a sentence.
I Parsing: Find the highest-scoring dependency graph, given the

induced model.

I Characteristics:
I Global training of a model for optimal dependency graphs
I Exhaustive search/inference

Graph-Based and Transition-Based Dependency Parsing 4(32)

Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Key observation:
I Valid dependency trees for x = directed spanning trees of Gx

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T) =

∑m
c=1 s(Gc)

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G

I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T) = argmax
T∈Gx

m∑
c=1

s(Gc)

Graph-Based and Transition-Based Dependency Parsing 5(32)

Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Key observation:
I Valid dependency trees for x = directed spanning trees of Gx

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T) =

∑m
c=1 s(Gc)

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G

I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T) = argmax
T∈Gx

m∑
c=1

s(Gc)

Graph-Based and Transition-Based Dependency Parsing 5(32)

Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Key observation:
I Valid dependency trees for x = directed spanning trees of Gx

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T) =

∑m
c=1 s(Gc)

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G

I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T) = argmax
T∈Gx

m∑
c=1

s(Gc)

Graph-Based and Transition-Based Dependency Parsing 5(32)

Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Key observation:
I Valid dependency trees for x = directed spanning trees of Gx

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T) =

∑m
c=1 s(Gc)

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G

I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T) = argmax
T∈Gx

m∑
c=1

s(Gc)

Graph-Based and Transition-Based Dependency Parsing 5(32)

Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Key observation:
I Valid dependency trees for x = directed spanning trees of Gx

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T) =

∑m
c=1 s(Gc)

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G

I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T) = argmax
T∈Gx

m∑
c=1

s(Gc)

Graph-Based and Transition-Based Dependency Parsing 5(32)

Graph-Based Parsing

Learning

I Typical scoring function:
I s(Gi) = w · f(Gi)

where
I f(Gi) = high-dimensional feature vector over subgraphs
I w = weight vector [wj = weight of feature fj(Gi)]

I Structured learning [McDonald et al. 2005a]:
I Learn weights that maximize the score of the correct

dependency tree for every sentence in the training set

Graph-Based and Transition-Based Dependency Parsing 6(32)

Graph-Based Parsing

First-Order Model

I Scored subgraph Gc is a single arc (i , j , k)

I s(T) =
∑m

c=1 s(Gc) =
∑

(i ,j ,k)∈T s(i , j , k)

I Often we drop k, since it is rarely structurally relevant
I s(T) =

∑
(i,j)∈T s(i , j)

I s(i , j) = maxks(i , j , k)

John

saw

Mary

ROOT 9
10

20

9

30

0

11

3

30

John

saw

Mary

ROOT

10

30
30

I This search is global: consider all possible trees

Graph-Based and Transition-Based Dependency Parsing 7(32)

Graph-Based Parsing

First-Order Model

I Scored subgraph Gc is a single arc (i , j , k)

I s(T) =
∑m

c=1 s(Gc) =
∑

(i ,j ,k)∈T s(i , j , k)

I Often we drop k, since it is rarely structurally relevant
I s(T) =

∑
(i,j)∈T s(i , j)

I s(i , j) = maxks(i , j , k)

John

saw

Mary

ROOT 9
10

20

9

30

0

11

3

30

John

saw

Mary

ROOT

10

30
30

I This search is global: consider all possible trees

Graph-Based and Transition-Based Dependency Parsing 7(32)

Graph-Based Parsing

First-Order Projective Parsing

Eisner algorithm
[Eisner 1996]

ROOT John saw Mary

30 s(saw → Mary) = 30

s(saw → John) = 30
30

0 + 30 = 30 0 + 30 = 30

30 + 10 = 40
s(root → saw) = 10

00 0 0 0 0 0

40 + 30 = 70

ROOT John saw Mary

Chart items either:
1) Create a new dependency
2) Absorb left/right subtree

Each chart item store two indexes:
1) left boundary
2) right boundary

All operations require
3 indexes: O(n3)

1 2

3

Graph-Based and Transition-Based Dependency Parsing 8(32)

Graph-Based Parsing

First-Order Non-Projective Parsing

I Equivalent to MST problem [McDonald et al. 2005b]

I For directed graphs, also called arboresence problem

I O(n2) parsing [Chu and Liu 1965, Edmonds 1967]

I Greedy algorithm, not dynamic programming

ROOT What did economic news have little effect on ?
ROOT adj verb adj noun verb adj noun prep .

pobj

aux

nsubjamod

dobj

prep

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 9(32)

Graph-Based Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, can have features over properties
of arc and context within sentence

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

Graph-Based and Transition-Based Dependency Parsing 10(32)

Graph-Based Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, can have features over properties
of arc and context within sentence

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

Graph-Based and Transition-Based Dependency Parsing 10(32)

Graph-Based Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, can have features over properties
of arc and context within sentence

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

Graph-Based and Transition-Based Dependency Parsing 10(32)

Graph-Based Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, can have features over properties
of arc and context within sentence

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

Graph-Based and Transition-Based Dependency Parsing 10(32)

Graph-Based Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, cannot have features over multiple
arcs (siblings, grandparents), valency, etc.

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

valency=2

Graph-Based and Transition-Based Dependency Parsing 10(32)

Graph-Based Parsing

Graph-Based Parsing Trade-Off

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

I For example, first-order models often predict two subjects
I No parameter exists to discourage this

John Smith was tall
noun noun verb adj

nsubj

nsubj acomp

Graph-Based and Transition-Based Dependency Parsing 11(32)

Graph-Based Parsing

Graph-Based Parsing Trade-Off

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

I For example, first-order models often predict two subjects
I No parameter exists to discourage this

John Smith was tall
noun noun verb adj

nsubj

nsubj acomp

Graph-Based and Transition-Based Dependency Parsing 11(32)

Transition-Based Parsing

Transition-Based Parsing

I Basic idea:
I Define a transition system (state machine) for mapping a

sentence to its dependency graph.
I Learning: Induce a model for predicting the next state

transition, given the transition history.
I Parsing: Construct the optimal transition sequence, given the

induced model.

I Characteristics:
I Local training of a model for optimal transitions
I Greedy search/inference

Graph-Based and Transition-Based Dependency Parsing 12(32)

Transition-Based Parsing

Transition-Based Parsing

I A transition system for dependency parsing defines
I a set C of parser configurations
I a set T of transitions, each a function t :C→C
I initial configuration and terminal configurations for sentence x

I Key idea:
I Valid dependency trees for S defined by terminating transition

sequences C0,m = t1(c0), . . . , tm(cm−1)

I Score of C0,m factors by config-transition pairs (ci−1, ti):
I s(C0,m) =

∑m
i=1 s(ci−1, ti)

I Learning:
I Scoring function s(ci−1, ti) for ti (ci−1) ∈ C0,m

I Inference:
I Search for highest scoring sequence C∗0,m given s(ci−1, ti)

Graph-Based and Transition-Based Dependency Parsing 13(32)

Transition-Based Parsing

Arc-Eager Transition System [Nivre 2003]

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [0, 1, . . . , n], { })

Terminal: (S , [],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Reduce: (S |i ,B,A) ⇒ (S ,B,A) h(i ,A)

Right-Arc(k): (S |i , j |B,A) ⇒ (S |i |j ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i , j |B,A) ⇒ (S , j |B,A ∪ {(j , i , k)}) ¬h(i ,A) ∧ i 6= 0

Notation: S|i = stack with top i and remainder S

j |B = buffer with head j and remainder B

h(i ,A) = i has a head in A

Graph-Based and Transition-Based Dependency Parsing 14(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT]S [Economic, news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, Economic]S [news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT]S [news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, news]S [had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod

nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT]S [had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had]S [little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had, little]S [effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had]S [effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect, on, financial]S [markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect, on, markets]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Example Transition Sequence

[ROOT, had, .]S []B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot

Graph-Based and Transition-Based Dependency Parsing 15(32)

Transition-Based Parsing

Greedy Inference

I Given an oracle o that correctly predicts the next transition
o(c), parsing is deterministic:

Parse(w1, . . . ,wn)
1 c ← ([]S , [0, 1, . . . , n]B , { })
2 while Bc 6= []
3 t ← o(c)
4 c ← t(c)
5 return G = ({0, 1, . . . , n},Ac)

I Complexity given by upper bound on number of transitions

I Parsing in O(n) time for the arc-eager transition system

Graph-Based and Transition-Based Dependency Parsing 16(32)

Transition-Based Parsing

From Oracles to Classifiers

I An oracle can be approximated by a (linear) classifier:

o(c) = argmax
t

w · f(c, t)

I History-based feature representation f(c, t)

I Weight vector w learned from treebank data

Graph-Based and Transition-Based Dependency Parsing 17(32)

Transition-Based Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

pos(S2) = ROOT

pos(S1) = verb
pos(S0) = noun
pos(B0) = prep
pos(B1) = adj
pos(B2) = noun

I Feature representation unconstrained by parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 18(32)

Transition-Based Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

word(S2) = ROOT

word(S1) = had
word(S0) = effect
word(B0) = on
word(B1) = financial
word(B2) = markets

I Feature representation unconstrained by parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 18(32)

Transition-Based Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

dep(S1) = root
dep(lc(S1)) = nsubj
dep(rc(S1)) = dobj
dep(S0) = dobj
dep(lc(S0) = amod
dep(rc(S0) = NIL

I Feature representation unconstrained by parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 18(32)

Transition-Based Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

ti−1 = Right-Arc(dobj)
ti−2 = Left-Arc(amod)
ti−3 = Shift
ti−4 = Right-Arc(root)
ti−5 = Left-Arc(nsubj)
ti−6 = Shift

I Feature representation unconstrained by parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 18(32)

Transition-Based Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

ti−1 = Right-Arc(dobj)
ti−2 = Left-Arc(amod)
ti−3 = Shift
ti−4 = Right-Arc(root)
ti−5 = Left-Arc(nsubj)
ti−6 = Shift

I Feature representation unconstrained by parsing algorithm

Graph-Based and Transition-Based Dependency Parsing 18(32)

Transition-Based Parsing

Local Learning

I Given a treebank:
I Reconstruct oracle transition sequence for each sentence
I Construct training data set D = {(c, t) | o(c) = t}
I Maximize accuracy of local predictions o(c) = t

I Any (unstructured) classifier will do (SVMs are popular)

I Training is local and restricted to oracle configurations

Graph-Based and Transition-Based Dependency Parsing 19(32)

Transition-Based Parsing

Transition-Based Parsing Trade-Off

I Advantages:
I Highly efficient parsing – linear time complexity with constant

time oracles and transitions
I Rich history-based feature representations – no rigid

constraints from inference algorithm

I Drawback:
I Sensitive to search errors and error propagation due to greedy

inference and local learning

Graph-Based and Transition-Based Dependency Parsing 20(32)

Contrastive Error Analysis

CoNLL 2006

I CoNLL 2006: Shared Task on Dependency Parsing
I Evaluation of 13 different languages

I Top 2 systems statistically identical: One graph-based
(MSTParser) and the other transition-based (MaltParser)

I Question: do the systems learn the same things?

Graph-Based and Transition-Based Dependency Parsing 21(32)

Contrastive Error Analysis

MSTParser and MaltParser

MSTParser MaltParser

Arabic 66.91 66.71
Bulgarian 87.57 87.41

Chinese 85.90 86.92
Czech 80.18 78.42

Danish 84.79 84.77
Dutch 79.19 78.59

German 87.34 85.82
Japanese 90.71 91.65

Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68

Overall 80.83 80.75

Graph-Based and Transition-Based Dependency Parsing 22(32)

Contrastive Error Analysis

Comparing the Models

I Inference:
I Exhaustive (MSTParser)
I Greedy (MaltParser)

I Training:
I Global structure learning (MSTParser)
I Local decision learning (MaltParser)

I Features:
I Local features (MSTParser)
I Rich decision history (MaltParser)

I Fundamental trade-off:
I Global learning and inference vs. rich feature space

Graph-Based and Transition-Based Dependency Parsing 23(32)

Contrastive Error Analysis

Error Analysis [McDonald and Nivre 2007]

I Aim:
I Relate parsing errors to linguistic and structural properties of

the input and predicted/gold standard dependency graphs

I Three types of factors:
I Length factors: sentence length, dependency length
I Graph factors: tree depth, branching factor, non-projectivity
I Linguistic factors: part of speech, dependency type

I Statistics:
I Labeled accuracy, precision and recall
I Computed over the test sets for all 13 languages

Graph-Based and Transition-Based Dependency Parsing 24(32)

Contrastive Error Analysis

Sentence Length

10 20 30 40 50 50+
Sentence Length (bins of size 10)

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

De
pe

nd
en

cy
 A

cc
ur

ac
y MSTParser

MaltParser

I MaltParser is more accurate than MSTParser for short
sentences (1–10 words) but its performance degrades more
with increasing sentence length.

Graph-Based and Transition-Based Dependency Parsing 25(32)

Contrastive Error Analysis

Dependency Length

0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 P

re
cis

io
n MSTParser

MaltParser

0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

I MaltParser is more precise than MSTParser for short
dependencies (1–3 words) but its performance degrades
drastically with increasing dependency length (> 10 words).

I MSTParser has more or less constant precision for
dependencies longer than 3 words.

I Recall is very similar across systems.

Graph-Based and Transition-Based Dependency Parsing 26(32)

Contrastive Error Analysis

Tree Depth (Distance to Root)

2 4 6 8 10
Distance to Root

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

De
pe

nd
en

cy
 P

re
cis

io
n MSTParser

MaltParser

2 4 6 8 10
Distance to Root

0.76

0.78

0.8

0.82

0.84

0.86

0.88

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

I MSTParser is much more precise than MaltParser for
dependents of the root and has roughly constant precision for
depth > 1, while MaltParser’s precision improves with
increasing depth (up to 7 arcs).

I Recall is very similar across systems.

Graph-Based and Transition-Based Dependency Parsing 27(32)

Contrastive Error Analysis

Part of Speech

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Verb Noun Pron Adj Adv Adpos Conj

Part of Speech (POS)

La
be

le
d

At
ta

ch
m

en
t S

co
re

 (L
AS

)

MSTParser
MaltParser

I MSTParser is more accurate for verbs, adjectives, adverbs,
adpositions, and conjunctions.

I MaltParser is more accurate for nouns and pronouns.

Graph-Based and Transition-Based Dependency Parsing 28(32)

Contrastive Error Analysis

Dependency Type: Root, Subject, Object

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Root Subj Obj

Dependency Type (DEP)

De
pe

nd
en

cy
 P

re
cis

io
n

MSTParser
MaltParser

72.0%

74.0%

76.0%

78.0%

80.0%

82.0%

84.0%

86.0%

88.0%

90.0%

Root Subj Obj

Dependency Type (DEP)

De
pe

nd
en

cy
 R

ec
al

l

MSTParser
MaltParser

I MSTParser has higher precision (and recall) for roots.

I MSTParser has higher recall (and precision) for subjects.

Graph-Based and Transition-Based Dependency Parsing 29(32)

Contrastive Error Analysis

Discussion

I Many of the results are indicative of the fundamental
trade-off: global learning/inference versus rich features.

I Global inference improves decisions for long sentences and
those near the top of graphs.

I Rich features improve decisions for short sentences and those
near the leaves of the graphs.

I Dependency parsing post-2007:
I How do we use this to improve parser performance?

Graph-Based and Transition-Based Dependency Parsing 30(32)

Contrastive Error Analysis

Voting and Stacking

I Early improvements were based on system combination
I Voting:

I Let parsers vote for heads [Zeman and Žabokrtský 2005]
I Use MST algorithm for tree constraint [Sagae and Lavie 2006]

I Stacking:
I Use the output of one parser as features for the other

[Nivre and McDonald 2008, Torres Martins et al. 2008]

I Focus in these lectures:
I Work on evolving the approaches themselves
I Richer feature representations in graph-based parsing
I Improved learning and inference in transition-based parsing

Graph-Based and Transition-Based Dependency Parsing 31(32)

Coming Up Next

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies

Graph-Based and Transition-Based Dependency Parsing 32(32)

References and Further Reading

References and Further Reading

I Giuseppe Attardi. 2006.
Experiments with a multilanguage non-projective dependency parser. In
Proceedings of the 10th Conference on Computational Natural Language Learning
(CoNLL), pages 166–170.

I Y. J. Chu and T. J. Liu. 1965.
On the shortest arborescence of a directed graph. Science Sinica, 14:1396–1400.

I Michael A. Covington. 2001.
A fundamental algorithm for dependency parsing. In Proceedings of the 39th
Annual ACM Southeast Conference, pages 95–102.

I J. Edmonds. 1967.
Optimum branchings. Journal of Research of the National Bureau of Standards,
71B:233–240.

I Jason M. Eisner. 1996.
Three new probabilistic models for dependency parsing: An exploration. In
Proceedings of the 16th International Conference on Computational Linguistics
(COLING), pages 340–345.

I Ryan McDonald and Joakim Nivre. 2007.

Graph-Based and Transition-Based Dependency Parsing 32(32)

References and Further Reading

Characterizing the errors of data-driven dependency parsing models. In Proceedings
of the Join Conference on Empirical Methods in Natural Language Processing and
the Conference on Computational Natural Language Learning (EMNLP-CoNLL).

I Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005a.
Online large-margin training of dependency parsers. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL), pages
91–98.

I Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005b.
Non-projective dependency parsing using spanning tree algorithms. In Proceedings
of the Human Language Technology Conference and the Conference on Empirical
Methods in Natural Language Processing (HLT/EMNLP), pages 523–530.

I Joakim Nivre and Ryan McDonald. 2008.
Integrating graph-based and transition-based dependency parsers. In Proceedings of
the 46th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 950–958.

I Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Hwee Tou Ng and Ellen Riloff, editors,
Proceedings of the 8th Conference on Computational Natural Language Learning
(CoNLL), pages 49–56.

Graph-Based and Transition-Based Dependency Parsing 32(32)

References and Further Reading

I Joakim Nivre. 2003.
An efficient algorithm for projective dependency parsing. In Gertjan Van Noord,
editor, Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT), pages 149–160.

I Joakim Nivre. 2007.
Incremental non-projective dependency parsing. In Proceedings of Human
Language Technologies: The Annual Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL-HLT), pages 396–403.

I Joakim Nivre. 2008.
Algorithms for deterministic incremental dependency parsing. Computational
Linguistics, 34:513–553.

I Kenji Sagae and Alon Lavie. 2006.
Parser combination by reparsing. In Proceedings of the Human Language
Technology Conference of the NAACL, Companion Volume: Short Papers, pages
129–132.

I André Filipe Torres Martins, Dipanjan Das, Noah A. Smith, and Eric P. Xing.
2008.
Stacking dependency parsers. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 157–166.

Graph-Based and Transition-Based Dependency Parsing 32(32)

References and Further Reading

I Hiroyasu Yamada and Yuji Matsumoto. 2003.
Statistical dependency analysis with support vector machines. In Gertjan
Van Noord, editor, Proceedings of the 8th International Workshop on Parsing
Technologies (IWPT), pages 195–206.

I Daniel Zeman and Zdeněk Žabokrtský. 2005.
Improving parsing accuracy by combining diverse dependency parsers. In
Proceedings of the Ninth International Workshop on Parsing Technology, pages
171–178.

Graph-Based and Transition-Based Dependency Parsing 32(32)

	Introduction
	Graph-Based Parsing
	Transition-Based Parsing
	Contrastive Error Analysis
	References and Further Reading

