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Introduction

Overall Plan

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies
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Introduction

Plan for this Lecture

I Graph-based dependency parsing
I First-order model
I Learning and inference

I Transition-based dependency parsing
I Arc-eager transition system
I Learning and inference

I Contrastive error analysis [McDonald and Nivre 2007]
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Graph-Based Parsing

Graph-Based Parsing

I Basic idea:
I Define a space of candidate dependency graphs for a sentence.
I Learning: Induce a model for scoring an entire dependency

graph for a sentence.
I Parsing: Find the highest-scoring dependency graph, given the

induced model.

I Characteristics:
I Global training of a model for optimal dependency graphs
I Exhaustive search/inference

Graph-Based and Transition-Based Dependency Parsing 4(32)



Graph-Based Parsing

Graph-Based Parsing

I For input sentence x define a graph Gx = (Vx ,Ax), where
I Vx = {0, 1, . . . , n}
I Ax = {(i , j , k) | i , j ∈ V and j 6= 0 and i 6= j and lk ∈ L}

I Key observation:
I Valid dependency trees for x = directed spanning trees of Gx

I Score of dependency tree T factors by subgraphs G1, . . . ,Gm:
I s(T ) =

∑m
c=1 s(Gc)

I Learning: Scoring function s(Gc) for subgraphs Gc ∈ G

I Inference: Search for maximum spanning tree T ∗ of Gx

T ∗ = argmax
T∈Gx

s(T ) = argmax
T∈Gx

m∑
c=1

s(Gc)
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Graph-Based Parsing

Learning

I Typical scoring function:
I s(Gi ) = w · f(Gi )

where
I f(Gi ) = high-dimensional feature vector over subgraphs
I w = weight vector [wj = weight of feature fj(Gi )]

I Structured learning [McDonald et al. 2005a]:
I Learn weights that maximize the score of the correct

dependency tree for every sentence in the training set
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Graph-Based Parsing

First-Order Model

I Scored subgraph Gc is a single arc (i , j , k)

I s(T ) =
∑m

c=1 s(Gc) =
∑

(i ,j ,k)∈T s(i , j , k)

I Often we drop k, since it is rarely structurally relevant
I s(T ) =

∑
(i,j)∈T s(i , j)

I s(i , j) = maxks(i , j , k)

John

saw

Mary

ROOT 9
10

20

9

30

0

11

3

30

John

saw

Mary

ROOT

10

30
30

I This search is global: consider all possible trees
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Graph-Based Parsing

First-Order Projective Parsing

Eisner algorithm
[Eisner 1996]

ROOT      John          saw         Mary

30 s(saw → Mary) = 30

s(saw → John) = 30
30

0 + 30 = 30 0 + 30 = 30

30 + 10 = 40
s(root → saw) = 10

00 0 0 0 0 0

40 + 30 = 70

ROOT      John          saw         Mary

Chart items either:
1) Create a new dependency
2) Absorb left/right subtree

Each chart item store two indexes:
1) left boundary
2) right boundary

All operations require
3 indexes: O(n3)

1 2

3
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Graph-Based Parsing

First-Order Non-Projective Parsing

I Equivalent to MST problem [McDonald et al. 2005b]

I For directed graphs, also called arboresence problem

I O(n2) parsing [Chu and Liu 1965, Edmonds 1967]

I Greedy algorithm, not dynamic programming

ROOT What did economic news have little effect on ?
ROOT adj verb adj noun verb adj noun prep .

pobj

aux

nsubjamod

dobj

prep

amod

p

root
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Graph-Based Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, can have features over properties
of arc and context within sentence

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod
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Graph-Based Parsing

Feature Scope

I f ∈ Rn is a feature representation of the subgraph Gc

I For first-order models, Gc is an arc
I Gc = (i , j) for a head i and modifier j

I This inherently limits features to a local scope

I For arc (had, effect) below, cannot have features over multiple
arcs (siblings, grandparents), valency, etc.

Economic news had little effect on financial markets
adj noun verb adj noun prep adj noun

amod nsubj

dobj

amod prep

pmod

amod

valency=2

Graph-Based and Transition-Based Dependency Parsing 10(32)



Graph-Based Parsing

Graph-Based Parsing Trade-Off

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

I For example, first-order models often predict two subjects
I No parameter exists to discourage this

John Smith was tall
noun noun verb adj

nsubj

nsubj acomp
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Transition-Based Parsing

Transition-Based Parsing

I Basic idea:
I Define a transition system (state machine) for mapping a

sentence to its dependency graph.
I Learning: Induce a model for predicting the next state

transition, given the transition history.
I Parsing: Construct the optimal transition sequence, given the

induced model.

I Characteristics:
I Local training of a model for optimal transitions
I Greedy search/inference
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Transition-Based Parsing

Transition-Based Parsing

I A transition system for dependency parsing defines
I a set C of parser configurations
I a set T of transitions, each a function t :C→C
I initial configuration and terminal configurations for sentence x

I Key idea:
I Valid dependency trees for S defined by terminating transition

sequences C0,m = t1(c0), . . . , tm(cm−1)

I Score of C0,m factors by config-transition pairs (ci−1, ti ):
I s(C0,m) =

∑m
i=1 s(ci−1, ti )

I Learning:
I Scoring function s(ci−1, ti ) for ti (ci−1) ∈ C0,m

I Inference:
I Search for highest scoring sequence C∗0,m given s(ci−1, ti )
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Transition-Based Parsing

Arc-Eager Transition System [Nivre 2003]

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([ ], [0, 1, . . . , n], { })

Terminal: (S , [ ],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Reduce: (S |i ,B,A) ⇒ (S ,B,A) h(i ,A)

Right-Arc(k): (S |i , j |B,A) ⇒ (S |i |j ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i , j |B,A) ⇒ (S , j |B,A ∪ {(j , i , k)}) ¬h(i ,A) ∧ i 6= 0

Notation: S|i = stack with top i and remainder S

j |B = buffer with head j and remainder B

h(i ,A) = i has a head in A
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Transition-Based Parsing

Example Transition Sequence

[ROOT]S [Economic, news, had, little, effect, on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

proot
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Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

prep

pmod

amod

p

root
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Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [financial, markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)



Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect, on, financial]S [markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)



Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [markets, .]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)



Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect, on, markets]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)



Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect, on]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)



Transition-Based Parsing

Example Transition Sequence

[ROOT, had, effect]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)



Transition-Based Parsing

Example Transition Sequence

[ROOT, had]S [.]B

ROOT Economic news had little effect on financial markets .
adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod prep

pmod

amod

p

root

Graph-Based and Transition-Based Dependency Parsing 15(32)



Transition-Based Parsing

Example Transition Sequence

[ROOT, had, .]S [ ]B
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adj noun verb adj noun prep adj noun .
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dobj
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Transition-Based Parsing

Greedy Inference

I Given an oracle o that correctly predicts the next transition
o(c), parsing is deterministic:

Parse(w1, . . . ,wn)
1 c ← ([ ]S , [0, 1, . . . , n]B , { })
2 while Bc 6= [ ]
3 t ← o(c)
4 c ← t(c)
5 return G = ({0, 1, . . . , n},Ac)

I Complexity given by upper bound on number of transitions

I Parsing in O(n) time for the arc-eager transition system
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Transition-Based Parsing

From Oracles to Classifiers

I An oracle can be approximated by a (linear) classifier:

o(c) = argmax
t

w · f(c, t)

I History-based feature representation f(c, t)

I Weight vector w learned from treebank data
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Transition-Based Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A

I Features over the (partial) transition sequence

Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

pos(S2) = ROOT

pos(S1) = verb
pos(S0) = noun
pos(B0) = prep
pos(B1) = adj
pos(B2) = noun

I Feature representation unconstrained by parsing algorithm
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Transition-Based Parsing

Feature Representation

I Features over input tokens relative to S and B

I Features over the (partial) dependency graph defined by A
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Configuration Features

[ROOT, had, effect]S [on, financial, markets, .]B

ROOT Economic news had little effect on financial markets .
ROOT adj noun verb adj noun prep adj noun .

amod nsubj

dobj

amod

root

ti−1 = Right-Arc(dobj)
ti−2 = Left-Arc(amod)
ti−3 = Shift
ti−4 = Right-Arc(root)
ti−5 = Left-Arc(nsubj)
ti−6 = Shift

I Feature representation unconstrained by parsing algorithm
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Transition-Based Parsing

Local Learning

I Given a treebank:
I Reconstruct oracle transition sequence for each sentence
I Construct training data set D = {(c, t) | o(c) = t}
I Maximize accuracy of local predictions o(c) = t

I Any (unstructured) classifier will do (SVMs are popular)

I Training is local and restricted to oracle configurations
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Transition-Based Parsing

Transition-Based Parsing Trade-Off

I Advantages:
I Highly efficient parsing – linear time complexity with constant

time oracles and transitions
I Rich history-based feature representations – no rigid

constraints from inference algorithm

I Drawback:
I Sensitive to search errors and error propagation due to greedy

inference and local learning
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Contrastive Error Analysis

CoNLL 2006

I CoNLL 2006: Shared Task on Dependency Parsing
I Evaluation of 13 different languages

I Top 2 systems statistically identical: One graph-based
(MSTParser) and the other transition-based (MaltParser)

I Question: do the systems learn the same things?
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Contrastive Error Analysis

MSTParser and MaltParser

MSTParser MaltParser

Arabic 66.91 66.71
Bulgarian 87.57 87.41

Chinese 85.90 86.92
Czech 80.18 78.42

Danish 84.79 84.77
Dutch 79.19 78.59

German 87.34 85.82
Japanese 90.71 91.65

Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68

Overall 80.83 80.75
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Contrastive Error Analysis

Comparing the Models

I Inference:
I Exhaustive (MSTParser)
I Greedy (MaltParser)

I Training:
I Global structure learning (MSTParser)
I Local decision learning (MaltParser)

I Features:
I Local features (MSTParser)
I Rich decision history (MaltParser)

I Fundamental trade-off:
I Global learning and inference vs. rich feature space
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Contrastive Error Analysis

Error Analysis [McDonald and Nivre 2007]

I Aim:
I Relate parsing errors to linguistic and structural properties of

the input and predicted/gold standard dependency graphs

I Three types of factors:
I Length factors: sentence length, dependency length
I Graph factors: tree depth, branching factor, non-projectivity
I Linguistic factors: part of speech, dependency type

I Statistics:
I Labeled accuracy, precision and recall
I Computed over the test sets for all 13 languages
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Contrastive Error Analysis

Sentence Length
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I MaltParser is more accurate than MSTParser for short
sentences (1–10 words) but its performance degrades more
with increasing sentence length.
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Contrastive Error Analysis

Dependency Length

0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 P

re
cis

io
n MSTParser

MaltParser

0 5 10 15 20 25 30
Dependency Length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
pe

nd
en

cy
 R

ec
al

l MSTParser
MaltParser

I MaltParser is more precise than MSTParser for short
dependencies (1–3 words) but its performance degrades
drastically with increasing dependency length (> 10 words).

I MSTParser has more or less constant precision for
dependencies longer than 3 words.

I Recall is very similar across systems.
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Contrastive Error Analysis

Tree Depth (Distance to Root)
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I MSTParser is much more precise than MaltParser for
dependents of the root and has roughly constant precision for
depth > 1, while MaltParser’s precision improves with
increasing depth (up to 7 arcs).

I Recall is very similar across systems.
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Contrastive Error Analysis

Part of Speech
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I MSTParser is more accurate for verbs, adjectives, adverbs,
adpositions, and conjunctions.

I MaltParser is more accurate for nouns and pronouns.
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Contrastive Error Analysis

Dependency Type: Root, Subject, Object
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I MSTParser has higher precision (and recall) for roots.

I MSTParser has higher recall (and precision) for subjects.
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Contrastive Error Analysis

Discussion

I Many of the results are indicative of the fundamental
trade-off: global learning/inference versus rich features.

I Global inference improves decisions for long sentences and
those near the top of graphs.

I Rich features improve decisions for short sentences and those
near the leaves of the graphs.

I Dependency parsing post-2007:
I How do we use this to improve parser performance?
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Contrastive Error Analysis

Voting and Stacking

I Early improvements were based on system combination
I Voting:

I Let parsers vote for heads [Zeman and Žabokrtský 2005]
I Use MST algorithm for tree constraint [Sagae and Lavie 2006]

I Stacking:
I Use the output of one parser as features for the other

[Nivre and McDonald 2008, Torres Martins et al. 2008]

I Focus in these lectures:
I Work on evolving the approaches themselves
I Richer feature representations in graph-based parsing
I Improved learning and inference in transition-based parsing
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Coming Up Next

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies
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Non-projective dependency parsing using spanning tree algorithms. In Proceedings
of the Human Language Technology Conference and the Conference on Empirical
Methods in Natural Language Processing (HLT/EMNLP), pages 523–530.

I Joakim Nivre and Ryan McDonald. 2008.
Integrating graph-based and transition-based dependency parsers. In Proceedings of
the 46th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 950–958.

I Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Hwee Tou Ng and Ellen Riloff, editors,
Proceedings of the 8th Conference on Computational Natural Language Learning
(CoNLL), pages 49–56.

Graph-Based and Transition-Based Dependency Parsing 32(32)



References and Further Reading

I Joakim Nivre. 2003.
An efficient algorithm for projective dependency parsing. In Gertjan Van Noord,
editor, Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT), pages 149–160.

I Joakim Nivre. 2007.
Incremental non-projective dependency parsing. In Proceedings of Human
Language Technologies: The Annual Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL-HLT), pages 396–403.

I Joakim Nivre. 2008.
Algorithms for deterministic incremental dependency parsing. Computational
Linguistics, 34:513–553.

I Kenji Sagae and Alon Lavie. 2006.
Parser combination by reparsing. In Proceedings of the Human Language
Technology Conference of the NAACL, Companion Volume: Short Papers, pages
129–132.
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